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1 Molecular Cell Biology, University of Lund, SE-223 62 Lund, Sweden; lars_olof.bjorn@biol.lu.se
2 U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard,

Lafayette, LA 70506, USA; middletonb@usgs.gov
3 Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;

alenka.gaberscik@bf.uni-lj.si
* Correspondence: mateja.germ@bf.uni-lj.si

Abstract: Molecular oxygen and carbon dioxide may be limited for aquatic plants, but they have
various mechanisms for acquiring these gases from the atmosphere, soil, or metabolic processes. The
most common adaptations of aquatic plants involve various aerenchymatic structures, which occur
in various organs, and enable the throughflow of gases. These gases can be transferred in emergent
plants by molecular diffusion, pressurized gas flow, and Venturi-induced convection. In submerged
species, the direct exchange of gases between submerged above-ground tissues and water occurs, as
well as the transfer of gases via aerenchyma. Photosynthetic O2 streams to the rhizosphere, while
soil CO2 streams towards leaves where it may be used for photosynthesis. In floating-leaved plants
anchored in the anoxic sediment, two strategies have developed. In water lilies, air enters through
the stomata of young leaves, and streams through channels towards rhizomes and roots, and back
through older leaves, while in lotus, two-way flow in separate air canals in the petioles occurs. In
Nypa Steck palm, aeration takes place via leaf bases with lenticels. Mangroves solve the problem
of oxygen shortage with root structures such as pneumatophores, knee roots, and stilt roots. Some
grasses have layers of air on hydrophobic leaf surfaces, which can improve the exchange of gases
during submergence. Air spaces in wetland species also facilitate the release of greenhouse gases,
with CH4 and N2O released from anoxic soil, which has important implications for global warming.

Keywords: metabolic gases; greenhouse gases; aerenchyma; anoxic soil

1. Introduction

The aquatic environment holds special challenges for plant survival. The diffusion
of gases in water is about 104-fold slower than in air, so that aquatic plants must per-
form photosynthesis in water, and maintain aerobic respiration in flooded conditions [1,2].
Herbaceous wetland plants differ significantly, according to the accessibility of gases for
their metabolism regarding their position in the water column. Researchers define various
functional groups, namely, (1) emergent macrophytes or helophytes that are rooted in
water-saturated soil, with foliage extending into the air (e.g., Typha latifolia, Phragmites
australis); (2) floating-leaved macrophytes that are living in water rooted in hypoxic or
anoxic sediment, with leaves floating on the water surface (e.g., Nuphar luteum, Nymphaea
alba); (3) submerged macrophytes that grow completely submerged under the water, with
roots or rhizoids attached to the substrate (e.g., Myriophyllum spicatum, Potamogeton cris-
pus); and (4) free-floating macrophytes that float on or under the water surface, and are
usually not rooted in the sediment (e.g., Ceratophyllum demersum) [3]. In addition, wetlands
also host many different woody plants that are permanently or occasionally rooted in
water-saturated sediment [4]. These species, belonging to different groups, often possess
adaptations to overcome oxygen and carbon dioxide deficiencies, in order to maintain opti-
mal conditions for photosynthesis and respiration. Emergent and floating-leaved species
have an advantage over submerged species because their above-ground parts are fully
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or partly exposed to air. Aerial leaves have stomata in their epidermis, which can be
adjusted to optimize exposure of internal tissues to the atmosphere and the exchange of
gases. Thus, aerial plant parts are well supplied with oxygen, but for roots and rhizomes
anchored in water-saturated soils, oxygen for respiration can be limited. Therefore, efficient
ventilation systems are crucial for their survival. Ventilation systems rely on a passive
molecular diffusion process, on pressurized gas flow, or Venturi-induced convection [5];
however, in submerged plant tissue, the direct exchange of gases between these tissues
and water also occurs [6]. In most aquatic species, ventilation is enabled by an extended
system of air canals and intercellular spaces called aerenchyma, which develop in different
plant organs from roots, to stems and leaves. [7,8]. Gases in aerenchyma can originate
from the atmosphere, rhizosphere, or plant metabolism [9]. Laing [10] shows a strong
relationship between the leaf area and the extent of changes of oxygen and carbon dioxide
concentrations in aerenchyma during periods of illumination; thus, the contribution of
metabolic gases may vary significantly among species.

Aquatic plants mainly form aerenchyma constitutively in different organs, namely,
roots, leaves, and stems, while some amphibious and terrestrial plants produce aerenchyma
in response to an oxygen shortage [7]. The presence of aerenchyma may differ among
species. Independent of habitat, aerenchyma patterns are stable at the genus level, and the
consistency of pattern is stronger in the roots than in the shoots [11]. In addition to the at-
mosphere, gases in aerenchyma can originate from the rhizosphere or plant metabolism [9].
The formation of aerenchyma may not depend on environmental conditions, or be induced
by flooding [1]. Aerenchyma cells are formed lysigenously by programmed cell death,
as is the case of rice roots; schizogenously by the expansion of intercellular spaces [11];
and expansigenously (secondary aerenchyma) by cell division or enlargement, without
cell separation or death [12]. These enlarged spaces may develop either in primary tissues
(primary aerenchyma), or in secondary tissues (secondary aerenchyma) [13]. According
to Doležal et al. [14], lysigenous aerenchyma are mostly produced by submerged plants,
schizogenous aerenchyma by terrestrial and perennial wetland plants, and expansigenous
honeycomb aerenchyma by aquatic floating-leaved plants. The amount of intercellular
spaces varies significantly among species. In aquatic species, these intercellular spaces
contribute up to 60% of the leaf volume [15], while in mesophytes, their volumes range
from 2–7% [16]. Thus, in non-tolerant species, flooding may result in the demise of the
plant.

Beyond ventilation, aerenchyma cells have other important ecological functions,
including acting to store gases and increasing their internal conductance to roots and
shoots [7]. The transfer of oxygen to underground organs, via aerenchyma during soil
flooding, may prevent the suffocation of plants. Oxygen can also be transferred from roots
to the rhizosphere, via aerenchyma. This critically important oxygen to oxidize and detoxify
toxic chemicals formed in sediments in environments with low redox potential [17,18],
noting that a lack of oxygen is associated with reduced forms of sulfur, manganese, and
iron that may reach toxic levels in the soil [6].

In wetland soils, gas concentrations of several gases, such as carbon dioxide and
methane, exceed atmospheric concentrations. Thus, aerenchyma can also be a path for
greenhouse gas emissions from the plant, as methane and nitrous dioxide are released via
plants from waterlogged sediments to the atmosphere [19,20].

Some photosynthetic O2 produced by submerged plants oxygenates the water column,
while natant plants can prevent oxygen diffusion from the atmosphere to water [21–24].
Aerenchyma cells lend buoyancy and mechanical resistance to breakage, with a relatively
small investment in biomass by aquatic plants [25].

The ventilation in wetland plants takes place via various plant structures, and is
enabled by the presence of aerenchyma in these structures. The source of gases and influx
and efflux locations may differ significantly among different species and plant groups. In
this review, we summarize the outcomes of research, and point out the similarity, diversity,
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and functional features of ventilation systems in various functional groups of wetland
plants, and point out their potential effects on the wider environment.

2. Ventilation Mechanisms in Various Wetland Plant Groups
2.1. Submerged Species

In submerged aquatic species, the ventilation system is especially important since
these have no direct connection with the atmosphere [26]. Extensive aerenchyma in the
stems of all submerged plants that may be lysigenous and schizogenous (Figure 1) en-
able buoyancy for their flexible stems in water; however, this may limit the distribution
of aquatic vascular plants to the depth where hydrostatic pressure does not compress
stems [27]. Gases in submerged species come from plant metabolism, water, and sediment.
The aerenchyma function as a reservoir for metabolic gases. Hartman and Brown [28],
studying gas dynamics in Elodea canadensis Michx. and Ceratophyllum demersum L., detect a
lag between peak values for dissolved oxygen in the surrounding water, and oxygen in the
internal atmosphere. This situation is also true of the representatives of the genus Lobelia
L., Lilaeopsis Greene, and Vallisneria L., which obtain more than 75% of their CO2 needs
from the sediment [29,30]. However, photosynthesis is important for internal O2 status
and aeration of anoxic sediments [31–33]. Sand-Jensen et al. [34] show that submerged
macrophytes release oxygen from their roots during illumination, and at lower rates during
darkness. The amounts of oxygen released varies among species from 0.04 to 3.12 µg
O2/mgDM/h; the species Lobelia dortmanna is the most effective. This involvement of
photosynthesis enables aerobic metabolism of roots, sediment oxygenation due to radial
oxygen loss, and improves nutrient uptake from the sediment [26].
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Figure 1. Transection of stems of two submerged species showing different types of aerenchyma;
(a) lysigenous in Myriophyllum spicatum and (b) schizogenous in Potamogeton crispus. Photo: Matej Holcar.

A few outstanding representatives of submergent species include quillworts, Isoëtes
L., which are the only surviving genus of a large plant group, distantly related to the
clubmosses. This group emerged about 300 million years ago in ephemeral pools and
oligotrophic lakes, and later radiated into terrestrial habitats [35]. Species in this group
are well-adapted to cold environments, and limited light and carbon dioxide supply [36].
This genus represents the oldest lineage of plants with Crassulacean acid metabolism
(CAM) [33].

At least some of species of the genus Isoëtes have air canals from the leaves through
the periderm to the cortex aerenchyma in the stem [37]. Green [38] compares the air canals
and aerenchyma in Isoëtes with the corresponding structures in Carboniferous–Permian
arborescent lycopsids, such as Lepidodendron Stern. spp. The extinct lycopsid swamp trees
called Stigmaria Stern. have similar air channels in their roots [39].

Most modern species of Isoëtes grow in wet environments, and use CAM to fix car-
bon. Due to the mineralization of organic matter, the CO2 concentration in sediment is
10–250 times higher than atmospheric equilibrium [40]. Thus, these species uptake sedi-
mentary CO2 that is transferred via the large gas channels [38], which are present in various
Isoëtes organs [41] (Figure 2). CO2 leakage from gas spaces is prevented by the extremely
high diffusional resistance of water. However, some Isoëtes species have an amphibious
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character, and may develop leaves with stomata and switch to C3 photosynthesis if plant
parts emerge into the air from the water [35]. In addition, Pedersen et al. [42,43] show
that various isoetids (small, aquatic plants with thick, stiff leaves or stems that form basal
rosettes [42]), seagrasses, and rosette-bearing wetland species may have leaves buried in
sediments, and their achlorophyllous bases may function as an exit for O2 to the sedi-
ment, and entrance for CO2 from the sediment [42,43]. This system may also affect the
concentrations of gases in aerenchyma and photosynthesis [44].
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Figure 2. The root (a) and leaf (b) cross-section of Isoëtes L. sp. with large central air spaces. Drawings:
Alenka Gaberščik.

2.2. Species with Natant Leaves

The advantage for these species is a direct connection with the atmosphere via natant
leaves; however, since some of them grow in water as deep as 3 m [27,45], they need also
effective aeration of the anoxic sediment.

Water lilies of the genus Nymphaea L. and Nuphar Sm. possess well-developed venti-
lation systems (Figure 3). Air enters through the stomata of young leaves that have just
reached the water surface, streams through the channels of long petioles, through rhi-
zomes and roots, and back to the external air through older leaves (Figure 4). This system
accelerates O2 flow from the atmosphere to the roots, and CO2 and CH4 flow from the
roots to the atmosphere. This remarkable ventilation system has significant physiological
and ecological consequences [46]. Laing [10] measures the daily dynamics of internal gas
composition in various tissues of Nuphar advena (Aiton) W.T. Aiton, and finds a decrease
in carbon dioxide and an increase in oxygen during the day, while the opposite is true at
night. These findings show the important role of the metabolic process in influencing gas
concentrations in various tissues.
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The ventilation is driven by the pressurization of the gas in air spaces of young natant
leaves, due to thermo-osmosis of gases during cooling by transpiration [45,46]. Cooling
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by transpiration of the upper leaf surface enables a steeper temperature gradient within
the leaf, intensifying internal aeration [47]. The leaves are warmed by the sun during the
day, and by water in the surrounding environment at night, which enables ventilation at
night [48]. This process is also supported by specific morphological features that may differ
among species [49]. One important feature is that gas transport through a small opening
varies with the dimensions of the opening, depending on whether the gas transport takes
place by diffusion or by mass flow. The rate of gas transport by diffusion is proportional
to the diameter (or some other linear dimension if the opening or aperture is not circular),
and to the difference in concentration of the gas on the two sides of the opening, with the
slower movement of heavy vs. light gas molecules.

The rate of mass flow follows Poiseuille’s law. The flow rate is proportional to the total
pressure gradient between younger and older leaves [5], and the diameter (or corresponding
measure) is raised to the fourth power. Therefore, diffusion often dominates in plant parts
with small openings, and mass flow when the openings are large [46]. The openings in
young leaves are narrow. According to Grosse and Schröder [50], the important openings,
in this case, are not the stomata (≈5.6 µm × 2.4 µm), but narrow passages (intercellulars)
(≈1 µm) between cells inside the leaves. The oxygen concentration outside the leaves is
higher than in the airspaces inside the leaves. This situation is partly because the air inside
is diluted by water vapor, and is almost saturated in the intercellular spaces. Therefore,
oxygen diffuses into the young leaves, and the total gas pressure there exceeds that of
the external air. As the passages to the higher-oxygen external air are so narrow, little
air escapes from the young leaves to the external atmosphere. It is easier for air to flow
through the wider “pipes” in the petioles down to the rhizomes and roots, where oxygen is
consumed by respiration. The rest of the air streams out to the atmosphere through the
older leaves, where the passages are wider than in the younger leaves.

The streaming of air in the yellow water lily, Nuphar luteum (L.) Sm. is described not
only by Schröder et al. [51], but also in a series of articles by John Dacey and coworkers,
and the results are summarized by Dacey [46]. Richards et al. [45] perform similar studies
on Nymphaea odorata Aiton. In the case of N. luteum, the network of internal gas spaces
enables a pressurized flow-through system, that directs air rich with oxygen from young
leaves to the underground organs, and with air rich in carbon dioxide back via the older
emergent leaves to the atmosphere [46]. Konnerup et al. [52] compare pressure differences
and convective gas flow in twenty species of tropical angiosperms (Table 1). The highest
flow rates are found for Nymphaea rubra Roxb. and Nelumbo nucifera Gaertn.. Some species
achieving large pressure differences have low flow rates. The two Eleocharis R. Br. species
differ remarkably with respect to the pressure differences produced.

Table 1. Comparison of pressure differences and convective gas flow in twenty species of tropical
angiosperms (adapted from Konnerup et al. [52]).

Plant ∆P(Pa) Air Flow
(mL/min) Plant ∆P(Pa) Air Flow (mL/min)

Monocotyledons Dicotyledons

Cyperaceae Nymphaeaceae
Cyperus compactus Retz. 20 0.60 Nymphaea rubra Roxb. 236 140
Cyperus digitatus Roxb. 14 1.29 Nymphaea nouchali Burm. f. 116 15.2

Eleocharis dulcis (Burm. f.) Trin. ex
Hensch 628 11.9 Nelumbonaceae

Eleocharis acutangula Schultes 15 0.10 Nelumbo nucifera Gaertn. 295 288
Scirpus grossus L. f. 3 0.22 Menyanthaceae

Scirpus littoralis Shrad. 83 0.39 Nymphoides indica (L.)
Kuntze 485 36

Scleria poaeformis Retz. 22 1.11 Convolvulaceae
Poaceae Ipomoea aquatica Forssk. 3 0.18

Phragmites vallatoria (L.) Veldkamp 482 1.59
Urochloa mutica (Forsk T.Q. Nguyen 11 0.09

Hymenachne acutigluma (Steud.)
Gilliland 141 0.55
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Table 1. Cont.

Plant ∆P(Pa) Air Flow
(mL/min) Plant ∆P(Pa) Air Flow (mL/min)

Monocotyledons Dicotyledons

Oryza rufipogon Griff. 23 0.32
Leersia hexandra Swartz. 62 0.15

Pontederiaceae
Eichhornia crassipes (Mart.) Solms 8 0.12

Araceae
Colocasia esculenta (L.) Schott 3 0.10 i

Limnocharitaceae
Limnocharis flava (L.) Buchenau 6 0.81

Lotus (N. nucifera) is not closely related to water lilies, but has a similar growth form,
and ventilates its organs in oxygen-deficient sediment by streaming air. The thermo-osmotic
gas transport depends on a temperature differential between the air in the aerenchyma of
the leaves and the surrounding atmosphere [53]. Stomata located in the central parts of
leaves have an important function in the active regulation of airflow [54]. These central
stomata are three times larger than stomata of the other part of the leaf lamina, and control
the gas release by opening and closing [55]. Lotus differs from other groups because
each petiole has separate channels for descending and ascending air [53,56]. Air is, thus,
transferred from leaves, down through petioles, rhizomes, and then back to the atmosphere
through large stomata [54] (Figure 4).
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Figure 4. Ventilation system in Nuphar luteum (a,b) Nelumbo nucifera (b,c). (a) N. luteum young and
older leaves; (b) the scheme of ventilation system where arrows shows that air from atmosphere
enters via young leaves through stems with aerenchyma to rhizomes, and via older leaves back to
the atmosphere; (c) N. nucifera leaves with visible central part with denser stomata; (d) the scheme
of ventilation system with arrows indicating the direction of flow (blue—influx from atmosphere
via stomata in leaf lamina through aerenchyma in leaf and petiole to aerenchyma in rhizomes; light
grey—efflux from rhizomes through aerenchyma in petiole to the central part of the lamina, and
finally to atmosphere). Photos and drawings: Alenka Gaberščik.
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Polygonum amphibium L. is an amphibious plant with natant leaves. and thrives in
water up to 2 m, with its hollow stems that enable the aeration of underground organs
(Figure 5). However, gases trapped in the aerenchyma may also benefit the photosynthesis
and lower photorespiration rate [57], due to changes in the ratio of internal CO2/O2
concentrations.
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2.3. Helophytes

Helophytes live anchored in water-saturated sediment, while their above-ground organs
are usually in air. Most of them have well-developed aerenchyma [1]. When leaves of
different helophytes are submerged, they produce gas films at the leaf surface to improve
photosynthesis. Colmer and Pedersen [58] show that Phalaris arundinacea, Phragmites australis,
and Typha latifolia form gas films on both leaf sides, Glyceria maxima form gas films on the
adaxial only, and Acorus calamus and S. emersum do not form gas films.

Rhizomes and stems of wetland representatives of horsetail (Equisetum) have large canals [59].
Internal ventilation systems differ among Equisetum species, and are best developed in the great
horsetail, E. telmateia Ehrh. In this species, an airflow of 120 mL/min and a wind speed of 10 cm/s
were measured [60], and this flow may be evaporation-driven. Air enters via stomata on branches,
passes to substomatal cavities, and then via intercellulars to aerenchyma channels in branches, to
the main stem, rhizome, and cortical intercellular spaces of roots [61].

Methane release from E. fluviatile L. stands suggests that this species lacks a pressurized
ventilation system because no diurnal changes are detected [59]. In addition, no or very low
airflow is measured in this species, even though it thrives in deep water [62]. The power for
the airflow comes from the evaporation of water inside the plant. If the air surrounding the
plant is saturated with water vapor, the flow stops, and it is sped up by wind that evaporates
water vapor from the plant surface [61]. For example, E. palustre L. maintains an inner mass
flow of up to 13 mL/min (Figure 6). No flow is found in E. sylvaticum L. or E. arvense L.,
perhaps because these species lack air channels in the branches [60]. These species only
rely on diffusion for oxygen provision to their below-ground parts, which is facilitated in
environments of well-aerated soil.
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Common reed and other Phragmites species frequently grow in water-saturated anoxic
soil. Phragmites are ventilated by “compressed air” in a similar way to water lilies and
lotus [63,64], but additional aeration may be obtained by suction from old broken reeds
when the wind is blowing over them, a Venturi-effect [65], and also by oxygen from
photosynthesis. The oxygen pressure in the rhizomes rises rapidly in the morning, peaks
near midday, and declines slowly to a minimum at 6 am [66]. Three factors probably
contribute to the midday peak including light (photosynthesis), temperature, and the
difference in water vapor pressure between the external air and the intercellulars. External
humidity is at its lowest in the early afternoon, when humidity in leaf intercellulars (due
to insolation) is highest. Oxygen from roots is released in the nearby rhizosphere, which
is known as radial oxygen loss [67], and oxidizes different toxic substances produced in
anoxic soils that can harm soil biocenosis. This situation is also the case in Phragmites
australis (Cav.) Trin. ex Steud, where the aeration system increases rhizosphere oxygenation
and lowers toxic sulfide concentrations [68]. Some species prevent excessive oxygen loss
from roots by forming a barrier in their epidermis, exodermis, or subepidermal layers [69].

Konnerup et al. [52] also find convective ventilation in P. vallatoria (L.) Veldkamp, and
eight other wetland plant species. The only other monocotyledon species for which a similar
pressure difference is found is Eleocharis dulcis (Burm. f.) Trin. ex Hensch (Cyperaceae), but
the flow rate is lower.

In Scirpus lacustris (L.), sediment-derived CO2 in aerenchyma (Figure 7) presents an
important source of inorganic carbon used for photosynthesis in submerged green stems,
especially before they reach the water surface [70]. In this species, leaves are usually
reduced, however, leaf blades up to 100 cm long can develop under water [71].
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wall aerenchymal parenchyma. The magnification of parenchymatic cells is shown in the magnified
circular insert. Photo: Matej Holcar.

In plants with reduced pressurized ventilation, the growth rate is diminished, possibly
due to reduced mineral uptake and availability, a poorly developed root system, or impaired
root function [63]. Studies in the USA reveal differences in function between native and non-
native P. australis types. Ventilation efficiency is 300% higher per unit area for non-native
types in comparison to native types, due to the increased oxidation of the rhizosphere [72].

The cattails (Typha L., Figure 8) are phylogenetically related to reeds. Typhaceae and
reeds ventilate their below-ground parts in similar ways. An air stream of 8 mL/min per
leaf is observed for T. latifolia, and 3.5 mL/min for T. angustifolia L. [73]; however, some
leaves can function with influx or efflux in changing environments. A flux of 11 mL/min
is observed, compared to a maximum of 60 mL/min through a water lily petiole [46].
Contrary to the situation in lotus, for Typha, the stomata constitute the pressure-generating
pores [74]. The stomata are most effective for creating an inner pressure when they are
partially closed, and provide almost no pressure when they are open to 0.3 µm wide. Air
enters through middle-aged leaves, and exits through the oldest ones [73].
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Reproduced with permission from Bansal et al. [75].

Duarte et al. [76] claim that oxygen in the root area is not obtained exclusively from
the atmosphere or photosynthesis in the leaves, but, in addition, oxygen in the root is
supplemented by the decomposition of hydrogen peroxide by catalase. The study of
Laing [10] reveals that the shading of T. latifolia has little effect on gas composition in air
spaces of the submerged stolon; however, a slight decrease in oxygen concentration is
observed in leaves. In hypoxic growth conditions, various Typha species behave in diverse
ways; T. angustifolia increases its root porosity and root mass ratio, while T. latifolia increases
its root diameter [77].

Rice (Oryza sativa L.) can grow in deep water ([78]). Under complete submergence, rice
leaves and stems elongate significantly to reach the air–water interface; however, this may
exhaust its energy reserves, and cause death if deep water persists for a long time [79]. Rice
mitigates waterlogging stress by forming lysigenous aerenchyma and a barrier to prevent
radial O2 loss from roots, in order to supply O2 to the root tip [80]. However, it differs
from the species described above in the transport of air. Air is partly transported through a
layer of air on the surface of the leaves. At least in the majority of rice cultivars, the leaves
are water-repellent on both sides. A layer of air is formed on these leaves, up to 25 µm
thick [81], and with a volume that is 44% of that of the leaf (Figure 9). Gas molecules in the
thin layer are transported forward by diffusion at a greater pace than if they could move
in all directions, but there may also be some mass flow. A layer of air at the leaf surface
also contributes to the tolerance against submergence in the case of Spartina anglica C.E.
Hubb. [44]. The floating leaves of the grass Glyceria fluitans (L.) R. Br. have a lower cuticle
resistance for dark O2 uptake on the wettable abaxial side, compared to the hydrophobic
adaxial side [82].
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Figure 9. Rice (Oryza longistaminata A. Chev. & Roehr.) leaves protrude through the water surface,
covered below the water surface by a layer of air. Photo by Ole Pedersen, University of Copenhagen.
Cf. the cover of Science Vol. 228, No. 4697, 19 April 1985.

Rice also has large air spaces inside both leaves and roots, while the transition be-
tween shoot and root provides greater resistance to flow [83]. In rice, aerenchyma forms
constitutively under aerobic conditions, while their formation is further induced under
oxygen-deficient conditions [84]. Aerenchyma formation is promoted by ethylene produc-
tion in adventitious roots [8] and in internodes, and this aerenchyma formation is mediated
by reactive oxygen species (ROS) [85]. Little is known about the signaling and molecular
regulatory mechanisms of ROS during plant-programmed cell death [86]. In the case of the
fast-elongating ‘Arborio Precoce’ variety, ethylene controls aerenchyma formation, while in
the variety ‘FR13A’, ROS accumulation plays an important role [87]. The study shows that
the SNORKEL1 and SNORKEL2 genes that promote internode elongation are exclusively
present in the genomes of deep-water rice [88].

Under O2 deficiency, the porosity of adventitious roots enhances O2 diffusion towards
the root tip [89]. Flow takes place because the respiring plant replaces oxygen with carbon
dioxide, which at pH = 7 and 25 ◦C has a solubility in water that is 140 times that of
oxygen [78]. The study of Colmer and Pedersen [90] reveals that the dynamics in pO2
within shoots and roots of submerged plants are related to periods of darkness and light,
which supports the connection of underwater photosynthesis and internal aeration.

In Pontederia cordata L., the innermost layer of ground meristem in adventitious roots
forms the endodermis and aerenchymatous cortex [91]. The comparison of pO2 in sub-
merged roots of Rumex palustris Sm. (flood-tolerant) and R. acetosa L. (flood-intolerant)
reveals that roots of the former remain oxic, while in the latter, root pO2 drops significantly
(to 4.6 and 0.8 kPa, respectively) [92].

2.4. Mangrove Forest

Ferns of the genus Acrostichum L. (closely related to Ceratopteris) live rooted in man-
grove vegetation and other settings [93]. All parts of these plants have large air spaces,
including the roots. Aerenchyma are found in the roots of Acrostichum fossils, which sug-
gests a coastal paleoenvironment [94]. Fonini et al. [95] also report large aerenchyma in the
leaves of species A. danaeifolium Langsd. & Fisch., which is a feature endemic to mangrove.
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A species of palm, Nypa fruticans Wurmb. or “snorkeling palm” adapted to life in
mangrove forests; usually only the leaves appear above the water surface. These leaves
eventually abscise when aging, but the leaf bases remain, and function as air inlets by
developing a network of lenticels covering the leaf base [96]. These lenticels are connected
with expansigenous aerenchyma [96]. The lenticels allow gases through, but prevent the
entry of fluid water. The air spaces of the lenticels are connected to air spaces via the
underwater stem to the roots. The first- and second-order roots have a small central stele
surrounded by a wide zone of cortex with very spacious air channels, which develop after
the separation and dissolution of cells. The mature crown may contain 6 to 8 living leaves,
and 12 to 15 bulbous leaf bases at a time [97]. These leaf bases can function for up to 4 years
after leaf abscission [96].

The main constituent of mangrove forests includes various types of mangrove species,
which are not all closely related. Various mangrove species developed a variety of unique
adaptations [98]. Most species possess structures, such as pneumatophores, knee roots, or
stilt roots, which provide ventilation during low tides [99]. Studies by Scholander et al. [100]
reveal that high oxygen pressure in the roots of Rhizophora L. is maintained via ventilation
through the lenticels of the stilt roots. The cortex of Rhizophora roots have interconnected
schizogenous intercellular spaces, extending to within 150 µm of the tip [101].

Pneumatophores act as “snorkels” from the roots of Sonneratia apetala Banks (Figure 10).
Pneumatophores have numerous lenticels connected with aerenchyma; however, the pneu-
matophore development phase significantly affects the volume of gas spaces, since young
pneumatophores have a less-developed lacunose cortex, in comparison to mature pneu-
matophores [98]. In S. alba Sm., root porosity in different root types ranges from 0 to
60%. Cable roots and pneumatophores have the highest ratio of aerenchyma per area
(50–60%) [101]. The changes in cortex cells with developing gas spaces suggests schizoge-
nous and lyzogenous formation of aerenchyma [102].
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Figure 10. Pneumatophores of the mangrove tree Sonneratia apetala Buch. Ham. From Zhang et al. [103].
Creative Attribution license.

Comparing mangrove species belonging to various orders, Cheng et al. [104,105] find
that the more air spaces the roots possesses, the greater the flooding tolerance. Curran
et al. [106] conclude that Avicennia marina (Forsk.) Vierh. does not need airflow because the
diffusion of oxygen satisfies the oxygen requirement. Oxygen enters the pneumatophores
of this species through lenticels and “horizontal structures” on the pneumatophores [107].
The volume of gas spaces determined in the roots of this species is 40–50% [108].
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2.5. Other Wetland Species

Baldcypress (Taxodium distichum (L.) Rich) is a conifer in the south–east of the USA,
which can grow under both very wet and dry conditions. Growing in water, T. distichum
develops “knees” emerging from the roots, which may be involved in oxygen transfer
(Figure 11) and carbohydrate storage [109]. Under root and knee submergence, internal
O2 concentrations are significantly higher than during drawdown [110]. The knees do not
possess gas conduits, so Rogers [109] concludes that knees serve to aerate the phloem in
the inner bark for the oxygen requirements of the phloem, and downward conduction
of oxygen dissolved in the phloem sap. Wang and Cao [111] report that flooding in T.
distichum increases the porosity of the roots, stems, and leaves and, consequently, enhances
O2 diffusion to roots.
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Figure 11. “Knees” emerging from the roots of baldcypress, Taxodium distichum (L.) Rich. in Arkansas,
USA. From Middleton [112]. CC BY 4.0 license.

Some tree species in wetlands develop adventitious roots from the trunk during
the rainy season, as an adaptation to the flooded environment. In Syzygium kunstleri
(King) Bahadur and R.C. Gaur that is native to Borneo and Malaya, oxygen transportation
occurs through aerenchyma in the root tips, periderm near the root base, and secondary
aerenchyma between layers of phellem [113].

The roots of species colonizing flood forests and riparian zones are often subjected
to water-saturated soil. Schröder [51] and Grosse and Schröder [4,50] find a thermo-
osmotically driven gas flow in Alnus glutinosa (L.) Gaertn. from the external air, through the
stems to the roots. A temperature difference of up to 3.6 degrees exists in other Alnus Mill.
species between the intercellular spaces and the external air [114]. As the temperature dif-
ference increases from 0.6 to 3.6 ◦C, due to increasing light (from 50 to 200 µmol m−2 s−1),
the pressure difference between the external air and the intercellular spaces in the stem
increases from 5 to 17 Pa. An efficient thermo-osmosis process needs a narrow passage,
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comparable in width to the mean free path lengths of the gas molecules (ca. 0.1 µm),
between two compartments of different temperatures. However, some pressurization
is possible with larger pores [115]. Details of thermo-osmosis of gases are provided by
Denbigh [116], and Denbigh and Raumann [117]. In short, the pressures p1 and p2, which
can develop in two compartments (designated 1 and 2), are determined by the equation:

ln
(

p1
p2

)
= K∗

(
1

T1
− 1

T2

)
where T1 and T2 are the absolute temperatures of the two compartments, and K a constant.

The constrictions in the pathway that are needed for the development of thermo-
osmotic gas flow in alder are related to the lenticels in the bark of the stem [118,119]. Gas
flows from the colder external atmosphere to the warmer intercellular spaces.

In contrast, Armstrong and Armstrong [120] use A. glutinosa as an experimental species,
and find that the thermo-osmotic gas flow is incompatible with the species plant anatomy,
and so claim that roots are supplied with oxygen produced by chlorophyll-containing
stems. The apparent discrepancy in the results of Armstrong and Armstrong vs. Grosse’s
group may be due to a difference in the age of the plants used by the two research groups,
or to differences in submergence times. But the experiments by Dittert et al. [119] offer
another explanation. They find that under experimental conditions, when the temperature
of the trunk is kept above the temperature of the air, thermo-osmotic gas transport takes
place, while under natural conditions (in Germany), there is only transport by diffusion,
at all times of the year. Batzli and Dawson [121] find that in Alnus rubra Bong., lenticels
develop (in this case on roots and root nodules) after 50 days of flooding.

3. Diversity of Ventilation Systems

Similar physical processes of ventilation occur in different taxonomical and functional
plant groups that thrive in oxygen-deficient sediment; however, their morphological adap-
tations differ significantly (Table 2). Functional traits of these plants are not only the species’
response to specific environmental conditions, but they also depend on their phylogeny.
Jung et al. [11] find specific trends of aerenchyma patterns in several taxa of higher plants,
and show that these patterns partially coincide with their phylogeny. The study of Cape
reeds reveals that the presence of aerenchyma correlates with the eco-hydrological niche at
the population and species level, indicating that waterlogging presents an environmental
filter that excludes species without aerenchyma [122]. Bedoya and Madrinán [123], study-
ing the evolution of the aquatic habit in genus Ludwigia L., find a convergence towards
the absence of secondary growth in roots, smaller proportion of lignified tissue area in
underground organs, and the presence of primary aerenchyma. However, there are also
studies that are not consistent with these results. For example, the study of different Carex L.
species in a phylogenetic context, with an even sampling across the different clades, shows
that the size of the aerenchyma has only a weak relation to soil moisture [124]. Carex species
with poorly developed aerenchyma have low performance in flooded soil, while partial
submergence may even affect species with a larger amount of root aerenchyma [125].

Table 2. Ventilation mechanisms in different taxonomical and functional plant groups that thrive in
oxygen-deficient sediment.

Plant Group Taxonomic Group Source of Gasses Ventilation Principle Special Features Reference

Submerged Isoetids Water, metabolism,
Sediment

Diffusion,
aeration of rhizosphere

via buried leaves
Aerenchyma, CAM [38,44]

Angiosperms Water, metabolism,
Sediment Diffusion Metabolic gasses

trapped in aerenchyma [29,31]
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Table 2. Cont.

Plant Group Taxonomic Group Source of Gasses Ventilation Principle Special Features Reference

Floating Nuphar spp.,
Nymphaea spp.

Air, metabolism,
Sediment

Pressurized ventilation,
thermo-osmotic gas

transport,

‘Heat pump’ drives
gasses from the

atmosphere via young
natant leaves, petioles
to roots and back, via

older leaves to the
atmosphere

e.g., [45,48,51]

Nelumbo nucifera Air, metabolism,
Sediment

Pressurized ventilation,
influx via laminal

stomata of natant leaves
through aerenchyma to

rhizomes; back from
rhizomes through

aerenchyma in petiole
through stomata in leaf

central part

Leaf lamina with fewer
and smaller stomata,
leaf central part with

larger and denser
stomata, which actively
regulate the airflow by

opening and closing

[53–55]

Helophytes

Equisetum spp.—4
out of 9 have
through-flow

convection

Air, possibly also
metabolism,

sediment

Pressurized ventilation,
humidity-induced

diffusion,

Air moves through
stomata through

branches, via
interconnecting

aerenchyma channels
in stem and rhizomes,
with venting through

the previous year’s
stubble or damaged

shoot.

[60,61]

Phragmites spp.
Air, possibly also

metabolism,
sediment

Pressurized ventilation,
suction via old broken
stems (Venturi-effect),

air films on leaves when
submerged

Via leaves, stems to
root system, partly to
sediment (ROL), and
back to stems, leaves,

and atmosphere

[58,63–65,126]

Typha spp.

Air, sediment,
possibly metabolism,

oxygen in the
rhizosphere may be
obtained from the
decomposition of

hydrogen peroxide
by catalase

Pressurized ventilation,
leaf stomata create inner

pressure,
air films on leaves when

submerged

Air enters through
middle-aged leaves,

and exits through the
oldest ones

[58,73,74,76]

Oryza sativa Air films on leaves
when submerged

Flow from above-ground
parts via roots by

diffusion, and possibly
also by mass flow

Water-repellent leaf
surface; air layer up to
25 µm, large air spaces
inside leaves and roots,

the porosity of
adventitious roots, a

barrier in roots to
prevent radial O2 loss

from roots

[81,83,89]

Species of mangrove
forest Acrostichum spp. All plant parts have

large air spaces [94,95]

Nypa fruticans

Bases of abscised leaves
function as air inlets, by
developing a network of
lenticels covering the leaf

base connected to
aerenchyma

“snorkeling palm”
leaf bases function up

to 4 years after leaf
abscission

[96]

Mangroves

High oxygen pressure in
the roots is maintained
via ventilation through
the lenticels on different

root structures connected
with aerenchyma

Special structures, i.e.,
pneumatophores, knee

roots, stilt roots, or
plant roots, provide

ventilation during low
tides

[99]
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Table 2. Cont.

Plant Group Taxonomic Group Source of Gasses Ventilation Principle Special Features Reference

Other wetland
species Alnus spp. Thermo-osmotically

driven gas flow

In Alnus glutinosa, the
flow is from the external
atmosphere through the

stems to the roots

Thermo-osmotic flow
in alder is related to the
lenticels in the bark of

the stem,
stem photosynthesis

[4,51,120,127]

Taxodium distichum

“knees” emerging from
the roots to the surface of

the water, flooding
increases the porosity of
roots, stems, and leaves,

and enhanced O2
diffusion to roots.

Snorkeling [109]

Syzygium kunstleri

Oxygen transportation
occurs through

aerenchyma in the root
tips, periderm near the

root base, and secondary
aerenchyma between

layers of phellem

[113]

Most species use aerenchyma as a ventilation path, and as a reservoir for gases originat-
ing from the atmosphere, soil, and metabolic processes (e.g., respiration, photorespiration,
and photosynthesis). The differences among groups are related either to specific environ-
mental conditions (e.g., emergence, submergence), to specific species anatomy, as is the
case for the lotus, or to metabolic processes and properties related to their growth form
(e.g., emergent, submerged, floating-leaved, rosette, woody plants).

4. Plant Role in Emission of Greenhouse Gases

Ventilation systems are also important in the emission of greenhouse gases. We
concentrate on methane (CH4), although nitrous oxide (N2O) is also important. Although
the global warming potential (GWP) of methane is much greater than that of nitrous oxide
over brief time intervals, nitrous oxide has about twice the warming potential of methane
at a time horizon of 100 years (IPPC 2013), because it persists longer in the atmosphere.
This section focuses on the role of plants rooted in water-saturated soils in the emission of
greenhouse gases. The production of CH4 in wetlands depends on carbon availability, soil
redox potential, availability of O2, pH, and temperature, and it is released from wetland
soils by ebullition, convection, diffusion, and ventilation [128,129]. Thus, CH4 emissions
depend on the plant species present, and their abundance [130–132].

A key role in greenhouse gas emission is also played by different growth forms of plants.
On one hand, Kosten et al. [133] find that free-floating plants may reduce methane emissions.
On the other hand, some floating-leaved species contribute significantly to methane emission,
including N. odorata [20], N. nucifera [19], and N. luteum L. [20], and helophytes such as
Juncus effusus L. [134], Spartina anglica and P. australis [135,136], P. mauritianus Kunth [137], T.
latifolia [137], Typha spp. [20,130], and Cyperus papyrus L. [137,138]. In areas colonized by P.
australis and S. lacustris, methane is emitted exclusively by plant-mediated transport, with the
highest emission rates at daytime, and emission peaks following sunrise [139].

The effects of aquatic plants on methane emission are complex [140]. Their dead and
decaying remains provide the raw material for methane production, and their aerenchyma
and gas canals facilitate the transport of methane to the atmosphere. At the same time,
the aeration of their rhizospheres, and their methane-oxidizing microorganisms, decrease
the amount of methane that escapes into the atmosphere [141]. In rice, two mutants with
decreased root aerenchyma cause 70% less methane emission to the atmosphere than the
wild type, while the oxygen transport is only reduced by 50% [142]. However, it is unlikely
that such mutants will be a practical solution to the very high contribution of rice paddies
to the greenhouse gas budget.
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Wetland trees contribute to methane emission, while rainforest trees may function as
sinks [143], except when flooded [144,145]. In Phragmites spp. [136], pressurized gas flow is
important in emission; in the case of these species, the population of methane-producing
microbes in the rhizosphere may be the most crucial factor. The relative importance of these
factors is discussed by Laanbroek [146].

5. Conclusions

Ventilation in different groups of wetland plants that thrive in oxygen-deficient soils
is related to aerenchyma as a ventilation path; however, the mechanisms may differ sig-
nificantly. This diversity is a consequence of (1) phylogeny, as waterlogging presents an
environmental filter that excludes certain species; (2) specific environmental conditions in
plant/species habitat; (3) specific morphological adaptations at plant/species level (as is the
case for water lily and lotus); (4) growth form (e.g., emergent, submerged, floating-leaved,
rosette, woody plants) is related to plant medium (air, water, or both); and (5) metabolic
processes (photosynthesis, respiration, photorespiration) that may act as a source or a
sink of gases. These diverse structures and processes are related to ventilation support,
photosynthesis, and respiration processes. Along with plant ventilation, they contribute to
the oxygenation of otherwise anoxic wetland soils by radial oxygen loss from roots to the
rhizosphere, and, thus, its detoxification, and also facilitate the release of greenhouse gases
from these soils, which sets off a cascade of environmental consequences.
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