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Abstract: Elaeagnus moorcroftii Wall. (Elaeagnaceae) is an important tree species naturally growing in
arid Northwest China that has great economic and ecological values in drylands. In this study, we de
novo assembled a chromosome-level genome for E. moorcroftii by using PacBio’s high-fidelity (HiFi)
sequencing and Hi-C-assisted assembly technology. The assembled genome size was 529.56 Mb, of
which 94.56% was anchored to 14 pseudochromosomes with a contig N50 up to 28.21 Mb. In total,
29,243 protein-coding genes were annotated, and 98.5% of the Benchmarking Universal Single-Copy
Orthologs (BUSCOs) were captured in the genome. Evolutionary genomic analysis showed that
E. moorcroftii split with Elaeagnus mollis 9.38 million years ago (Ma), and contrasted evolutionary
trajectories of gene family expansion and contraction were observed for these two closely related
species. Furthermore, we identified two successive whole genome duplication (WGD) events occurred
in the genome of E. moorcroftii, in addition to the ancient gamma hexaploidization event shared by core
eudicots. Together, the chromosome-level genome assembly for E. moorcroftii decoded here provides
valuable genomic information for the further genetic improvement and molecular breeding of this
indigenous species in drylands.

Keywords: Elaeagnus moorcroftii Wall.; PacBio’s high-fidelity sequencing; Hi-C-assisted assembly;
whole genome duplication; xerophyte; drylands

1. Introduction

Land degradation and desertification constitute one of the most serious environmental
problems facing the world. Drylands cover about 41% of the global land area and are
home to more than 38% of the world’s population [1,2]. Ecosystems in drylands are fragile
and vulnerable to climate change and human activities [3]. The degree of desertification
in these drylands is likely to increase rapidly, the areas of drylands will continue to ex-
pand, and the risk of ecological degradation will be further exacerbated [2]. Desert plants
play an important role in maintaining the stability of dryland ecosystems and provide
ecological services for the production and life of people in drylands. Therefore, it is very
meaningful to conduct scientific research on desert plants. With the rapid development
of sequencing technologies, the genomes of some important desert plants have been de-
ciphered recently, such as the sea buckthorn (Hippophae rhamnoides) with medicinal and
edible value [4,5], wild and perennial legume forage Medicago ruthenica [6], and xerophytic
plant Haloxylon ammodendron [7].

E. moorcroftii is a kind of deciduous tree of the Elaeagnaceae family, up to 10 m tall,
mainly distributed in the desert areas of Northwest China, including the Xinjiang, Gansu,
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and Inner Mongolia provinces. It has excellent characteristics of drought resistance and salt
tolerance and is an important tree species for windbreaks, sand fixation, and soil and water
conservation in Northwest China [8]. This species is a non-leguminous nitrogen-fixing
plant, its roots are symbiotic with Frankia actinomycetes, which can play the role of biologi-
cal nitrogen fixation and soil improvement [4,9], and its rhizosphere arbuscular mycorrhizal
fungi can improve their resistance to salt stress [10]. Therefore, E. moorcroftii can be intro-
duced to barren desert and saline-alkali land for soil improvement and afforestation, which
has important ecological value. In addition, this species has high economic value because
of its edible fruits, medicinal whole plants, and ornamental flowers. The species exhibits
a high fruit yield; the fruit can be eaten directly and used in jam, vinegar, wine, pastries,
livestock feed, etc. [11]. The branches, leaves, and flowers of the species have remarkable
observed biological activities and are widely used to treat many health issues like aging,
burns, dyspepsia, diarrheal, pain, bronchitis, and neurasthenia [11,12]. The flowers are
attractive and aromatic and are also used for extracting aromatic oil [11]. However, the
molecular-level study of E. moorcroftii is limited to taxonomic relationships [8]. The lack of
genomic information hinders a comprehensive understanding of the evolutionary history
and unique biology of E. moorcroftii.

In this study, we first report a chromosomal-level genome assembly of E. moorcroftii
(2n = 2x = 28) with PacBio’s long-read single molecule high-fidelity (HiFi) reads and high-
throughput chromosome conformation capture (Hi-C) data, and then we used it to explore
the evolutionary trajectories of E. moorcroftii and other Elaeagnaceae species, including
H. rhamnoides [4,5] and E. mollis [13] as recently published, by comparative genomic analy-
sis. The genome sequence of E. moorcroftii presented here will provide valuable genomic
resources for further in-depth study and utilization of this indigenous species in drylands.

2. Materials and Methods
2.1. Plant Materials and Sequencing

The fresh young leaves used for genomic DNA sequencing were collected from an
adult plant of E. moorcroftii growing in Minqin Desert Botanical Garden, Gansu Province,
China. The total genomic DNA was extracted using a modified trimethylammonium
bromide (CTAB) method [14]. For PacBio’s HiFi sequencing, SMRTbell libraries were
constructed using the protocol of Pacific Biosciences with 20 kb inserts and sequenced
using circular consensus sequencing (CCS) mode on a PacBio Sequel II platform, generating
a total of more than 28 Gb high-quality CCS reads. For Hi-C sequencing, cross-linked
chromatin was first digested with Dpn II, end-labeled with biotin-14-dATP, and then
used for in situ DNA ligation. The ligated DNA was sheared into 300–600 bp fragments,
blunt-end repaired, purified through biotin–streptavidin-mediated pull-down, and then
sequenced on the Illumina HiSeq 2500 platform, generating a total of more than 52 Gb raw
sequencing data.

2.2. Genome Assembly and Assessment

The high-quality HiFi reads were assembled into contigs using hifiasm v0.14 [15] with
default parameters. The Hi-C data were aligned to the contig assembly using JUICER
v.1.5 [16]. The contigs of the E. moorcroftii assembly were further clustered, ordered, and
oriented onto chromosomes based on the contact frequency calculated from the mapped Hi–
C read pairs by 3d-DNA pipeline [17] with parameters of ‘-m haploid –r 2’. Orientation and
placement errors were manually corrected via Juicebox Assembly Tools (https://github.
com/aidenlab/Juicebox (accessed on 17 November 2021)).

The completeness of the genome assembly of E. moorcroftii was assessed by transcript
alignment and Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis [18].
RNA-seq reads were assembled and mapped to the genome by HISAT2 v2.1.0 [19]. BUSCO
analysis of the final assembly and annotation was performed using BUSCO v4 [18] with
the Embryophyta obd10 database to evaluate the completeness of the reference genome of
E. moorcroftii.

https://github.com/aidenlab/Juicebox
https://github.com/aidenlab/Juicebox
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2.3. Genome Annotation

Tandem repeats in the E. moorcroftii genome were annotated using GMATA v2.2 [20]
and Tandem Repeats Finder v4.09 [21]. The transposable elements (TEs) in the genome
were predicted using a combination of homology-based and de novo approaches. In the
homology-based approach, we used RepeatMasker v.4.1.0 [22] with the known repeat
database Repbase v.21.01 [23] to search for the TEs in the E. moorcroftii genome. For the de
novo approach, we used MITE-Hunter [24] and RepeatModeler v.2.0 [25] to construct a de
novo repeat sequence database for E. moorcroftii and then used RepeatMasker v.4.1.0 [22] to
search for repeats in the genome. After removing overlapping repeats, the repeats identified
by different methods were combined into the final repeat annotation.

Protein-coding genes were predicted based on the repeat masked genome using
three approaches, including homology search, de novo prediction, and estimation from
transcriptome evidence. Homology-based prediction was performed using GeMoMa
v1.3.1 [26] with the protein sequences of four closely related species in eudicots, E. mollis [13],
Ziziphus jujuba [27], Arabidopsis thaliana [28], and Vitis vinifera [29]. The de novo prediction
was conducted using Augustus v3.2.3 [30] with default parameters. RNA-seq based
gene prediction was performed using STAR v2.7.3a [31], Stringtie v2.0.1 [32], and PASA
v2.0.2 [33], and the public available RNA-seq data for mixed tissue samples including the
leaf, root, stem, and fruit were downloaded from the National Center for Biotechnology
Information (NCBI) under the accession numbers of SRR12569922, SRR12569923, and
SRR12569924. Finally, the outputs from the above three approaches were integrated into a
final gene set by EvidenceModeler (EVM) v1.1.1 [34].

For gene function annotation, the predicted gene models were blasted against the
SwissProt v5.3 (https://www.expasy.org/resources/uniprotkb-swiss-prot (accessed on
29 July 2021)), NCBI non-redundant (NR) (https://www.ncbi.nlm.nih.gov/refseq/about/
nonredundantproteins/ (accessed on 29 July 2021)), and Clusters of Orthologous Groups for
Eukaryotic complete Genomes (KOG) v5.3 (http://genome.jgi-psf.org/help/kogbrowser.
jsf (accessed on 29 July 2021)) databases for the best matches using BLASTP with an
E-value cut-off of 1e-5. The protein motifs and domains were annotated using InterProScan
v5.31 [35]. The Gene Ontology (GO) entries were searched using Blast2GO v2.5 [36].
Pathway information for each gene was assigned using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) v5.24 database [37].

In addition, the non-coding RNA genes were annotated. tRNAs were predicted by
tRNAscan-SE v1.3.1 [38] with eukaryote parameters. MicroRNA, small nuclear RNA, and
small nucleolar RNA were predicted using INFERNAL v1.1.2 [39] based on the Rfam [40]
and miRbase databases [41]. The rRNAs and their subunits were predicted using RNAm-
mer v1.2 [42].

2.4. Comparative and Evolutionary Genomic Analysis

The protein sequences of E. moorcroftii and ten other sequenced plant species, H. rhamnoides,
E. mollis, Malus domestica, Prunus persica, Z. jujuba, Morus notabilis, Cannabis sativa, Populus
trichocarpa, A. thaliana, V. vinifera, were used for the phylogenetic analysis (see Table S1 for
the summary of genomic information of these species). Single-copy orthogroups among
the 11 species were identified using OrthoFinder v2.3.11 [43]. The amino acid alignments of
each single-copy orthogroup were aligned by MAFFT v.7 [44], and nucleotide alignments
were generated according to the corresponding amino acid alignments using PAL2NAL [45].
A maximum likelihood phylogeny was constructed based on the concatenated alignments
of all single-copy genes using IQ-TREE v.1.6.12 [46]. The species divergence time was
estimated using the program MCMCTREE in the PAMLv.4.9 package [47]. We selected three
fossil calibration points from the TimeTree database (http://www.timetree.org (accessed on
1 March 2022)) for the split of: (1) Malus-Prunus at 30–61 million years ago (Ma); (2) Morus-
Cannabis at 53–97 Ma; (3) Populus-Arabidopsis at 98–117 Ma. In addition, the time calibration
of family Rhamnaceae (that is the split of Ziziphus with three Elaeagnaceae species) was set
to >99 Ma based on an old fossil in the extant genus Phylica of Rhamnaceae [48]. The gene

https://www.expasy.org/resources/uniprotkb-swiss-prot
https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
http://genome.jgi-psf.org/help/kogbrowser.jsf
http://genome.jgi-psf.org/help/kogbrowser.jsf
http://www.timetree.org
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family expansion and contraction of 11 species were analyzed using CAFE v3.1 [49], and the
expanded and contracted gene families in E. moorcroftii were subjected to GO enrichment
to analyze their functions. The different modes of gene duplications were identified by
DupGen_finder software [50].

2.5. Whole Genome Duplication Analysis

The protein-coding sequences of E. moorcroftii, H. rhamnoides, and E. mollis were self-
aligned and aligned with each other using BLASTP with an E-value cut-off of 1e-5. Syntenic
blocks within a genome or between genomes were identified using MCScanX [51] with
default parameters based on the above protein-sequence alignments. For each syntenic
gene pair, the synonymous substitution rate (Ks) was calculated using the Nei-Gojobori
method [52] by yn00 program of the PAML package [47]. The macro-syntenic relation-
ships among the three species were visualized by the python version of MCScan soft-
ware (https://github.com/tanghaibao/jcvi/wiki/MCscan-(Python-version) (accessed on
29 July 2021)).

3. Results
3.1. Genome Assembly of E. Moorcroftii

To obtain a high-quality reference genome of E. moorcroftii, we used a combination of
HiFi long reads and Hi-C data to construct a chromosome-level assembly. We generated
a total of 28 Gb high-quality HiFi long reads, with a maximum and average read length
of 64.20 and 14.78 kb, respectively (Table S2 and Figure S1, distribution of PacBio’s HiFi
sequencing data). De novo assembly of these HiFi reads with hifiasm v0.14 [16] yielded
a preliminary assembly comprising 168 contigs with contig N50 size of 28.21 Mb, and
the total length of the assembled genome was 529.56 Mb (Table 1). A total of 52 Gb Hi-C
reads were generated to refine the assembly, resulting in 500.73 Mb (94.56%) of the contig
sequences anchored onto 14 chromosomes (Figure 1, Table 1).
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Figure 1. The genome features of E. moorcroftii. (a) Heatmap of Hi-C interactions for 14 pseudochro-
mosomes. (b) Circos plot showing the genomic landscape of E. moorcroftii. The tracks from outer to
inner circles indicate the following: a: 4 pseudochromosomes in megabases; b: GC content; c: gene
density; d: density of Gypsy LTR retrotransposons; e: density of Copia LTR retrotransposons; f: LTR
retrotransposons density. The center of the circos plot shows the fruits of E. moorcroftii (photo by X.F.).
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Table 1. Assembly and annotation statistics of E. moorcroftii genome.

Assembly

Length of genome assembly (Mb) 529.56
Anchored to chromosome (Mb) 500.73

Contig N50 (Mb) 28.21
Longest contig (Mb) 101.76

BUSCO score of assembly (%) 96.7%

Annotation

GC content 30.39%
Percentage of repeat sequences (%) 60.95%
Number of protein-coding gene (%) 29243

Average gene length (bp) 4318.92
Average exon length (bp) 220.21

BUSCO score of annotation (%) 98.5%

To assess the quality and completeness of this assembled genome, we first mapped
RNA-seq reads to the assembled genome, more than 93% of which were properly mapped
(Table S3). Furthermore, BUSCO analysis for the genome assembly showed that 96.7%
of the 1614 core plant genes was captured, including 95.8% complete BUSCOs and 0.9%
fragmented BUSCOs (Table S4). These evidences together indicated that the E. moorcroftii
assembly has high quality and completeness.

3.2. Annotation of the E. Moorcroftii Genome

We identified 322.78 Mb of non-redundant repetitive sequences in the E. moorcroftii
genome, representing 60.95% of the genome assembly (Table S5). Long terminal repeat
(LTR) retrotransposons were the most abundant type, accounting for 31.95% of the whole
genome, of which Copia and Gypsy were the two most frequent LTR types, accounting for
about 16.02% and 13.30% of the genome, respectively (Table S5).

Using genomic and transcriptomic data, we predicted 29,243 protein-coding gene mod-
els in the E. moorcroftii genome, with an average gene length of 4318.92 bp and an average
exon length of 220.21 bp (Table 1). Among the predicted protein-coding genes, 95.10% were
annotated through at least one of the following protein-related databases: the NCBI NR
database (94.75%), the SwissProt protein database (81.38%), the KOG database (91.24), the
InterProScan database (86.10), the GO database (64.91%), and the KEGG database (3.87%)
(Table S6). In total, 95.10% of the protein-coding genes were functionally annotated by
various databases. In addition, our annotation captured 98.5% of BUSCOs, including 97.4%
complete gene models plus 1.1% fragmented gene models (Table S7).

We also predicted 183 micro RNAs (miRNAs), 2461 small-nuclear RNAs (snRNAs),
1636 transfer RNAs (tRNAs), and 20,568 ribosomal RNAs (rRNAs), with calculated average
lengths of 124.86, 107.52, 75.21, and 238.47 bp, respectively (Table S8).

3.3. Evolutionary History of E. Moorcroftii

To investigate the evolutionary history of E. moorcroftii, we performed a gene family
clustering using E. moorcroftii and ten other representative angiosperm species, including
two related species of the Elaeagnaceae family (E. mollis, H. rhamnoides), five species of the
same order Rosales (Rosaceae: M. domestica, P. persica, Rhamnaceae: Z. jujuba; Moraceae:
M. notabilis; Cannabaceae: C. sativa), and three outgroup species of eudicot clade (A. thaliana,
P. trichocarpa, and V. vinifera) (Table S1). We identified 175 single-copy orthogroups and
used them to reconstruct the phylogenetic tree of E. moorcroftii and ten other plant species
(Figure 2). The results showed that E. moorcroftii clustered a monophyletic group with
its related species E. mollis and H. rhamnoides, which in turn formed sister to Z. jujuba of
Rhamnaceae. The divergence time between E. moorcroftii and E. mollis was estimated to be
around 9.38 million years ago (Ma), and the most recent common ancestor of two Elaeagnus
species split with H. rhamnoides occurred at about 30.52 Ma (Figure 2).
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Figure 2. Comparative and evolutionary genomic analysis of E. moorcroftii and 10 other plant species.
A phylogenetic tree among 11 species was reconstructed based on 175 single-copy genes, and their
divergence times were also estimated. The numbers of expansion (blue) and contraction (red) gene
families are shown above the branches.

Furthermore, to explore lineage-specific dynamic changes in gene families, the expan-
sion and contraction of gene families based on the birth-and-death model were identified
by CAFE v3.1 [49]. We detected 842 expansion and 2019 contraction gene families in
E. moorcroftii genome, relative to the most recent common ancestor of E. moorcroftii and
E. mollis (Figure 2), whereas an opposite trend was observed in its close relative E. mollis,
which included more expanded (2088) than contracted (817) gene families. This difference
might be partly resulted from the different levels of contribution from various modes of
gene duplications. For example, dispersed duplications contributed to more in E. mollis
than in E. moorcroftii with relation to the expanded gene families (16.45% versus 7.64%). In
contrast, tandem duplications contributed to a higher percentage of expanded genes in
E. moorcroftii than in E. mollis (14.34% versus 6.40%) (Figure S2). GO enrichment analysis
revealed that the expanded gene families in E. moorcroftii were mainly involved in multiple
biosynthetic processes (e.g., diterpenoid biosynthetic process and ATP biosynthetic process)
and various metabolic process (e.g., ATP metabolic process, diterpenoid metabolic process,
and purine-containing compound metabolic process), as well as immune responses (innate
immune response and immune system process) (Figure S3), while contracted gene families
were mainly related to protein depolymerization biological process and their enriched
molecular function including ADP binding, ion channel activity, hormone binding, etc.
(Figure S4).

A detailed comparative analysis among E. moorcroftii, E. mollis, H. rhamnoides, and
Z. jujuba identified 12,118 common gene families shared by these four species, and 278 gene
families uniquely appeared in E. moorcroftii (Figure S5). This number is comparable with
the unique gene families in E. mollis (388) and H. rhamnoides (396), but it is much fewer
than the unique gene families in Z. jujuba (2083) (Figure S5). The unique gene families are
mainly involved in cellular respiration and oxidative phosphorylation biological processes
(Figure S6).

3.4. Whole-Genome Duplication Events in E. Moorcroftii

The distributions of synonymous substitutions per synonymous site (KS) of paralo-
gous gene pairs in E. moorcroftii genome showed two recent clear peaks around 0.38 and
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0.45 (Figure 3a). Similar KS peaks also were identified in the genomes of its two closely
related species, E. mollis and H. rhamnoides (Figure 3a). Moreover, the large-scale gene
duplications in three species occurred earlier than the time of their divergence (Figure 3a).
Therefore, these two closely occurring peaks might reflect two successive whole-genome
duplication (WGD) events shared by three Elaeagnaceae species. To further confirm this, an
intragenomic synteny analysis of E. moorcroftii identified one syntenic block corresponding
to three homologous syntenic blocks (Figure S7), again supporting two relatively recent
WGD events that occurred in E. moorcroftii. In addition, syntenic analysis among the
genomes of E. moorcroftii and the most closely related species (E. mollis and H. rhamnoides)
was performed to explore WGD history that occurred in the Elaeagnaceae family. By using
a Vitis vinifera, a basal core eudicot lineage lacking any further WGD event after the ancient
gamma event shared by core eudicots [53], genome as a reference, the intergenomic synteny
comparisons between V. vinifera and E. moorcroftii revealed a clearly syntenic depth ratios
of 1:4, indicating two WGD events occurred after the split of the two species (Figure 3b).
Furthermore, the genomes of E. moorcroftii and E. mollis present highly conservative synteny,
and consistent syntenic depth ratios were found for E. mollis and H. rhamnoides (Figure 3b).
Thus, the integrated evidence showed that two successive WGD events might have oc-
curred in the common ancestor of E. moorcroftii, E. mollis, and H. rhamnoides.
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(a) The distributions of KS of paralogous gene pairs of E. mollis (pink line), E. moorcroftii (green line),
H. rhamnoides (blue line), and V. vinifera (purple line). The dashed lines represent KS distributions
related to the species divergence of the corresponding species pairs. (b) Macro-syntenic comparisons
among three Elaeagnaceae species and V. vinifera.

4. Discussion
4.1. A High-Quality Dryland Tree Species Genome

Land degradation and desertification is an ongoing environmental problem that
threatens the sustainable development of human beings, and this is particularly serious
for lives in drylands [1–3]. A native or indigenous species naturally growing in drylands,
to some extent, might hold the key to solve this problem. Recently, a growing number
of studies have focused on decoding the genomic information of typical arid plants, for
example, Populus euphratica [54], H. rhamnoides [4,5], H. ammodendron [7], etc. To our
knowledge, besides the well-known desert poplar P.euphratica, our genome assembly for
E. moorcroftii represents the second genome for high-tree species naturally growing in arid
northwest China. Meanwhile, the chromosome-level genome of E. moorcroftii is of high
quality, with contig N50 up to approximately 30 Mb (Table 1), which is much higher than
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that of its two closest relatives (H. rhamnoides with N50 of 3.56 Mb in [4] and 2.15 Mb in [5],
and E. mollis with N50 of 18.40 Mb) of Elaeagnaceae with published genomes.

4.2. Differential Evolutionary Dynamics of Gene Families between E. Moorcroftii and E. Mollis

Our phylogenomic and molecular dating analyses showed that the divergence time
between E. moorcroftii and its close relative E. mollis was about 9.38 Ma. After the split from
their most recent common ancestor (MRCA), these two species experienced independent
gene family evolutionary dynamics, which can be observed by the contrasted expansion
and contraction trend (Figure 2). The number of contracted gene families is more than twice
the expanded gene families in E. moorcroftii, while this trend is opposite in E. mollis, which
have more expanded than contracted gene families (Figure 2). A detailed analysis suggested
that these differential evolutionary dynamics of gene families between E. moorcroftii and
E. mollis might partly result from contribution levels of different modes of gene duplications
(Figure S2). Nevertheless, the opposite evolutionary trend of gene families might reflect
their unique biology of these two species.

4.3. The Potential Evolutionary Significance of two Successive WGD Events in E. Moorcroftii

For Elaeagnaceae plants, a recent genome study of H. rhamnoides revealed it experi-
enced a recent whole-genome duplication after the divergence between H. rhamnoides and
the most closely related species jujube, with a signature Ks peak at c. 0.38 [4]. However,
almost simultaneously, another study of H. rhamnoides genome indicated that it experienced
two rounds of WGDs, one recent WGD (Ks peak at ~0.38) and one older WGD (Ks peak at
~0.45) [5]. In this study, our integrated Ks and synteny analyses provide strong evidence
for the occurrence of two successive WGD events in E. moorcroftii genome (similar with
the report by [5]), in addition, these two events possibly being shared by E. moorcroftii
and its two close relatives (E. mollis and H. rhamnoides). It has been well-acknowledged
that the frequent occurrence of WGD events has played an important role on the plant’s
adaptive evolution and diversification [55–59]. For example, the co-retained duplicated
genes, after multiple independent WGDs in different angiosperms lineages were selected by
environmental stresses during the Cretaceous–Paleocene (K-Pg) mass extinction, possibly
enhanced the plant’s survival and adaptation [59]. Furthermore, it was demonstrated that
not only did the MRCA of angiosperms experience an ancient WGD event, but the MRCA
of all extant Gymnosperms also shared an ancient WGD event, as revealed by a recent
report of the Cycas genome, which may have contributed to seed-related morphology inno-
vation [60]. Considering the evolutionary significance of the recognized WGD, it should be
postulated that these two successive WGD events might have contributed to the evolution
and adaptation of E. moorcroftii, although it needs to be further investigated.

5. Conclusions

As an indigenous species naturally growing in arid Northwest China, E. moorcroftii
presents ideal tree species with great economic and ecological values that can be widely
cultured in drylands for economic development and ecological restoration. In this study,
the high-quality genome sequence of E. moorcroftii decoded here represents a small but
essential step forward to understanding the evolution and adaptation of this species in
drylands. Our results not only provided new insights into the genomic evolution of
Elaeagnaceae species but also revealed clear evidence for two successive WGD events that
occurred in the common ancestor of E. moorcroftii, E. mollis, and H. rhamnoides. Further,
by using the E. moorcroftii genome as reference, more studies should be encouraged to
investigate the unique biology of this species. For example, how could this species respond
to long-term drought and salt stresses? Moreover, whole-genome resequencing analysis of
samples with certain properties (such as resistance to abiotic factors) is helpful to screen
for better germplasm resources and breed new varieties. In total, the genomic resource of
E. moorcroftii paves ways for the further genetic improvement and widespread cultivation
of this indigenous species in drylands.
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families of E. moorcroftii; Figure S5: Venn diagram showing the shared and specific gene families
among E. moorcroftii, E. mollis, H. rhamnoides, and Z. jujube; Figure S6: The enriched GO terms for
the unique gene families of E. moorcroftii; Figure S7: Syntenic dot plot of the self-comparison of
E. moorcroftii; Table S1: Information of plant genomes used in this study; Table S2: Basic statistics of
PacBio’s HiFi sequencing data; Table S3: Mapping rates of RNA-seq reads onto the assembly genome;
Table S4: Genome assembly completeness evaluated based on BUSCO; Table S5: Information of
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