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Abstract: The caterpillars of the Lepidoptera are important herbivores as most of them belong to
serious agricultural and forestry pests. To adapt to their habitats and feeding host plants, the lar-
vae utilize uridine diphosphate (UDP)-glycosyltransferases (UGTs) to metabolize plant defensive
compounds and insecticides. However, information on the UGT gene family in Achelura yunnanensis
remains scarce. Here, we characterized the UGT genes through gene identification, phylogenic
analyses, and comprehensive expression profiles regarding sexes, tissues, and stages. Transcriptome
analyses led to the yields of 50 transcripts encoding UGTs in A. yunnanensis, representing a compa-
rable gene number compared to those in other lepidopteran species. Sequence and phylogenetic
analyses revealed a low amino acid identity of 28.23% among 31 full-length AyunUGTs, but some
members shared relatively high conservation (>50% identities) with a phylogenetically clustered
distribution. In addition, the majority of AyunUGTs possessed conserved residues involved in the
catalysis and sugar-donor binding. Combining RNA sequencing and PCR approaches, a number of
AyunUGTs were found to have the expression in chemosensory or detoxification tissues, possibly
associated with the sensing of odorant molecules and the metabolism of toxic chemicals. More
importantly, at least 27 AyunUGTs displayed detectable expression in reproductive tissues of both
sexes. This study identifies candidate A. yunnanensis UGTs responsible for detoxification, olfaction,
and reproduction, allowing us to address putative roles of UGTs in the adaptation of larvae to the
habitats and feeding hosts.

Keywords: Achelura yunnanensis; UDP-glycosyltransferase; detoxification; olfaction; reproduction

1. Introduction

The evolutionary adaptation of insects to habitats is associated with various biotrans-
formation processes, especially for the detoxification pathway that is indispensable for
herbivorous insects to detoxify the toxic chemicals derived from their food host plants or
the external environment. Usually, these detoxification-related enzymes mainly refer to
the phase I (cytochrome P450 monooxygenases, P450s, and carboxylesterases, COEs) and
II (glutathione S-transferases, GSTs, and uridine diphosphate (UDP)-glycosyltransferases,
UGTs), which are of utmost importance for the survival and reproduction of insects. The
phytophagous insects utilize these enzymes to metabolize xenobiotics and endobiotics,
which are often toxic to herbivores [1,2]. In comparison to the three superfamilies of P450s,
GSTs, and COEs, UGTs in insects have received relatively little attention. As one of the
most important detoxification enzymes, insect UGTs have been demonstrated to be mainly
responsible for the metabolism of plant allelochemicals and insecticides [3–5].

Moths constitute the majority of the Lepidoptera, and their larvae are all herbivores [6,7].
To adapt to the constantly changing habitats and feeding host plants, they must cope with
plant-produced or man-made chemicals via a xenobiotic-metabolizing enzyme system.
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Moth UGTs are capable of catalyzing the conjugation of small lipophilic compounds with
sugars, including plant defensive compounds, pesticides, hormones, odorants, and other
xenobiotics [4,8–10]. The biotransformation process makes the harmful substrates become
more water-soluble and readily excretable, helping the caterpillars avoid plant toxins and
insecticides. In Bombyx mori, a genome-wide analysis resulted in the yields of 42 UGT
genes, of which they were mainly transcribed in reproductive and/or detoxification-related
tissues [11]. Furthermore, some BmorUGTs responded to flavonoids, coumarins, and
terpenoids, serving as key enzymes in the detoxification of plant toxic compounds and the
degradation of odorant molecules [12,13]. In addition, the polyphagous noctuid species also
employ the UGT enzymes to metabolize plant-derived defensive substrates. For example,
a cotton-produced defensive compound of gossypol was glycosylated by HarmUGT40D1
and HarmUGT41B3 in Helicoverpa armigera, as an adaptation of the cotton bollworm larvae
to a major feeding host plant [14]. In Spodoptera frugiperda, SfruUGT33F28 was responsible
for the glycosylation of benzoxazinoids, the main defensive compounds derived from maize
plants [15]. Similarly, three Helicoverpa species could overcome the defense of capsaicin,
especially for the specialist H. assulta [16]. Beyond the detoxification of plant secondary
metabolites, moth UGTs are involved in olfaction and insecticide resistance [8,9,17–19].

The zygaenid moth, Achelura yunnanensis, is an oligophagous insect herbivore with
the larvae feeding solely on the Rosaceae family, particularly its favorable hosts of Cerasus
yunnanensis and Photinia glomerata. Therefore, it is considered to be a serious pest of garden
plants that generally eats the leaves of host plants and then moves to other hosts for contin-
uing damage [20–22]. Like other moths, A. yunnanensis caterpillars are able to metabolize a
variety of toxic exogenous and endogenous compounds by detoxification-related tissues, in-
cluding midguts, fat bodies, and Malpighian tubules. However, no information is available
about the detoxification mechanism in this species. Here, we identified and characterized
the UGT gene family from A. yunnanensis, one of the most crucial detoxification enzymes.
Through sequence and phylogenetic analyses, and expression profiling characteristics, this
work identifies molecular candidates involved in detoxification, olfaction, or reproduc-
tion, and provides insights into the adaptation of the A. yunnanensis larvae to the feeding
host plants.

2. Materials and Methods
2.1. Insects and Tissues

A. yunnanensis larvae rearing was described in detail by Li et al. (2021). Briefly, newly
emerged adults were separated by sex, and males and females were maintained in indi-
vidual cages, supplying with 10% sugar solution. To examine the expression profiles of
UGT genes, the following tissues were collected: the 3rd day eggs after virgin females
laid eggs; antennae, heads (removing antennae), maxillary palps, midguts, fat bodies, and
Malpighian tubules from 4th instar larvae; the 3rd day pupae of both sexes after pupa-
tion; adult tissues from 3-day-old moths, including antennae, heads (removing antennae),
thoraxes, abdomens, legs, and wings of both sexes, and female pheromone glands; and
reproductive tissues from 3-day-old adults, comprising accessory glands (MAG), testes (Te),
seminal vesicles (SV), and ejaculatory ducts (ED) of males, as well as FAG, bursa copulatrix
(BC), ovaries (Ov), and spermathecae with spermathecal glands (SS). The reproductive
tissues were isolated and related fat bodies were cleaned in phosphate-buffered saline
(PBS, pH 7.4). The collected tissues were immediately frozen in liquid nitrogen and stored
at −80 ◦C.

2.2. RNA Extraction and Synthesis of First-Strand cDNA

TRIzol Regent (Ambion, Life Technologies, Carlsbad, CA, USA) was used to extract
total RNA from each tissue of A. yunnanensis, along with the protocols. RNA concentration
and quality were checked on an agarose gel (1%, w/v) and a NanoDrop 1000 Spectropho-
tometer (Thermo Fisher Scientific, San Jose, CA, USA). Genomic DNA from purified RNA
was removed using gDNA Eraser at 42 ◦C for 2 min. Then, reverse transcription was
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carried out using a PrimeScript RT Reagent Kit (TaKaRa, Dalian, China) at 37 ◦C for 15 min,
and stopped at 85 ◦C for 5 s. For reverse transcription (RT)–PCR analyses, 5-fold dilutions
of cDNA templates were used, and 15-fold for quantitative real-time PCR (qPCR).

2.3. Identification of Candidate UGTs in A. yunnanensis

Initially, UGT protein sequences of four lepidopteran species, including B. mori,
H. armigera, Manduca sexta, and Athetis lepigone, were pooled as a local sequence database.
Using these sequences as queries, we identified the UGT genes in A. yunnanensis by
TBLASTN against the transcriptomes previously published [20,21]. To confirm whether
newly identified AyunUGTs were members of the Glycosyltransferase_GTB-type superfam-
ily, BLAST searches were repeated with each new AyunUGT against the National Center
for Biotechnology Information (NCBI) Non-redundant (Nr) protein sequences database.

2.4. Sequence and Phylogenetic Analysis of UGTs

Open reading frames (ORFs) of genes were predicted using an online tool ORF Finder
in the NCBI website (https://www.ncbi.nlm.nih.gov/orffinder/ (accessed on 4 March
2022)). Isoelectric point (pI) and molecular weight (Mw) of full-length UGTs were com-
puted by the Compute pI/Mw tool (https://web.expasy.org/compute_pi/ (accessed on
4 March 2022)). The prediction of signal peptides and N-glycosylation sites (NPS) were
conducted using the SignalP version 6.0 (Technical University of Denmark, Kongens Lyn-
gby, Denmark) [23] and NetNGlyc version 1.0 (Technical University of Denmark, Kongens
Lyngby, Denmark) servers (https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
(accessed on 4 March 2022)), respectively. A multiple alignment program MAFFT V7.450
was employed to align the protein sequences and to calculate amino acid identities [24].
If necessary, the alignments were manually adjusted and edited using Jalview version 2.8
(University of Dundee, Scotland, UK) [25].

The maximum-likelihood tree was built using FastTree v2.1.12 (Lawrence Berkeley Na-
tional Lab, Berkeley, CA, USA), under the Whelan-And-Goldman (WAG) 2001 model with
the Gamma20 likelihood and 1000 replications [26]. To determine the distribution of UGT
genes typically clustering into monophylogenetic clades on chromosomes, the genes in B. mori,
M. sexta, and H. armigera were mapped onto their respective reference genomes by TBLASTN,
implemented in Geneious R10.1.3 (https://www.geneious.com/ (accessed on 10 March 2022)).
The genomic sequences of three species were retrieved from the NCBI Genome database,
referring to B. mori (Bmori_2016v1.0, accession number: GCF_014905235.1) [27], M. sexta
(JHU_Msex_v1.0, accession number: GCA_000262585.1) [28], and H. armigera (Harm_1.0,
accession number: GCA_002156985.1) [29].

2.5. Expression Profiling Analysis of UGT Genes in A. yunnanensis

Based on the sequenced transcriptomes of 13 tissues [20,21], we first mapped clean
reads onto the unigene transcriptomes using Bowtie2 [30]. The expression values of genes
were calculated by RSEM v1.2.15 with default parameters [31], as normalized by FPKM
(fragments per kilobase of transcript per million mapped reads) [32]. Next, RT–PCR was
employed to determine the expression profiles of 31 full-length UGTs in different tissues
of A. yunnanensis. The quality and quantity of cDNA templates were measured using a
reference gene, ribosomal protein L8 (AyunRPL8) [20]. The primers were designed by
Primer Premier 5 (PREMIER Biosoft International, Palo Alto, CA, USA), with the expected
amplification sizes of 400–500 bp (Table S1). The reaction was performed with a total
volume of 25 µL, following a Taq DNA Polymerase Kit’s instruction (TaKaRa, Dalian,
China). The conditions were as follows: initial denaturation at 94 ◦C for 4 min, followed by
35 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s, 72 ◦C for 40 s, and a final extension at 72 ◦C for
5 min. PCR amplification products were analyzed on 1.5% (w/v) agarose gels.

In addition, we chose six candidate UGT genes that showed high expression in main
chemosensory (larval antennae, larval maxillary palps, antennae, and legs of both sexes)
or detoxification (larval midguts, fat bodies, and Malpighian tubules) tissues to examine

https://www.ncbi.nlm.nih.gov/orffinder/
https://web.expasy.org/compute_pi/
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://www.geneious.com/
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their relative expression levels. Gene-specific primers were designed by Beacon Designer
8.14 (PREMIER Biosoft International, Palo Alto, CA, USA) (Table S1). qPCR was performed
with qTOWER 2.2, according to Bestar® SybrGreen qPCR Mastermix’s suggestions (DBI®

Bioscience, Ludwigshafen, Germany). In brief, a reaction mixture of 20 µL was prepared
and run under the procedures: 95 ◦C for 2 min and 40 cycles at 95 ◦C for 10 s, 58 ◦C for 31 s,
and 72 ◦C for 30 s. Three biological pools were run for each tissue. Two reference genes,
AyunRPL8 and RPS4 [20], were used to normalize the relative expression of target genes
using a Q-Gene method [33,34]. Statistical analyses in the data were conducted by one-way
ANOVA followed by Fisher’s least significant difference (LSD) test. A significant level was
set as p value < 0.05.

3. Results
3.1. Identification of A. yunnanensis UGT Genes

Combining Li et al. (2021) and Nuo et al. (2022) transcriptomic data, a BLAST-based
homology search led to the yields of 50 transcripts encoding UGTs in A. yunnanensis. Out
of the identified AyunUGTs, 31 relatives harbored complete ORFs, ranging from 1512 to
1641 bp. The remaining 19 genes were partial sequences, encoding 117 to 480 amino acids.
Among the full-length AyunUGTs, most of them exhibited extremely low identities to each
other at the amino acid level (<30%), with an average value of 28.23%. Exceptionally, four
pairs of the proteins shared a high degree of conservation (>80% identities), i.e., AyunUGT8
and UGT12 (93.46%), AyunUGT15 and UGT31 (87.96%), AyunUGT9 and UGT28 (82.66%),
as well as AyunUGT19 and UGT30 (82.43%). Like other insect UGTs, AyunUGTs had signal
peptides (15–24 amino acids) and similar pI (6.37–9.50) and Mw (57.08–62.57 kDa). The
identification of N-glycosylation sites revealed that all 31 full-length UGTs contained at least
one site, particularly as many as six for AyunUGT6/17/21/29 (Table 1 and Supplementary
Material Additional File S1).

Table 1. Information for 31 full-length UGT genes in A. yunnanensis.

Gene ORF (bp) SP (aa) pI Mw (kDa) NPS

UGT1 1560 18 7.73 59.90 114, 273, 419
UGT2 1557 17 7.32 59.53 63, 330
UGT3 1593 17 8.89 60.03 63, 184, 247, 294, 343
UGT4 1575 18 7.65 60.28 67, 427, 474
UGT5 1542 18 8.78 58.27 49, 169, 318, 447, 501
UGT6 1602 19 7.68 61.39 68, 138, 199, 308, 479, 523
UGT7 1575 21 6.52 61.29 52, 244, 326, 452, 516
UGT8 1563 20 9.11 58.33 237, 302
UGT9 1554 20 9.18 59.29 82, 175, 245, 511
UGT10 1641 21 8.97 62.57 52, 239, 333
UGT11 1545 17 9.22 59.21 71, 89, 102, 237, 285
UGT12 1563 20 9.06 58.27 103, 237, 302
UGT13 1557 20 8.95 59.75 128
UGT14 1569 22 7.71 60.69 71, 192, 289, 472
UGT15 1545 18 8.98 59.13 120, 240
UGT16 1581 20 6.37 60.23 147, 236
UGT17 1566 20 8.97 60.88 51, 93, 240, 274, 426, 449
UGT18 1593 21 8.83 60.56 252, 436
UGT19 1539 19 8.84 59.41 60, 65, 102
UGT20 1563 18 7.29 59.64 117, 251
UGT21 1512 15 7.34 57.08 61, 72, 279, 315, 416, 417
UGT22 1575 24 7.25 60.83 73, 291
UGT23 1584 20 6.55 60.81 69, 429, 477
UGT24 1536 21 8.99 58.60 74, 238, 289
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Table 1. Cont.

Gene ORF (bp) SP (aa) pI Mw (kDa) NPS

UGT25 1554 17 8.10 59.96 66, 147, 463
UGT26 1578 22 7.59 60.24 71, 477
UGT27 1557 17 6.69 59.51 66, 189, 474, 515
UGT28 1578 20 9.13 60.10 82, 175, 245
UGT29 1623 16 9.50 61.29 78, 119, 205, 231, 327, 406
UGT30 1539 19 8.76 59.34 65
UGT31 1548 18 8.16 58.91 120, 240, 415, 507

ORF, open reading frame; SP, signal peptide; aa, amino acid; pI, isoelectric point; Mw, molecular weight; and NPS,
N-glycosylation predicted site.

3.2. Sequence and Phylogenetic Characteristics of A. yunnanensis UGTs

To identify conserved residues involved in the catalysis and sugar-donor binding,
31 full-length sequences were aligned. As expected, two catalytic residues were highly
conserved, of which the majority of AyunUGTs had identical amino acids at two posi-
tions (the first: histidine, H, and the second: aspartic acid, D), with the exception of
AyunUGT8/12/16/20/24. In human UGT2B7, eight residues interacting with sugars were
as follows: serine–tryptophan–glutamine–glutamic acid (S–W–Q–E, nucleotide binding),
threonine–H (T–H, phosphate binding), and D–Q (glucuronic acid binding) [35]. For the nu-
cleotide binding, 30 AyunUGTs possessed the conserved pattern at all the four sites, except for
AyunUGT16 (asparagine (N) instead of S at the first position). Nearly all the AyunUGTs had
the same “D–Q” pattern with human UGT2B7, though not AyunUGT10 (D–H). In comparison,
the residues involved in the binding of phosphates were less conserved, with 16 AyunUGTs
presenting the “T–H” pattern. In addition, two donor binding regions (DBRs) containing a
signature motif in DBR–2 exhibited high conservation. On the contrary, the transmembrane
domain and cytoplasmic tail sequences were more divergent (Figure 1).

With the aligned protein sequence of 184 UGTs from four moths, the phylogenetic
tree was generated. In the tree, moth UGTs could be classified into 14 different clades,
12 of which possessed at least one member from A. yunnanensis. None of the AyunUGTs
were found in the UGT43 and UGT48 subfamilies. Remarkably, two large clusters were
formed in A. yunnanensis, representing AyunUGT6/14/22/32/33/38/39/47 in UGT33 and
AyunUGT9/11/15/24/28/31/34/35/36/40/43/45/46/48/49 in UGT40. Such species-
specific expansions were also observed in the UGT33 subfamily from three other species,
as each representative was presented in one species. To determine the distribution of the
clustered genes on chromosomes, they were aligned to the corresponding genomes using
BLAST. As a result, the UGT genes were situated on one or two scaffolds in close proximity.
In B. mori, eight UGT members were located on chromosome 28 and shared a mean identity
of 67.69%. H. armigera UGTs presented a major distribution on scaffolds 395 and 562, of
which the latter harbored 14 relatives varying from 56.59% to 91.41% identities. In the
case of 11 M. sexta UGTs, they were distributed on scaffolds 00405 and 00641. Moreover, it
was noticed that MsexUGT33C1–C6 were six alternatively spliced variants that shared a
common 3’–terminal region and more than 75% identities with each other. Among four
moth species, the high conservation was obtained in UGT44, UGT47, and UGT50, with a
single gene copy in each species. In particular, members within each subfamily shared over
60% identities (Figure 2).
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Figure 1. Multiple alignment of amino acid sequences of 31 full-length UGTs in A. yunnanensis. The
signal peptide, N–terminus, C–terminus, donor binding regions (DBR–1 and DBR–2), a transmem-
brane domain, and a cytoplasmic tail are marked on the top of the alignment. Triangles represent two
catalytic residues. The signature motif is indicated by a magenta dotted box. Numbers 1, 2, and 3
represent amino acids interacting with nucleotides, phosphates and glucosides, respectively.
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Figure 2. Phylogenetic tree of UGTs in four moths. Based on the classification of UGT subfamilies in
moth species, AyunUGTs clustered into 12 subfamilies. Newly identified AyunUGTs are shown in
red. In the UGT33 subfamily, three typical UGT clusters in three species with available genomes are
presented on scaffolds (Sca.) or chromosomes (Chr.). Arrows indicate the transcriptional orientation
of genes. In M. sexta, six alternative splicing variants (UGT33C1–UGT33C6) sharing a common
3’-terminus are indicated by solid lines.
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3.3. Stage- and Sex-Specific Expression Profile of A. yunnanensis UGT Genes

As 10 transcripts encoding UGTs were identified exclusively from the initially assem-
bled transcripts which were not clustered by Corset v1.05 [36], their FPKM values were
unable to be calculated in various tissues. Thus, we constructed an expression profiling
map of 40 AyunUGTs in 13 tissues. The majority of the genes were widely transcribed
in tissues, such as AyunUGT1–3/5/7/16–22/25. Focusing on the genes specifically or
highly expressed in tissues, it was found that six AyunUGTs had an antenna-enriched
expression, including AyunUGT8/9/18/25/30/37/42/46 where AyunUGT8 appeared
to be a male-biased relative in the antennae with a 5.12-fold difference compared to fe-
males. In contrast, AyunUGT22 expression was female-antenna-predominant. In addition,
AyunUGT5, UGT41, and UGT48 were abundantly expressed in female abdomens, legs of
both sexes, and male abdomens, respectively (Figure 3A).

To reconstruct and investigate the expression of 31 AyunUGTs with full-length se-
quences, nine additional tissues from different developmental stages were selected, in-
cluding three detoxification-related tissues of larvae (midguts, fat bodies, and Malpighian
tubules). Consistent with the results by RNA sequencing (RNA-Seq), most of the genes dis-
played a broad tissue expression. Intriguingly, the transcription of two genes was restricted
to larval heads (AyunUGT11) and larval midguts (AyunUGT15). Some genes appeared to
have a dominant expression in tissues, for example, AyunUGT4 and UGT31 expressed in
larval midguts, AyunUGT6 expressed in larval midguts and fat bodies, and AyunUGT23
expressed in male abdomens. Out of the 31 AyunUGTs, 24 and 22 relatives were detected in
antennae and maxillary palps of the larval stage, respectively, while 20 and 18 genes were
presented separately in male and female antennae. In three main detoxification tissues, a
number of AyunUGTs were found to have the expression in larval midguts, fat bodies, and
Malpighian tubules with 26, 22, and 19 relatives, respectively (Figure 3B).
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Figure 3. Expression profile of 31 full-length UGT genes in different tissues of A. yunnanensis.
(A) Expression of UGT genes as determined by FPKM values. (B) Expression of UGT genes as
determined by RT–PCR. LA, larval antennae; LH, larval heads without antennae; LMP, larval
maxillary palps; LMg, larval midguts; LFB, larval fat bodies; LMT, larval Malpighian tubules; FPu,
female pupae; Mpu, male pupae; An, antennae; He, heads without antennae; Th, thoraxes; Ab,
abdomens; Le, legs; Wi, wings; and PG, pheromone glands.

Based on the FPKM and RT–PCR results, we further selected six candidate UGT genes
abundantly expressed in chemosensory and/or detoxification tissues to determine their
relative levels. qPCR revealed that three genes (AyunUGT9, UGT12, and UGT18) were
significantly enriched in chemosensory tissues and slightly presented in some detoxifi-
cation tissues. AyunUGT9 had a significantly higher expression in larval antennae and
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maxillary palps in comparison to other tissues. In contrast, the dominant expression of
AyunUGT18 was presented in the antennae of the adult stage. AyunUGT12 had the highest
expression level in male legs among tested tissues. Notably, AyunUGT8 exhibited particu-
larly high transcription in larval Malpighian tubules, with a 1751.21-fold difference relative
to male antennae. The remaining two genes, AyunUGT25 and UGT30, had comparable
transcription levels in adult antennae and larval Malpighian tubules (Figure 4).
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Figure 4. qPCR analysis of six candidate UGT genes in A. yunnanensis. Data denote mean ± standard
errors. Different lowercases above bars represent significant differences among tissues (p < 0.05,
ANOVA, LSD). LA, larval antennae; LFB, larval fat bodies; LMP, larval maxillary palps; LMg, larval
midguts; LMT, larval Malpighian tubules; MA, male antennae; ML, male legs; FA, female antennae;
FL, female legs.

3.4. Candidate UGT Genes in A. yunnanensis Involving Reproduction

Like most lepidopteran species, A. yunnanensis produces their offspring via sexual
reproduction. As indicated in previous studies, reproductive-related genes in insects are
rapidly evolving, greatly extending the gene repertoires associated with reproduction,
including the UGT gene family [37–39]. Here, we surveyed the expression of 31 UGTs with
full-length sequences in reproductive tissues. As shown in Figure 5A, the internal reproduc-
tive system of female A. yunnanensis was composed of a pair of accessory glands, four pairs
of oviducts (ovary), one bursa copulatrix, and one spermatheca with a spermathecal gland.
The reproductive system of male moths was made up of four portions, including a pair of
accessory glands, one testis, one ejaculatory duct, and a pair of seminal vesicles. Out of the
31 genes, four AyunUGTs had no detectable transcription in eight reproductive tissues, i.e.,
AyunUGT11/14/29/31. The other 27 AyunUGTs were transcribed in at least one tissue,
but eight of them only displayed weak bands such as AyunUGT8/12/15/17/21/23/27/28.
Two genes, AyunUGT4 and UGT19, were presented in all tissues. Some genes appeared
to be sex-specific transcripts in reproductive tissues, for example, AyunUGT2, UGT6,
and UGT24 expressed in males, as well as AyunUGT9 and UGT13 expressed in females
(Figure 5B).
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Figure 5. Expression profile of 31 full-length UGT genes in reproductive tissues of A. yunnanensis.
(A) Reproductive systems of female and male moths. (B) Expression of UGT genes in eight reproduc-
tive tissues. Asterisks mean that the transcription of the genes was not detected in tissues. MAG,
male accessory glands; Te, testes; SV, seminal vesicles; ED, ejaculatory ducts; FAG, female accessory
glands; BC, bursa copulatrix; Ov, ovaries; and SS, spermathecae with spermathecal glands.
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4. Discussion

In Lepidoptera, the caterpillars feed on diverse plant species. As a positive feedback,
the plants will synthesize and release the secondary metabolites to cope with the herbi-
vores. With the coevolution of moths and plants, the larvae also develop a variety of
strategies to overcome the plant toxins, such as metabolic resistance. After encountering
plant allelochemicals, the expression of detoxification enzyme genes in larvae is regulated
as an adaptation of the larvae to xenobiotics [1,2]. Like the herbivorous insects, the larvae
of A. yunnanensis have evolved to recognize and eat specialized host plants. During the
process, the UGT gene family associated with the detoxification and insecticide resistance
is indispensable for the glycosylation of xenobiotics, including plant secondary metabolites
and insecticides [12,14,15,40,41]. Our current study identified and characterized the UGT
enzymes in A. yunnanensis. This work has constituted a crucial step underlying the detoxi-
fication mechanism and allows the exploration of the specialized feeding adaptation of the
A. yunnanensis larvae to the Rosaceae plants.

Insect UGTs have several typical characteristics, including signal peptides and con-
served catalytic and sugar-donor binding residues, as implied in gene identification and
functions [4]. A. yunnanensis UGTs possessed most, if not all, of these features. Moreover,
not only did the majority of key sites have identical residues across A. yunnanensis and other
insects, but this conservation also existed in A. yunnanensis and humans [4,17,35,42,43].
Outside the key residues at the conserved positions, most of AyunUGTs shared an aver-
age of only 28.23% identities to each other, especially for the diverse N-terminal binding
domain. The low identities were generally presented in other insects, such as B. mori
(30.44%) [4,11], H. armigera (35.30%) [4,29], M. sexta (31.99%) [28], Tribolium castaneum
(35.51%) [4], Anoplophora glabripennis (33.10%) [44], Xylotrechus quadripes (35.03%) [42], and
Rhaphuma horsfieldi (34.90%) [43]. Nevertheless, some clustered UGTs possibly derived
from gene duplications retained high conservation (>50% identities) as presented in the
tree, typically regarding the UGT33 and UGT40 subfamilies as discussed below.

In comparison to phase I metabolizing enzyme genes such as P450s and COEs, moth
UGTs harbor a relatively stable gene number, ranging from 42 in Helicoverpa zea, 44 in
M. sexta, 45 in B. mori, and 46 in H. armigera to 48 in S. frugiperda [4,11,28,29,45]. Our
current study identified a comparable UGT number through the transcriptome analyses
(50 relatives), very close to those of the above species with available genomes, and slightly
more than 41 conreads in a zygaenid moth Zygaena filipendulae derived from the sequenced
transcriptome [46]. In phylogeny, A. yunnanensis UGTs were expanded mainly in the UGT33
and UGT40 subfamilies, accounting for approximately half of all identified genes. Such
large-scale expansions of UGTs in the two subfamilies were also reported in S. frugiperda [45],
H. armigera [29], B. mori [4], and Epiphyas postvittana [47]. Notably, most members of the
UGT33 and UGT40 subfamilies in Plutella xylostella [48] and Spodoptera exigua [19] have
been found to have inducible expression by multi-insecticides. Hence, it is reasonably
inferred that the lineage-specific expansions in UGT33 and UGT40 of A. yunnanensis may
be associated with insecticide resistance, as an adaptation of insects to man-made chemical
pesticides.

Concerning these UGT clusters in UGT33, we detected their physical locations in the
chromosomes. The tandem arrays of UGTs on scaffolds or chromosomes were probably
attributed to gene duplication events, coupled with their high identities. The clusters
and high conservation of UGTs were also found in UGT33 and UGT40 of A. yunnanensis,
reflecting a common phenomenon that species-specific expansions have occurred in moths.
Of the 14 proposed clades, three orthologous groups (UGT44, UGT47, and UGT50) still
retained a strict single gene copy in each species, suggesting the genes in each group
may bear similar functional roles in moths, together with conserved catalytic and sugar-
donor binding residues. Notably, the singleton in UGT50 was also presented in other
insects [4,42]. Moreover, insect UGT50 members generally possessed conserved gene
structure, for example, UGT50s in B. mori, M. sexta, and H. armigera comprised four introns
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as characterized in the present study, in agreeable with those of putative orthologs in some
coleopteran species and human [42].

In Z. filipendulae, ZfilUGT33A1 could catalyze the synthesis of two cyanogenic glu-
cosides by glycosylation, i.e., linamarin and lotaustralin secreted by Zygaena larvae [49].
Intriguingly, the two toxic cyanogenic glucosides were also isolated and identified from
the A. yunnanensis larvae [50]. To identify putative UGTs in A. yunnanensis in response to
the two chemicals, we screened putative ortholog(s) of ZfilUGT33A1 by a combination of
the identities and phylogeny. As a result, AyunUGT14 and UGT22 showed the highest
identities of 62.94% and 63.13% with ZfilUGT33A1, respectively. Further, the three UGT
members phylogenetically formed an independent small clade with a high support value.
Hence, it is suggested that AyunUGT14 and UGT22 belonging to the UGT33 subfamily
probably play a critical role in the glycosylation of the two cyanogenic glucosides.

At the larval stage, detoxification-related tissues, referring to midguts, fat bodies, and
Malpighian tubules, are of utmost importance for larvae to metabolize various harmful
chemicals. In the expression profiling analyses, a number of AyunUGTs were transcribed
in the three tissues. In other lepidopteran species, UGTs enriched in larval midguts, far
bodies, or Malpighian tubules were common, and moreover, responded to plant defensive
compounds and insecticides [4,11,12,15,19,48]. Given the fact that the larvae of A. yunna-
nensis feed on the plants of the Rosaceae family [20–22], AyunUGTs presented in larval
detoxification tissues (especially AyunUGT4/8/15/27/31) are key molecular targets for
detoxifying defensive compounds of host plants. Beyond putative roles of AyunUGTs in
detoxification, it was found that a comparable number of genes had the expression in main
chemosensory tissues, including antennae and maxillary palps. In moths, several studies
have suggested olfactory roles of UGTs, such as M. sexta [9], B. mori [4,11], S. littoralis [8],
A. lepigone [17], and P. xylostella [18]. In addition, this olfactory association was also indi-
cated in non-lepidopteran species, such as D. melanogaster [51–53], Holotrichia parallela [54],
X. quadripes [42], and R. horsfieldi [43]. Accordingly, it is inferred that the antenna-enriched
AyunUGTs in A. yunnanensis (particularly AyunUGT9, UGT12, and UGT18) may partici-
pate in the sensing of odorant molecules, and are regarded as odorant degrading enzymes.
Notably, the majority of AyunUGTs had detectable expression in reproductive tissues, sug-
gesting their reproductive roles. In S. litura, transcriptome and proteome analyses revealed
the presence of UGTs in reproductive tissues [37]. A similar reproductive expression feature
of UGTs was also found in B. mori [4,11], H. armigera [29], and D. melanogaster [4,55], but
their functions remain to be identified.

5. Conclusions

Our current study has characterized the UGT gene repertoire in A. yunnanensis, with a
combination of transcriptomics, bioinformatics, phylogenetics, and PCR approaches. From
the transcriptomes, a total of 50 UGTs were identified, of which some shared high conserva-
tion and phylogenetically clustered together. At the key sites, most of AyunUGTs harbored
conserved residues with the UGTs from other insects and human. In the expression profil-
ing analyses, a number of UGTs were found to have the expression in chemosensory tissues
as supported by PCR and RNA–Seq (FPKM > 1), such as 24 and 22 relatives separately
in larval antennae and maxillary palps, 27 in male antennae, 24 in female antennae, 31 in
male legs, and 25 in female legs. Moreover, a comparable number of genes were observed
in detoxification tissues, including 26, 22, and 19 relatives in larval midguts, fat bodies,
and Malpighian tubules, respectively. The expression of at least 27 UGTs was detected in
reproductive tissues of female and male moths. Together, this study reports, for the first
time, the detoxification-related UGT gene family, and allows for exploring the adaptation
of the A. yunnanensis larvae to feeding hosts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050407/s1. Table S1: Primers used for the expression profiling
analyses of UGT genes in A. yunnanensis; Additional File S1: Amino acid sequences of UGTs in
A. yunnanensis.
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