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Abstract: The ‘Returning Farmland to Forest Program’ (RFFP) in China has become an essential factor
in land cover changes and forest transition, especially in terms of the ecological processes between two
adjacent ecosystems. However, accurately delineating ecotones is still a big challenge for vegetation
and landscape ecologists. Acquiring high spatial resolution imagery from a small, unmanned aircraft
system (UAS) provides new opportunities for studying ecotones at a small scale. This study aims
to extract forest-agriculture ecotones by RGB ultrahigh-resolution images from a small UAS and
quantify the small biotopes in 3D space. To achieve these objectives, a canopy height model (CHM) is
constructed based on a UAS-photogrammetric-derived point cloud, which is derived from the digital
surface model (DSM) minus the digital terrain model (DTM). Afterward, according to the difference of
plant community height between abandoned farmland ecosystem and forest ecosystem, the ecotones
are delineated. A landscape pattern identified with ecotones and other small biotopes at the fine scale.
Furthermore, we assess the accuracy of the ecotones’ delineation based on the transects method with
the previous situ work we carried out and quantify the landscape structure using common landscape
metrics to describe its spatial and geometric characteristics. Through transect-based analysis at three
transects, the overall accuracy of the width of UAS-derived delineation is greater than 70%, and the
detection accuracy for the occurrence location is 100%. Finally, we conclude that ecotones extraction
from UAS images would also provide the possibility to gain a comprehensive understanding of the
entire ecological process of agricultural abandoned land restoration through continuous investigation
and monitoring.

Keywords: returning farmland to forest program; ecotone; unmanned aircraft system; CHM; moun-
tainous landscape; transect-based analysis

1. Introduction

Ecotone was first introduced by Clements [1] as transition zones where principal
species from adjacent communities meet their limits. Ecotones are transitional zones be-
tween different habitats, and they exist at all spatial and temporal scales [2–4]. Generally,
these zones have a set of characteristics (e.g., physiognomy, species composition, etc. [5])
uniquely defined by space and time scales and by the strength of the interactions between
adjacent ecological systems [6]. Hence, they exist beside the boundaries between biomes
or ecosystems [7]. Due to highly sensitive spatiotemporal dynamics, ecotones play vari-
ous vital roles in community ecology, landscape ecology, and biodiversity conservation,

Diversity 2022, 14, 406. https://doi.org/10.3390/d14050406 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d14050406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-3888-859X
https://doi.org/10.3390/d14050406
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d14050406?type=check_update&version=2


Diversity 2022, 14, 406 2 of 19

including the implementation of landscape functions, patterns, and ecological processes, as
well as the provision of evidence that “indicates” or “forewarns of” the impacts of global
climate change [8–12]. The intrinsic factors driving the spatiotemporal dynamic changes
in ecotones are determined by the ecological processes of species migration, settlement,
reproduction, and growth at the community scale [13,14].

The Yangtse River flood of 1998 resulted in the ‘Returning Farmland to Forest Pro-
gram’ (RFFP) in China, also known as the Sloping Land Conversion Program (SLCP). It
aims to restore some farmlands to forests gradually. This policy was initiated in 1999
and expanded in 2002 to cover most of China’s provinces and has received immense
attention [15,16]. The policy has become an essential factor in land cover changes and
forest transition [17], especially in terms of the ecological processes that are responsible for
material flows and species movement [18–20]. Studies of land cover change at regional
and provincial scales find gains in forest cover in jurisdictions in which the RFFP was
implemented [21,22]. Yet land cover change patterns vary sharply at smaller scales [21,23].
A previous study confirmed that ecotones often occur on the local scale [24]. These ecotones
are dynamic entities whose changes are always influenced by the interactions of ecological
processes between the abandoned agricultural lands and the adjacent ecosystems [25]. In
vegetation (or plant community) science, knowledge of ecotones is crucial in understanding
basic ecological patterns and processes [26]. Ecotones (or boundary) delineation is a critical
issue in vegetation ecology, which can help identify the organization rules of communities
and help understand the ecological processes between two adjacent ecosystems [27].

Formerly, several edge-detecting methods were used for detecting ecotones and tran-
sition zones using one-dimensional transect data [26]. The moving split-window (MSW)
technique is the most used ecotone delineation method. It is hard to detect the spatial
features of ecotones using the one-dimensional ecotone delineation technique, such as
location, shapes, and spatial distribution patterns [8]. The delineation of ecotones at the
community level is greatly affected by topography, data sampling directions, and the size
and numbers of samples using one-dimensional MSW. However, these edge detection
methods often need an excessive amount of effort and meticulous sampling to obtain
ecological data in the same manner (grid, regular lattice) and amount (exhaustive study
area) as pixel data based on transects. Delineating ecotones accurately continues to be a
significant difficulty for vegetation and landscape ecologists.

Currently, for mapping the continuous spatial distribution and quantifying the degree
of ecotone occurrence, algorithms also exist for detecting edges from the aerial view, and the
satellite remotely sensed image data [28,29]. Remote sensing data acquired from satellites
and piloted aircraft are potent tools for measuring the state and trends of environmental
changes associated with natural processes and human disturbances. However, the con-
ventional airborne and satellite remote sensing platforms upon which most sensors are
mounted have not always met the needs of researchers and environmental profession-
als [30,31]. Not only do data gathered using conventional remote sensing systems lack
operational flexibility and variety, but they also have a poor spatial and temporal resolu-
tion. With the fast growth of photogrammetry and 3D visualization technology in recent
years, approaches for creating 3D models from regular digital images have evolved [32,33].
Researchers have used conventional RGB digital cameras mounted on a UAS to determine
tree heights [34,35] and crop heights [36], and for biomass estimations [37,38]. Such applica-
tions have raised the possibility of using UAS-mounted ordinary digital cameras to obtain
information on the heights and 3D structures of plant communities, thereby providing
new research ideas and means to determine the spatial structures of ecotones. Hou and
Walz [39] developed a method for detecting ecotones based on change in plant height
and landcover by integrating several remote sensing data. However, data with varying
resolutions may result in estimating errors.

Previous studies have suggested that 3D or even multidimensional in space and time
information are key components of ecotones [11] and incorporating landscape 3D structures
into modeling and monitoring will produce outcomes that better approximate reality [40].
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An inherent property of forest-agricultural ecotones is higher structural heterogeneity
(changes in vegetation height) than adjacent plant communities [5,41], permitting UAS-
based 3D photographic techniques to be used for ecotone delineation. The objective of
this study is comparing the efficacy of UAS-derived canopy height versus traditional
transect methods to extract the width of forest-abandoned-land ecotones at known RFFP
sites. The UAS acquired photogrammetry point cloud and high-resolution orthoimage
will be derived using UAS photogrammetry techniques in addition to field investigations
using the transect method as ground truth. Optimizing limited field time is conducive
to monitoring and researching landscape pattern changes and monitoring the associated
ecological processes, thereby leading to better assessments of the mountainous ecological
restoration process after farmland abandonment.

2. Materials and Methods
2.1. Study Area

The study area is located in Yunnan Province, China. Weixi, in the County of the Diqing
Tibetan Autonomous Prefecture (98◦54′–99◦34′ E, 26◦53′–28◦02′ N) (Figure 1). The study
area belongs to the temperate mountain monsoon climate, with the annual temperature
difference of 11.3 ◦C, annual sunshine duration of 2071.3 h, annual precipitation of 954 mm,
frost-free period of 195 days, and the vertical change of mountain climate is obvious. The
forest soil in Weixi county showed an obvious vertical distribution, from high altitude
to low altitude, alpine meadow soil, subalpine shrub meadow soil, bleaching earth, dark
brown soil, yellow brown soil, and red soil. The soil in this study area is dark brown soil.
It is a steep mountain area, and the prominent disturbances are grazing and firewood
collection. There is a typical landscape with ecotones across the original Yunnan Pinus
(Pinus yunnanensis) community and an abandoned land under the influence of the RFFP.
Since 2003, the impact of this policy has been here for more than a decade. Before that, the
study area was mainly planted with corn. In addition to Yunnan Pine, other dominant
species in this study area include Coriaria nepalensis and Desmodium yunnanense.
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Figure 1. Location of the sample plot. The right pic is the Baijixun sample plot, Weixi, with 19,203 m2.
Furthermore, here are three sample transects that were be set up along the slope.
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2.2. In-Situ Data

Three parallel sample transects were set along the direction perpendicular to the forest
edge, with an interval of 20 m. Taking the forest margin as the starting point, quadrats
were set in two opposite directions, respectively. Starting from the edge of the forest,
five quadrats with an area of 5 m × 5 m were set in the direction of the abandoned land.
The original Yunnan pine forest was set with eight quadrats with an area of 10 m × 10 m
continuously (Figure 1 and Figure S1). The area of each quadrat on abandoned land or
forest has been confirmed using the nested sampling approach, which in earlier work
considered the species–area relationship [42]. Based on the sampling strategies (S1), the
work of plant species investigation in each of the quadrats was completed in May 2013. At
the same time, in each quadrat, multiple points were randomly and uniformly selected to
collect soil, and the soil was mixed to ensure its representativeness (see S1). The pH value
and the organic matter (OM) content of soil were be measured using the potentiometric
method and oil-bath heating potassium dichromate volumetric method, respectively (see
Table S1) [42].

To detect the ecotones based on photogrammetric technology, a DJI M600Pro UAS
platform (DJI, Shenzhen, China) was used to collect aerial imagery with a spatial resolution
of 0.1 m. The platform uses an intelligent flight control system, a professional tripod head,
and a Sony a7r (Sony, Tokyo, Japen) digital camera taking red (R), green (G), and blue (B)
images for aerial photography. To assure comprehensive and practical remote sensing data,
this research covers the following important steps: (1) The camera’s lens length, shutter
speed, and orientation were manually tuned depending on ground surface reflectance and
ambient light conditions. (2) Nine GCPs (Ground Control Point) were put in open regions
of the Baijixun sample plot, and their precise locations were gathered using RTK (Real-time
kinematic) (CHCNAV, Shanghai, China). (3) For automated flying, the parallel path plan is
used, with 80% longitudinal and 60% lateral overlap. (4) After UAS data collection, photos
are sent to the field laptop and analyzed using Photoscan software (now Metashape). In
May 2016, UAS flights at 133 m yielded 822 usable photographs. 131 photos were taken
above our locations.

2.3. Image Preprocessing and Photogrammetric Processing

Initially, some hazy images are filtered out owing to the swaying of trees caused by
wind. The lightness of some shaded pics is enhanced, and the lightness of some pics with
overexposure is debased by the set Brightness tool in Photoscan software. To avoid the
influence from the difference of color between images in image stitching, the histogram
matching was used to adjusted bias images. Sequentially, a series of parameters (medium
aligning accuracy, high-quality point cloud, and mild depth-filtering level; refer to Figure 2)
were adopted to produce high-quality photogrammetric point cloud data. It is important
to emphasize that the point cloud data have ‘medium aligning accuracy’ (Figure 2). It
is because of considering the influence from the high sensibility of aligning algorithm
with ‘high aligning accuracy’, and it may cause an underestimate of canopy height, as no
aligning can be made for the tie points at the top of the canopy. Nevertheless, it cannot
reflect the real height of nonvegetation if the data with low accuracy. By the way, a point
cloud data set sufficient to characterize 3D vegetation communities is constructed. Based
on this, according to the orthoimage generation process flow of the software (Photoscan).
Finally, a high resolution (0.08 m/pix) orthoimage is produced, and the degree of overlap
is bigger than 90%.
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Figure 2. Diagram of detecting and measuring ecotones utilizing UAS images, incorporating a
preprocessing flow, a processing workflow of object-based classification, and the CHM extraction
workflow. Prepreprocessing is represented by the boxes with a green backdrop. The red-background
boxes represent object-based classification processing. Yellow boxes reflect methods for identifying,
measuring, and validating ecotones derived from UAS. The parallelograms with a blue background
indicate the data or outcomes created by the study framework.

2.4. Object-Based Image Classification (OBIC)

Exploiting the high resolution of UAS imagery, OBIC was chosen to map land cover
for the Baijixun study area. In this study, the multiresolution image segmentation (MRIS)
algorithm is used [43]. It should be emphasized that in OBIC, the accuracy of segmentation
directly affects the accuracy of classification. Hence, the ESP tool was adopted to estimate
the optimal value of segmentation parameters. It is an effective method to determine the
optimal value of segmentation parameters by controlling variables in the MRIS [44]. In our
case, the Shape and Compactness are adjusted to 0.5 and 0.5, respectively (Figures 2 and S3),
and the scale parameter related to MRIS is adjusted to 20 to obtain a better result of
segmentation (Figure S4)
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Afterward, 12581 objects from segmentation are classified into different land cover
classes using the random forest (RF) classifier. The RF classifier was chosen mainly because
this machine learning algorithm does not need many samples, has fast training speed, and
has good antioverfitting ability [45]. In this study, vegetation, nonvegetation, and shadow
were distinguished based on orthoimage. The training samples combined the data from
the previous situ investigation, the information of GCPs, and some sample points selected
based on visual inspection. Combined with field survey data and visual inspection, a total
of 138 training sample points were obtained, 30 of which were shaded, 38 of which were
nonvegetated, and 70 of which were vegetated (Figure S2). The three bands (R, G, B) were
inputted as predictive variables. Out of 113 selected samples, 101 (approximately 90% of
the total) sample points were selected as training samples, and the remaining samples were
used as validation samples. Then, based on the number of samples and the number of
classification targets, the default setting of the RF classifier was accepted. Corresponding
objects were determined according to the spatial position of investigation, and the samples
of the training classifier were finally involved in the form of objects. In order to detect more
small biotopes from the high-resolution orthoimage, characteristic of structure (i.e., CHM),
geometrical characteristic (area and shape index), and texture information were crucial. The
contrast index and the dissimilarity index were selected for the texture index, generated
according to the gray level co-occurrence matrix. Moreover, a rule-based classification
scheme was constructed, with different rules and thresholds for each class (Figure 2).
Different subclasses have significant differences in different feature dimensions, so every
subclass was judged from the parent class by the most sensitive features. We completed the
processing of OBIC above in eCognition Developer software.

2.5. Canopy Height Modeling

The nonvegetation area in the land cover classification realized in the above steps was
extracted to extract the nonvegetation points from the whole point cloud data. Nonvege-
tation points were merged with points of GCP on the field survey as modeling samples.
As the geostatistical method, the empirical Bayesian kriging (EBK) was adopted after
cross-validation with other four common models (S3) to construct a geostatistical model
(i.e., digital terrain model (DTM)) for predicting the entire terrain elevation. Before mod-
eling with these nonvegetation points, some points within other classes that could have
been misclassified into nonvegetation points needed to be filtered using a slope-based filter
method [46]. Furthermore, before modeling by EBK, declustering was performed and the
global first-order trend was removed from the data (S3). The point clouds were also used
to derive the digital surface model (DSM), a raster-based description of the surface that
includes objects on the terrain, such as trees and shrubs. In this work, multilevel B-spline
interpolation was used to generate the DSM, which is a high-speed interpolation algorithm
for calculating the continuous surface from points based on irregular regional samples [47].
Finally, a superimposed subtraction of the two sets of data produced a canopy height
model (CHM) by the grid difference, which is a raster computing tool used to subtract the
DTM from the DSM to produce the CHM. The geostatistical analysis was accomplished
by the ArcGIS Pro software. The processing of DSM and CHM data was achieved by the
SAGAGIS software.

2.6. Extraction and Classification of Forests–Ecotone–Abandoned Landscape

In this study, the ecotones between forest and abandoned agricultural land refer to
mixed vegetation above the grass layer at abandoned land but below the forest layer,
and they formed height gradient transitional zones. This vegetation height difference
of transitions between abandoned agricultural land and forest ecosystems provided a
meaningful result in this case and can be used as the characteristic for a three-dimensional
landscape [39,48].

For extracting the ecotones between forest and abandoned agricultural land, two pre-
requisites are used: vegetation height and proportion of ecotones. In this study, the ecotone
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detection method developed by Hou and Walz [48] was adopted. First, the land cover
map obtained using OBIC described above is used as the thematic layer. The forest and
agricultural land classes were overlaid with the CHM (DSM-DTM). The height difference
is used as a criterion of ecotones. Thus, it was necessary to define the threshold values
of height for the distinguish of ecotones. At the Baijixun plot, the average heights of the
vegetation in the forest and abandoned agricultural land were computed by the zonal
statistic. Second, the proportion of nonecotone pixels (i.e., forest pixels or abandoned land
pixels) within a fixed size “window” was assumed to be between 40% and 60% based
on the model from Riitters et al. [49]. Unlike the Hou and Walz method, CHM extracted
from the photographic point cloud could be completely matched with the land cover map
based on the high-resolution classification in our study. Therefore, combined with Hou and
Walz’s method and the perspective of Riitters, the classification results obtained from the
above classification system needed to be shrunken only. In our case, that meant inside a
moving window (61 by 61 pixels) surrounding the ecotone pixel, the proportion of both
forest and abandoned land pixels should be less than 60%. Combined with the result of
classification and CHM data, the average height of forest (Hf) and the average height of
abandoned land (Ha) in the landscape were calculated. The detailed step was to form
transitions by shrinking grass along the border pixels where CHM ≥ Ha m and the relative
area of grass pixels in a moving window of (61 by 61) pixels < 60% and shrinkage of the
forest where CHM ≤ Hf m and the relative area of forest pixels in a moving window of
(61 by 61) pixels < 60% (Figure 3). Finally, we assigned ecotone class to the unclassified
class and involved eliminating impurities inside ecotones. It should be emphasized that
considering for the shrinking from the nongrass land class (i.e., shadow class and bare
land class), the shadow class and bare land class were reassigned into the interior of forest
class or the interior of grass class according to the proportion of classes in the nearest pixel
before do the processing of shrinking. The shrunken work was completed with a tool that
is ‘pixel-based object resizing’ in eCognition Developer software.
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Figure 3. Shrinking process diagram. The moving window along the border between the abandoned
land and the forest was used as the judgment basis for the shrinking into the interior of the forest and
the interior of the abandoned land where Pa denotes the proportion of pixels in the whole window of
the abandoned land. Moreover, the Pf denotes the proportion of pixels in the whole window of the
forest. Ha and Hf denote the average height of abandoned land and forest, respectively.

2.7. Quantifying the Landscape Containing Ecotones

Compared with the traditional ecotone identification method, this is an obvious
advantage of the spatial continuous detection results, that is, the spatial quantization of
the ecotone can be realized. Mapping the landscape pattern, including the ecotones, not
only shows where the ecotones occur but also makes it possible to quantify the scale of the
ecotones. At the CLASS level, a series of landscape metrics are computed in an R package
(landscapemetrics [50]) to assess the landscape characteristics of ecotones. The quantitative
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indicators selected are shown in Table S3. Furthermore, the total area (TA) reflects the size
of the corresponding class in the landscape and measures the composition of the landscape.
The percentage of landscape (PLAND) is a relative measure that quantifies the landscape
weight of each class in the landscape, which is also an important indicator for measuring
the landscape composition. The total edge (TE) reflects the total edge length of a class,
and longer edge lengths may be associated with larger edge effects. The shape index (SI)
is the most straightforward measure of complexity, and the changes in a landscape may
reflect the extent of disturbance. In fact, these common indicators are also rich in ecological
significance. TA is a direct measure of the scale of landscape elements, and the area of
vegetation has an impact on the species in it, that is, the area effect [51]. While PLAND
reflects the weight of corresponding classes in the landscape, it also indirectly reflects the
contribution of this class to the spatial heterogeneity of landscape elements within the
landscape. It is assumed that the larger the PLAND of a class is, the more outstanding
the contribution of the corresponding class to the homogeneity of the habitat types within
the landscape is, which may influence the biodiversity within the landscape, because it
may lead to concentrations of rare species in marginal habitats [52]. TE and SI measure
the edge characteristics of land cover types, which may be related to the edge effect of the
corresponding land cover class [53].

2.8. Transect-Based Analysis

The ecotones occur between adjacent ecosystems frequently with high heterogene-
ity. In general, the variability of biodiversity is sensitive to environmental change. The
species importance value (IV) is computed in every species per small sample quadrats. In
addition, the mean values of the importance values of plants included in each quadrat
are calculated to represent the importance values at the level of the quadrat. This work
(i.e., the measurement of IV, pH, and OM) has been conducted in previous experiments
(Table S1). For analysis of the variation along transects from abandoned land to the interior
of the forest, the MSW alone transect was adopted in this study. The MSW is a common
approach to reflect the habitat change or indicate how habitats are separated [54]. The
discrepancy coefficient was computed between two subwindows (1/2 window) using the
squared Euclidean distance (SED) (Formula (1))

SEDn =
(
Xiaw − Xibw

)2 (1)

where n denotes the location of the medium point of two subwindows and a and b re-
spectively represent the two subwindows when the window is n. The w is the size of a
window. The m is the number of parameters in a quadrat [55]. The times of removing
are determined by subtracting the size of the window from the number of total quadrats
and adding 1. In addition, the experiment was carried out several times with a variety
of window sizes so that any potential bias caused by the impact of window scale may be
eliminated. According to the findings of our earlier study, the position and breadth of the
ecotones may be identified more precisely when the size of a window is set to 6. [56]. In
this study, eight medium points were determined (The distance along the one-dimensional
transect from the starting point is 17.5 m, 25 m, 32.5 m, 40 m, 47.5 m, 55 m, 65 m, and 75 m,
respectively) by the window size and the number of all quadrats.

Meanwhile, the obtained results were normalized. The calculated distance coefficient
(i.e., SED) was plotted along the transect. The dependent variable was the value of the
normalized result, and the independent variable was the position of the starting distance
from the transect. Similarly, the width of ecotones occurrence was expressed at the same
location of the transects. An interpolation line was set up through the midpoint of each
small quadrat, the starting point and ending point of the entire transect. The landscape
map containing ecotones was binarized before computing by interpolation line, with one as
the ecotones and zero as the nonecotone. Based on the graph, the occurrence of the location
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of ecotones was detected according to crest and estimate the scale of ecotone according to
the width of wave.

2.9. Accuracy Assessment for Ecotone Detection

Two aspects of accuracy need to be verified in this study. One aspect was the classifica-
tion accuracy of the landcover of biotopes, which will directly affect the ecotones’ location
of occurrence. Another aspect was the delineation accuracy of the ecotones, which tests
the accuracy of the ecotones’ width based on our method, reflecting the scale (width) of
the transition.

In this study, field surveys are carried out to establish the characteristics and variability
of land cover and to acquire reliable field data for training the classifiers of the UAS image
data and evaluating the accuracy of the classification results. The ground truth data were
combined with the UAS images to assess the accuracy of the classification. The F1-measure
was adapted for assessing the accuracy of each class [48]. This indicates the harmonic mean
between precision (pi) and recall (ri) for each class i, because recall and precision are evenly
weighted [57].

F1 =
2piri

pi + ri
(2)

pi denotes objects correctly classified as class i/(ground reference objects in class i) and
ri denotes objects correctly classified as class i/(number of objects correctly classified as
class i + objects falsely classified as class i).

Meanwhile, the F1-measure was also used to test the accuracy of the scale of ecotones
occurrence extracted based on proposed method.

F1 =
2pjrj

pj + rj
(3)

pj =
TPj

TPj + FPj
(4)

rj =
TPj

TPj + FNj
(5)

TPj denotes the overlap width of the ecotones derived from the UAS data and the
ecotones detected from the analysis of the transects based on situ investigation at transect j.
FPj denotes the width of the part not detected by situ data but detected in the UAS data.
FNj denotes the width of the part not detected by UAS data but detected in the situ data.
The pj represents Precision, and the rj represents Recall.

3. Results
3.1. Canopy Height Estimate

In the Baijixun sample site, the unbiasedness and uncertainty of multiple geostatistical
models were compared by cross-validation method, and the EBK was finally selected
to model the DTM. A CHM was successfully used for modeling, and it was used to
interpolate the height value across the study area (Figure 4). From the results, the predicted
slope direction was consistent with the actual slope direction, and the vegetation height
changed obviously at the boundary between abandoned land and forest (in the north)
(Figures 1 and 4). According to the results of OBIC, we calculated that the average height
of the forest class was 3.84 m, and that of the abandoned land class was 0.27 m.
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Figure 4. The digital surface model (DSM) (a), digital terrain model (DTM) (b), and canopy height
model (CHM) (c) of the Baijixun plot.

3.2. Landscape Pattern with Small Biotopes

In this study, a landscape map was obtained using the object-based image analysis
described in the methodology section. The accuracies of the classifications are listed in
Table 1, respectively. The overall accuracy of classifying based on UAS photogrammetric
orthoimage is 95% (Table 1). This landscape pattern (land cover map) clearly shows a typical
landscape of abandoned land surrounded by pine forest communities, as well as a particular
pattern of small biotopes (Figure 5b). Based on the high-resolution orthoimage data of UAS,
and under the classification framework proposed by us, the detailed object classification
was obtained, which is an essential prerequisite for further detecting the ecotones.

Table 1. Accuracy of classification of subtle landscape elements.

Accuracy Index Forest Abandoned Land Bare Land Single Tree Tree Line Shadow

Precision (%) 97.00 87.00 96.00 99.00 97.00 96.00
Recall (%) 94.00 90.00 95.00 98.00 97.00 97.00

F1 (%) 95.00 88.00 95.00 98.00 97.00 96.00
Overall accuracy (%) 95.00

3.3. Ecotones Detection and Quantification

A window moving along the edge between abandoned land and forest was used to
judge pixels under the above two conditions (height restriction and area ratio). A landscape
with ecotones between abandoned land and forest boundaries was delineated (Figure 5c).
Subsequently, the corresponding landscape metrics calculation results are also calculated
based on the fine resolution landscape map (Table 2). In general, the ecotones between
abandoned land and forest in the Baijixun plot was irregular to the west and north of the
abandoned land (Figure 5c). The ecotones were expanding from forest interior to bare
land or abandoned agricultural land. This landscape pattern indicates the gradient of
vegetation spontaneous regeneration between abandoned farmland and forest. To the east,
the abandoned farmland boundaries left over from the past prior to degradation remained
the boundaries between the ecotones and the forests, and their shapes are quite regular
(e.g., ecotones elements in this landscape have lower SI values (Table 2)). It may also be
disturbed by a small amount of human activity, as shown in Figure 5, where tracklike
bare land was identified, and result in a higher landscape contrast of the eastern boundary.
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The texture characteristics revealed that the region contained sparse vegetation and large
amounts of bare land. From the quantitative results, the ecotone class has the maximum
boundary length. It also occupies a large proportion in landscape proportion, almost equal
to the type of abandoned land.
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Figure 5. An orthoimage of the study area (a), a landscape patter map derived from OBIC (b), and
(c) a landscape including the ecotones extracted (shadows removed).

Table 2. A series of common landscape metrics used to quantify some elements of the landscape.

Landscape Metrics Forest Bare Land Abandoned Land Ecotones Tree Line Single Tree

Total Area (m2) 1196.90 49.30 288.90 391.90 0.01 2.50
Percentage of Landscape (%) 61.74 2.54 14.90 20.22 0.47 0.13

Total Edge (m) 1100.90 2203.10 1537.70 1631.70 125.00 27.20
Shape Index 1.55 2.39 2.27 1.82 3.27 1.30

3.4. Transect-Based Analysis

Separately, our research group conducted a series of studies on ecotones in the agro-
forestry ecosystem of the Baijixun sample plot. These investigations were mainly carried
out through the laying of transect lines. Analyses of plant diversity levels within the com-
munity and soil properties were used to determine the dynamic changing characteristics
and width range of the ecotones. The results showed that the ecotones in the Baijixun
plot were 37.5–57.5 m, 30–42.5 m, and 30–57.5 m width in IV, pH, and OM, respectively
(Figure 6 and Table S1). However, when the landscape pattern diagram of the sample plot
produced in this study was used as the basis, and distances were measured along the same
direction as the transect lines laid previously, the widths of the ecotones were found to be
35.43–55.20 m.
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Figure 6. The data obtained in situ were analyzed based on transects. Every transect consists of 8 big
quadrats (10 × 10 m) and five small quadrats (5 × 5 m). IV, pH, and OM were surveyed in every
quadrat. In this figure, the first column (from left) denotes the distribution of IV along a transect,
the second denotes pH, and the third is OM. Three color plates reflect the changes of value in each
quadrat, and the higher the value of a quadrat, the deeper the color. The fourth column reflects a
land cover with ecotones along a transect. The fifth column shows the changes of different indicators
along the direction of the transect. The black lines in the first three columns act as scale to indicate
the width of the ecotones detected based on the MSW.
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IV, pH, and OM values in each quadrat were measured and presented spatial hetero-
geneity along the transect (Figure 6). In the three transects, the MSW method was used to
calculate the changes of three indicators from field survey along the transects. The changes
of field data and the changes of ecotones derived from photogrammetric orthoimage were
plotted into a coordinate (Figure 6). The method of F-1 measure was used to test the
accuracy of our method on the detection of the ecotones. The overall accuracy was greater
than 74% in the ecotones scale (width) detection (Table 3). The location of the crest was
the location where the ecotones occurred. From the results, in terms of the accuracy of the
occurrence location, the detection accuracy was 100% (Figure 6).

Table 3. Test the accuracies of ecotones width derived from UAS at corresponding transect in different
data. For the meaning of TP, FN, and FP, refer to the accuracy assessment section above.
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4. Discussion
4.1. Mapping Landscape with Small Biotopes

The heterogeneous character of the landscape (mosaic) and the influence of the spatial
arrangement of the composing patches of many ecological processes have been recog-
nized [7,9,58]. As shown in Figure 5, this reflects that the ecotones shapes formed a more
complicated landscape. However, ecotones are essential components of heterogeneity,
which are usually ignored in traditional landscapes. The agricultural ecosystem of the
Baijixun sample plot has been abandoned for more than ten years and has been transformed
into grassland, with the surrounding forests showing the trend of expansion. Ecotones
are growing around the boundary between the abandoned land and forests. It has created
the considerable potential for species exchange and materials flux between the forests and
abandoned land [56,59,60]. It also indicates that the interaction between the forests and
grassland ecosystems is more robust in the ecotones. This would better reflect the process
and progress of ecological restoration after the implementation of RFFP. As mentioned
above, the RFFP policy has played a significant role in land cover transitions [16,61,62], as
well as the ecological processes that are responsible for the spatial distribution of species [18].
However, the conventional landscape pattern without ecotones derived from remote sens-
ing image data generally ignores the gradual transition zones between different landscape
units or patches [63,64]. This is also why we conduct a two-step data validation, because
the shrunken-based detection method relies on highly accurate land cover mapping, and
our validation clearly meets this need (Table 1). The experience based on field investigation
provides reliable verification object for verification work. Note that this result is also im-
aged by OBIC. It also means that the forest and vegetation transition processes caused by
the RFFP policy could also be ignored when the landscape or land cover without ecotones
maps are used. In this study, the findings revealed the landscape pattern of all ecotones
within the sample plot, which facilitated the concurrent measurement of the spatial patterns
of ecotones. With continuous investigation and monitoring, it is believed that it will be
possible to gain an improved understanding of the entire ecological process of agricultural
abandoned land restoration.
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4.2. Canopy Height Model

At the aspect of CHM modeling, the point cloud data derived from photogrammetry
is used to extract ground points supported by the result of OBIC from the high-resolution
orthoimage. The terrain elevation of the unknown region is predicted by using geostatistics
(Figure 4). It should be emphasized that this is still a model for prediction based on
geostatistics, although this approach has achieved some results in our study. The success of
the experiment depends on the topographic heterogeneity of the predicted area and the
spatial configuration of the ground points that may be extracted. Moreover, according to
the cross-validation results, we found that regardless of the statistical model, the prediction
of variability is generally underestimated (Table S2). It reflects the possibility that the
fluctuation of topographic heterogeneity on the fine scale is beyond the prediction ability of
geostatistical models. Therefore, it may be more effective to restore the changes of terrain
elevation at a large scale, as this increases the probability of obtaining effective ground
points. It reflects the feasibility of the technology to monitor the landscape with ecotones
under the influence of the policy of RFFP.

4.3. Extraction of Ecotones

Data sizes and resolutions can be applied effectively when studying small-scale land-
scape patterns. It is also noted that transitions between abandoned farmland and forest
ecosystems have created height variations among plant communities, and a CHM built by
DSM and DTM data could highlight such differences. Hence, this model is used for the
extraction of the forest-agriculture ecotones. Hou and Waltz [48,61] have similarly used
height variations between different plant communities to segregate and extract small-scale
landscape units such as forest–grassland ecotones and tree lines from a 3D perspective.
They used airborne LiDAR elevation data and high-resolution satellite image data to clas-
sify 3D landscape maps before conducting a comparative analysis between the results and
those obtained using the traditional 2D classification method. The results confirmed that
3D height information could reflect gradient changes occurring at forest boundaries and
thus be used to extract small-scale landscape units such as ecotones. However, LiDAR
scanners are still not considered as standard tools because of the high cost of airborne
LiDAR instruments and peripherals (reference targets, tripods, software suites, graphic
workstations), as well as data collection [65].

Moreover, some previous study has shown that the point clouds derived from LiDAR
and RGB sensors successfully capture the 3D structure [66]. Photogrammetric processing
relies on identifiable features to be matched across sequences of images. It should be
emphasized that the structural information obtained based on the photogrammetric point
cloud is naturally compatible with the orthophoto image, so in this study, the ecotones
extraction method is different from that of Hou. As described in the method part, we did not
do growing as Hou did. We directly shrink due to the perfect match between the structure
information from the photogrammetric point cloud and image data. Image data acquired
through UAS photography have higher resolution, which means that the proposed method
may be superior to the traditional satellite remote sensing method for regional- and small-
scale studies on ecotones. Although the resolution of some satellite images (e.g., Sentinel-2
data [67]) has improved in recent years, and the heights of ground objects can be accurately
obtained from airborne or satellite LiDAR (e.g., ICESat-2 data [68]) data, both methods
incur substantial data acquisition costs, and the data cycle cannot be prescribed. By contrast,
UAS has the advantages of flexibility and controllability. Image data obtained through
this method have various characteristics, including being regionalized, customized, and
personalized. In addition to satisfying various research requirements, the cost of using this
method is also generally acceptable to most research organizations and teams.

4.4. Quantification of Ecotones

Traditionally, studies on ecotones have often relied on transect lines laid along en-
vironmental gradients to collect data on plant communities and soil properties and then
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determined the range of ecotones using moving split-window techniques. Being con-
strained by human or terrain factors, this method only allows research to be conducted in
one direction along the transect lines. By contrast, the remote sensing method based on
UAS photographic technology allows comprehensive regional data acquisition. It permits
analysis and research from the perspective of landscape patterns, thereby eliminating
the necessity for multiple sessions of field investigations and thus making this method
obviously advantageous in terms of reduced working hours and intensities. This fully
demonstrates the advantages of continuous spatial pattern characterization in landscape
ecology research, such as quantified area or edge length (Table 2). The results of this study
on the quantification of the landscape containing the ecotones that the ecotones occupy a
considerable weight in the whole landscape can be seen from the results of this study. Both
TA and PLAND reflect the important spatial landscape status of the ecotones, which is
often neglected in previous landscape ecology studies. The neglect of the ecotones may lead
to underestimating landscape heterogeneity and the overestimation of landscape contrast.
It can be seen from the PLAND index that the dominant patches in the landscape are forest,
abandoned land, and ecotones. It also reflects the high landscape heterogeneity. In the TE
index, the values of ecotones and abandoned land are close to each other.

4.5. Transect-Based Analysis

Ecotones were mainly determined based on the variations in vegetation height when
transitioning between different communities in this study. By contrast, transect surveys use
plant diversity levels within the community or soil indicators as the bases. The proliferation
and migration of plant species can be determined by surveying sample communities
(Figure 6). The herbaceous plants growing within forests can also proliferate over wide
extents. However, in this study, we could only determine the height changes at the canopy
of the communities but could not assess the specific changes of plants growing in the
understory. It might explain the differences in measurement results for the Baijixun sample
plot between this study and earlier transect surveys conducted at the traditional community
scale. The difference may also be caused by the inaccurate expression of the width in the
traditional one-dimensional transect analysis method. Thus, in this study, interpolation
lines are used to measure the binarization map with ecotones, and more accurate width
measurement results are obtained. It is also worth noting that due to restrictions imposed
by the terrains of the sample plots, previous transect surveys could only lay transect
lines along one direction: from the base of the mountains up toward the upper edge of
the abandoned agricultural land [42,56,60]. Consequently, the data obtained using these
transects could only determine the range and dynamic changes of ecotones between the
abandoned agricultural land and forests in that particular direction. The survey results
revealed that after the abandonment of farmlands and over time, the ecotones gradually
became wider in that direction and could eventually be restored as pine forests [42,60].
Additionally, it should be noted that the detection based on MSW technology requires
additional consideration of the size of the window, which also brings uncertainty to the
ecotones’ detection. For example, it can be seen from the results that the initial value of OM
in transect 1 and IV in transect 3 is slightly greater than 0, which means that the ecotones
that may occur earlier along the transect direction is not detected, which also partially
affects the verification of width. However, the precision of the location is irrelevant, as
all peaks fall within the range of UAS results. This also reflects the shortcomings of the
traditional one-dimensional MSW method.

5. Conclusions

In general, we present a scientifically solid and practical method for extracting 3D
ecotones utilizing UAS photographic technology, which can be utilized to enhance the quan-
tification of landscape pattern. The results confirm the advantages of spatial geostatistical
techniques in processing photogrammetric derived data, which benefit from high-precision
reconstruction of vegetation structure information. In addition, due to the natural match-
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ing of structural information and spectral information derived from UAS, the ability of
detecting ecotones based on edge 2D moving window technology is further strengthened,
which is enough to produce high-resolution land cover mapping with ecotones. In the end,
compared to the standard one-dimensional approach of ecotones measurement utilizing
transect surveys and the moving split-window methodology, the method described here
provides a thorough understanding of the landscape pattern and spatial characteristics
of ecotones. This approach has the potential to quantify regional vegetation and forest
transition processes. It should be utilized to evaluate and optimize the management zones
of existing nature reserves, as well as to establish additional protected areas and corridors
for species migration, genetic exchange, and population size. This should coincide with
the exhaustive and regular gathering of species diversity census data. Last, the ecotones’
extraction method, landscape pattern quantification, and change detection should be linked
to the function of ecotones in a landscape and included into biodiversity and ecosystems
protection, as well as sustainable planning and management of regional areas. Through
constant inquiry and monitoring, it will be possible to get a full understanding of the entire
biological process of the restoration of abandoned agricultural land using this ecotones
extraction approach.
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Abbreviations

Abbreviation Explanation
CHM Canopy Height Model
DSM Digital Surface Model
DTM Digital Terrain Model
EBK Empirical Bayesian kriging
ESP A tool to estimate scale parameter for multiresolution image segmentation of

remotely sensed data.
GCP Ground Control Point
IV Importance Value
MRIS Multiresolution image segmentation
MSW Moving split-window technique
OBIC Object-based image classification
OM Soil organic matter
RF Random Forest
RFFP Returning Farmland to Forest Program
RGB or R, G, B Red, Green, Blue band
RTK Real-time kinematic
SLCP Sloping Land Conversion Program
UAS Unmanned Aircraft System
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