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Abstract: The article presents a list of algal species and cyanobacteria found in the continental
waters of Israel in 1898–2022. Research progressed in 2000–2022 by increasing the list from 1261 to
1628 species belonging to fourteen phyla. Taxonomic analysis shows that diatoms, cyanobacteria,
and green algae predominated. The first-time data has been synthesized to identify the indicator
properties of Israel’s aquatic flora carried out on algae and cyanobacteria, which can be used to
monitor water quality. The species’ ecological preferences are given for ten environmental variables:
substrate preference, temperature, oxygen saturation with water mobility, water pH preferences,
water salinity, organic pollution according to Watanabe and Sládeček with species-specific index of
saprobity S, trophic state, and type of nutrition (autotrophic or heterotrophic). This list of species with
indicator values for each species is used to characterize the water properties in Israel. In addition,
it can be applied to assess the state of aquatic ecosystems and monitor water quality based on
bioindication methods.

Keywords: algae; diatom; green; cyanobacteria; flora; ecology; bioindicators; Israel

1. Introduction

Studying the diversity of algae is not an easy task. The list of species of the so-called
alpha diversity can be compiled as a result of many years of research in a particular region
and habitat characterization. At the same time, identified species of algae can be indica-
tors of water quality if we know the ecological preferences of each species [1,2]. Thus,
the identification of the diversity of organisms in aquatic habitats is not only the task of
floristic research but also the basis for subsequent ecological conclusions, because algae and
cyanobacteria react quickly to changes in the environment in the aquatic ecosystem, and
also, due to their high diversity, they are used worldwide as bioindicators for assessing wa-
ter quality [1–3]. In some cases, floristic works compile only a list of species [4,5], but most
often the authors provide limited information about the ecological preferences of specific
species [6–8], which can be used as indicators of some parameters of the environment or
give descriptive results for some parameters of the studied flora [1,8]. The most developed
ideas are about the indicator properties of diatoms [9,10]. However, diatoms represent only
about half of the species composition in aquatic communities. There are still very few such
publications, which simultaneously include a list of both diatom and non-diatom species,
as well as all possible indicator properties of algae and cyanobacteria [6,7].

One of the main tasks of the monitoring system is not only to assess water quality but
also to identify sources of pollution. Most water comes from natural sources, including
rivers, lakes, and reservoirs. Consequently, the quality of water in them should be assessed
and predicted, taking into account changes in anthropogenic pressure and climate. Water
quality is formed in natural conditions and depends on the river basin and the reservoir
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ecosystem. Considering that water quality assessment requires high costs, the development
of rapid methods is an urgent task.

Determination of water quality using bioindicators is based on the conformity of the
ecology of species in the community to the environment in which they exist. The rela-
tionships between different levels of organisms are based on the hierarchical organization
of the biotic community and are described by the trophic pyramid model [11,12]. The
distribution of organisms or species groups over the intervals of environmental factors is of
paramount importance in bioindication. Assessing contamination of freshwater sources is
challenging, and appropriate methods must be selected carefully. Methods and indicators
that can be used to evaluate the impact of pollution on natural water bodies can be both
chemical and biological [13,14]. The latter, in turn, are divided into bioindication and
biotesting [15]. Suppose the biotest method evaluates the influence of the environment on
the test organism in which it is placed. Consequently, the indicator method is based on the
ecological character of the relationship between water and biota in an ecosystem [16].

The adaptation level of species determines the species composition in a given aquatic
environment [17]. Therefore, with the help of the species composition that exists in a given
environment, the environmental variables intervals can be defined by the bioindication
method. However, determining the role of specific environmental variables and predicting
the community’s response to changes in the environment is, in any case, a complex problem.
Therefore, it is necessary to collect information on the chemical parameters of water, the
species composition, and the abundance of organisms inhabiting it. These two sets of data
should then be classified and used in assessing water quality.

Two different aspects of using the information on algae species and their ecology in
this article may be helpful to researchers and in monitoring practice. The first aim was data
that were collected on the diversity of algae and cyanobacteria inhabiting the reservoirs of
Israel, which represents a list of aquatic flora in the current state. Secondly, the established
ecological properties of the identified species can be used as bioindicators of water quality
in the monitoring system.

This work aimed to compile a list of species from available publications and our
recent articles and books on algae and cyanobacteria found in the continental waters
of Israel. Based on this list of species and their ecological preferences, we aim to pro-
vide not only modern floristic checklist, but also a list of water quality indicators for ten
ecological variables.

Highlights

• The algae and cyanobacteria flora of continental in Israel are represented.
• First study representing bioindicator data for algae and cyanobacteria in Israel.
• All revealed species of algae and cyanobacteria are indicators of freshwater quality.
• Species list with ecological preferences can be used for monitoring water quality.

2. Material and Methods

The first step was to compile the species list from previous publications in 1898–2000
and recent research results in Israel from 2001–2022. The second step was unifying all taxa
names under the modern system, especially for the lists of species published in previous
periods, to exclude synonyms and double species names. Finally, the third step was creating
a system of algae indicators of the continental waters of Israel by combining the list of
identified species with the known ecological properties of the species.

Data on the species of algae and cyanobacteria found in the continental waters of
Israel were collected from articles published from 1898 to 2000 and summarized with some
additions in the book [18].

The recent publications come from algae floristic research [19–77].
The lists of species were also excavated from hydrobiological studies of continental

waters [37,41,56,61,62,73,74,78–92].
We summarized information about algal and cyanobacterial species’ ecological prefer-

ences from more than one hundred published articles and monographs and presented it in
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a series of published books [7,20,34] according to major indicator systems for assessment of
water pH [93], salinity [94], organic pollution [10,95], nutrition type, and trophic state [9]
recommended by EU for biological monitoring [96,97].

The old names of taxa in the lists of Israeli algae species, which were published in dif-
ferent years according to the taxonomy of the publication period, were unified according to
the modern system using algaebase.org [97] to compile a complete list of species, excluding
synonyms. Then, according to the combined data, the species richness of each taxonomic
phylum was analyzed. The ecological properties of identified algae and cyanobacteria in
Israel were added to the list of species. The ranges of ecological preferences of each species
were divided into categories of bioindicators for the following water variables: pH, salinity,
temperature, mobility, and oxygenation of water masses, trophic state, preference for the
type of feeding (autotrophic or heterotrophic), and saprobity in two different systems. The
distribution of indicator taxa number in each ecological group was ordered to increase
the indicated variable value. The standard deviation (STDEV) was calculated for each
distribution to identify the richest taxonomic and ecological groups since the STDEV line
cuts off more than 50% of the species of the distribution. This can identify successful
ecological groups and indicator species in Israel’s climatic and anthropogenic conditions.
Checking the identified species composition of Israel algae for completeness of the study
was carried out by plotting the Willis curve [98], where the distribution of the number of
species by the number of genera can be conformed to a logarithmic trend line in the case of
completeness of the species list.

3. Results and Discussion

As a result, the list of Israel’s algae and cyanobacteria was enriched by about four
hundred species during the last twenty years. Therefore, floristic species content raised
from 1261 species (in 2000, before modern taxonomy update) [11] to 1628 species (in 2022
with modern taxonomy) (Table 1; Table S1). Table 1 does not include eight species with
the unclear taxonomic position in the present time, and some mentioned in the references
generic names without species definition. As can be seen, diatom species prevail with
cyanobacteria and green algae, which cut off by standard deviation line (Figure 1a).

The species list completeness analysis was carried out for this large number of species
identified in such small area as Israel, where there are a small number of lakes and small
streams due to the peculiarities of the climate. To achieve this, we calculated the distribution
of the number of species by the number of genera [98] according to Willis’s law (Figure 1b).
Since the trend line practically coincides with the distribution line, this suggests that the
revealed diversity of algae and cyanobacteria in the aquatic environment of Israel is close
to saturation.

Table 1. Taxonomic content of algae and cyanobacteria flora in continental aquatic habitats of Israel.

Phylum No of Species

Bacillariophyta 535
Cyanobacteria 432
Chlorophyta 342
Euglenozoa 115
Charophyta 112

Miozoa-Dinophyceae 27
Ochrophyta-Xanthophyceae 18
Ochrophyta-Chrysophyceae 15

Cryptophyta 10
Ochrophyta-Eustigmatophyceae 9

Rhodophyta 7
Haptophyta 2
Choanozoa 1

Eukaryota unassigned phylum 3

Total: 1628
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Figure 1. Distribution of species richness of algae and cyanobacteria of Israel over taxonomic phyla
with STDEV as standard deviation line (a), and in the Willis curve as number of genera over species
number (b).

Species distribution in Figure 1 and Supplementary Table S1 show that in continental
flora of algae and cyanobacteria of Israel, three phyla significantly prevail: Bacillariophyta,
with 535 species, Cyanobacteria, with 431, and Chlorophyta, with 341 species, of a total
1628 species and 14 phyla (Table 1).

The most species-rich genera of algae and cyanobacteria (Table 2) contain 338 species
(about 20% of the total species list) and characterize a flora face. Most of the richest genera
belonged to diatoms (162), but next are euglenoids with 75 species (Table 2), contrary to total
species richness distribution (Table 1; Table S1). The species-rich genera in Cyanobacteria,
Chlorophyta, and Charophyta are significantly less represented in the flora of Israel.

Table 2. Most species rich genera of algae and cyanobacteria flora in aquatic habitats of Israel.

Phylum Genus Species

Bacillariophyta Nitzschia 68
Bacillariophyta Navicula 49
Bacillariophyta Gomphonema 27
Bacillariophyta Tryblionella 18

Total 162

Euglenozoa Euglena 29
Euglenozoa Phacus 24
Euglenozoa Lepocinclis 22

Total 75

Cyanobacteria Phormidium 26
Oscillatoria 19

Total 45

Chlorophyta Desmodesmus 32
Total 32

Charophyta Closterium 24
Total 24

Total 338

The ecological preferences of algae and cyanobacteria species inhabiting the water
bodies of Israel are presented in Table 3 and S1. Each group of indicators was considered
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separately to assess the significance of water quality bioindication in Israel. Species that
predictably and similarly respond to environmental variables are used as bioindicators
of these variables to reflect the response of aquatic ecosystems to eutrophication, pH
(acidification), salinity, and organic pollution [14,88]. In this study, the collected indicator
data were used for the ecological analysis [89,99] of water bodies in Israel as a whole
(Table S1). Now we can assess the total number of indicator species distribution over
ecological groups to reveal water quality in the waterbodies of Israel as a whole due to
a response to climatic and anthropogenic stress influence. Figures 2–4 show that STDEV
line cut off indicator groups of benthic, planktonic–benthic, and planktonic inhabitants
(Figure 2a) preferred mainly temperate temperature waters but survive in a wide range of
temperatures (Figure 2b), saturated by oxygen (Figure 2c), low alkaline (Figure 2d), and
the broad spectrum of water pH (Figure 3a) with medium salinity (Figure 3b). Waters of
Class 2 and 3 prevailed in Israel (Figure 4a,b), where algae and cyanobacteria species prefer
an autotrophic type of nutrition (Figure 4c). As a whole, waters in Israel are inhabited by
species that are indicators of two types of trophic state: (1) oligo- to oligo-mesotraphentic,
and (2) meso-eutraphentic to eutraphentic (Figure 4d).

Table 3. The number of indicator species of algae and cyanobacteria in water habitats of Israel
by ecological groups for the indicated environmental variables (bold). The ecological groups in
each indicated parameter of the environment are arranged in order of increasing value of the
indicated variable.

Variable No of Species Variable No of Species

Habitat Saprobity indices
P 348 Class 1 49

P-B 476 Class 2 351
B 603 Class 3 470

Ep 59 Class 4 99
S 74 Class 5 11

Temperature Saprobity groups
cool 23 x–0.0 25
temp 64 x-o–0.4 27
eterm 48 o-x–0.6 29
warm 56 x-b–0.8 35

Oxygenation o–1.0 179
H2S 9 o-b–1.4 105

st 314 x-a–1.55 2
st-str 521 b-o–1.6 74

str 79 o-a–1.8 87
aer 51 b–2.0 254
ae 12 b-a–2.4 55

pH a-o–2.6 60
acf 45 b-p–2.8 3
neu 6 a–3.0 37
ind 221 a-b–3.6 7
alf 282 p-a–4.0 1
alb 15 i > 4.0 1

Salinity Trophy
hb 34 ot 98
i 495 o-m 112

hl 106 m 58
mh 86 me 130
ph 23 e 109

hlbnt 2 o-e 25
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Table 3. Cont.

Variable No of Species Variable No of Species

Type of Nutrition he 8
ats 75 Watanabe
ate 102 sx 73
hne 16 es 149
hce 8 sp 30

Note. Substrate preferences (P—planktonic, P-B—plankto-benthic, B—benthic, Ep—epiphyte, S—soil); tempera-
ture preferences (cool—cool water, temp—temperate, eterm—eurythermic, warm—warm water); oxygenation and
streaming (H2S—sulfides resistant; st—standing water, str—streaming water, st-str—low streaming water, aer—
aerophiles; ae—aerophites); pH preferences groups (pH) according to Hustedt (1957) [79,93]: (alb—alkalibiontes;
alf—alkaliphiles, ind—indifferent; acf—acidophiles; neu—neutrophiles as a part of pH-indifferent taxa); salinity
ecological groups according to Hustedt (1938–1939) [80,94]: (hb—oligohalobes-halophobes, i—oligohalobes-
indifferent, mh—mesohalobes, hl—halophiles; ph—polyhalobes; hlbnt—halobionts); self-purification zone
with index of saprobity (x/0.0—xenosaprobe; x-o/0.4—xeno-oligosaprobe; o-x/0.6—oligo-xenosaprobe;
o/1.0—oligosaprobe; o-b/1.4—oligo-betamesosaprobe; x-a/0.55—xeno- to alphamesosaprobe; b-o/1.6—beta-
oligosaprobe; o-a/1.8—oligo-alphamesosaprobe; b/2.0—betamesosaprobe; b-a/2.4—beta-alphamesosaprobe;
a-o/2.6—alpha-oligosaprobe; b-p/2.8—betapolysaprobe; a/3.0—alphamesosaprobe; a-p/3.4—alphapolysaprobe;
a-b/3.6—alpha-betamesosaprobe; p-a/4.0—poly-alphamesosaprobe; i/>4.0—i-eusaprobe); organic pollution
indicators according to Watanabe et al. (1986) [95]: sx—saproxenes; es—eurysaprobes; sp—saprophiles; nitro-
gen uptake metabolism (Aut-Het) [9]: ats—nitrogen-autotrophic taxa, tolerating very small concentrations of
organically bound nitrogen; ate—nitrogen-autotrophic taxa, tolerating elevated concentrations of organically
bound nitrogen; hne—facultative nitrogen-heterotrophic taxa, needing periodically elevated concentrations of
organically bound nitrogen; hce—obligate nitrogen-heterotrophic taxa, needing continuously elevated concentra-
tions of organically bound nitrogen; trophic state indicators [9]: (ot—oligotraphentic; o-m—oligomesotraphentic;
m—mesotraphentic; me—mesoeutraphentic; e—eutraphentic; he—hypereutraphentic; o-e—oligo- to eutraphentic
(hypereutraphentic)).
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Figure 2. Distribution of species-indicator in groups of preferences of habitat: (P—planktonic,
P-B—plankto-benthic, B—benthic, Ep—epiphyte, S—soil) (a). Temperature: (cool—cool water,
temp—temperate, eterm—eurythermic, warm—warm water) (b). Oxygen: (H2S—sulfides
resistant; st—standing water, str—streaming water, st-str—low streaming water, aer—aerophiles;
ae—aerophites) (c). Water pH: (alb—alkalibiontes; alf—alkaliphiles, ind—indifferent; acf—
acidophiles; neu—neutrophiles as a part of pH-indifferent taxa) (d). STDEV: standard deviation line.
Abbreviation also as in Table 3.
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the EU FWD color ranges (a). Organic pollution according to Watanabe (sx—saproxenes; es—
eurysaprobes; sp—saprophiles) (b). Nutrition type as nitrogen uptake metabolism (ats—nitrogen-
autotrophic taxa, tolerating very small concentrations of organically bound nitrogen; ate—nitrogen-
autotrophic taxa, tolerating elevated concentrations of organically bound nitrogen; hne—facultative
nitrogen-heterotrophic taxa, needing periodically elevated concentrations of organically bound ni-
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to eutraphentic (hypereutraphentic)) (d). STDEV: standard deviation line. Abbreviation also as in
Table 3.
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The experience of assessing the impact of pollution on fresh and brackish water bodies
in Israel was represented in a recent study [20]. Furthermore, indicator algae have been used
to assess water quality in many continental water bodies in Israel due to regional climate
change [56]. Therefore, revealed algae and cyanobacteria flora with species bioindicator
properties can be used in the Israeli water quality monitoring as implemented in the
EU [11,12], but now in Israel, the chemical variables are monitored only. In any case, the
experience of using bioindicators to assess water quality in continental water bodies of
Israel is rather large [20]. It can help assess the ecosystems state and reveal pollution
sources in each aquatic object [56] and future water quality monitoring.

In closely related regions such as Turkey [4], with 2030 taxa, and Iraq, with 2647 species [5],
and Georgia [6], the algal floras are, as a whole, enriched by non-diatom algae. The
well-studied flora of Ukraine contains 6583 algae and cyanobacteria taxa with prevailing
diatoms, and half of the list were indicators of the environmental variables [7], which can
be used in the study of evolutionary dynamics and as indicators of climate change [56,100].
Algae and cyanobacteria floras of close related regions to Israel, such as Lebanon, Egypt,
and Jordan, do not yet have the checklists and they stay in the initial stage of biodiversity
research. We collect the biodiversity lists from Western Eurasia, and comparative floristic
analysis will be the next research stage.

4. Conclusions

The list of algae and cyanobacteria in the continental waters of Israel not only sum-
marized its diversity with advances in XXI century research, but also first represented
each species’ ecological preferences. We conclude that species diversity during the past
20 years has raised from 1261 to 1628 species, which belong to 14 taxonomic phyla. All
identified species can be used as bioindicators of water quality. The ecological properties
of indicators are associated with ten environmental variables. In addition, the change in
the ecological state affected many of the water bodies mentioned in the published articles,
and some of the water bodies were either rebuilt or destroyed. The impact of pollution
on freshwater and brackish water ecosystems of Israel can be assessed with the help of
modern bioindication methods in the water quality monitoring system that now represents
the chemical data only.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050328/s1, Table S1. List of algae and cyanobacteria in
continental waterbodies of Israel (1898–2022) with species ecological preferences.
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