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Abstract: Sect. Drymosphace is one of eight sections of Salvia subg. Glutinaria and includes 13 species
and one dubious species that hold great economic value. Although the section is well supported,
interspecific relationships remain unresolved. Moreover, most of this section’s plastome information
remains unknown. In this study, we sequenced and assembled eight sect. Drymosphace plastomes
and conducted comparative analyses within this section. The length of plastid genome sequences
ranged from 151,330 bp to 151,614 bp, with 80 protein-coding, 30 tRNA, and four rRNA genes being
annotated. The plastomes were found to be as conservative as other Lamiaceae species, showing high
consistency and similarity in terms of gene content, order, and structure. Within the sect. Drymosphace,
single-copy regions were more variable than IR regions, and the intergenic regions were more variable
than the coding regions; nine hypervariable regions were detected, and some of them may be useful
for the phylogenetic analysis of Salvia. The topologies inferred from all of the data sets indicated
that sect. Drymosphace was monophyletic and that S. honania was sister to S. meiliensis. Compared to
previous studies involving more sect. Drymosphace species, phylogenomic analyses can improve the
phylogenetic resolution considerably.

Keywords: Salvia miltiorrhiza; subg. Glutinaria; plastid genome; phylogenomics

1. Introduction

The non-monophyletic nature of traditionally defined Salvia led to the establishment
of a broad definition of Salvia that reduces the five small embedded genera (Rosmarinus,
Perovskia, Dorystaechas, Meriandra and Zhumeria) to subgenera, resulting in a total of 11 sub-
genera being recognized within Salvia [1–3]. Salvia is the largest genus in Lamiaceae and
includes approximately 1000 species. The genus has a subcosmopolitan distribution but is
mainly concentrated in South America, Southwest Asia and the Mediterranean region, and
East Asia [3]. As one of biodiversity centers of Salvia, approximately 100 species have been
recorded in East Asia, 85 of which are native to China [4–11]. Based on recent studies, with
the exception of Salvia grandifolia and S. deserta belonging to subg. Sclarea, the rest of East
Asian Salvia have been placed into the newly established subg. Glutinaria [2,12].

Sect. Drymosphace was first established by George Bentham in 1832–1836 [13] and
was later placed in subg. Salvia in 1876 [14]. Based on stamen morphology, Stibal [15]
transferred sect. Drymosphace to subg. Sclarea. Following Stibal, Wu [16] also classified
sect. Drymosphace into subg. Sclarea and established three series (ser. Miltiorrhizae, ser.
Plectranthoidites, and ser. Honaniae) within this section. According to Wu’s circumscription,
a total of 19 species and three varieties can be recognized in sect. Drymosphace [4,5,9,16],
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and all of these taxa are endemic to China, with the exception of S. nubicola and S. plec-
tranthoides, which extend to some Himalayan countries. Recent phylogenetic studies
have demonstrated that sect. Drymosphace and the three series sensu Wu [16] are not
monophyletic [2,3]. Integrating morphological with molecular phylogenetic evidence, the
redefined sect. Drymosphace was transferred from subg. Sclarea to the newly established
subg. Glutinaria due to its synapomorphy of robust taproots, pinnate leaves, relatively
long corollas (length > 2 cm), and fused deformed posterior thecae [2]. According to the
synapomorphy, five species were removed from the previous sect. Drymosphace sensu Wu
of subg. Glutinaria [16]: S. cavaleriei and S. prionitis were transferred to the newly established
sect. Sobiso, S. petrophila was transferred to sect. Sonchifoliae, S. nubicola was transferred to
sect. Glutinaria, S. trijuga was transferred to sect. Substoloniferae, and S. breviconnectivata
was regarded as a dubious species [2].

Sect. Drymosphace are importance of medical value, with Salvia miltiorrhiza being most
widely used. “Danshen”, a famous traditional Chinese medicine originating from the
dried roots of S. miltiorrhiza, has been extensively applied to treat coronary heart diseases
and cerebrovascular diseases [17]. Due to mass market demand, the wild resource of
S. miltiorrhiza has reduced sharply. However, although sect. Drymosphace is well supported
by molecular and morphological evidence, interspecific relationships remain unresolved.
Moreover, S. miltiorrhiza and its closely related species are morphologically similar, which
makes it difficult to identify authentic products, and an increasing number of substitutes
and adulterants have been found on the market.

Currently, phylogenetic studies based on short DNA fragments have only been able to
determine the phylogenetic backbone of Salvia [2,18–22], and relationships among species
require further focus. The shallow rate of DNA evolution is one of the main obstacles to
determining the relationships between low-level taxa. Due to there being a limited amount
of information, the resolutions of phylogenetic trees that has been inferred from chloroplast
gene fragments are often low [2,23]. With the birth of next-generation sequencing (NGS)
technology, genomics has entered an era of low-cost, large-scale, and high-throughput
sequencing, and an increasing number of genomic data are being used for phylogenetic
analysis. As one of the three major genomes of green plants, the genomic structure and gene
content of chloroplasts is relatively conservative and easy to sequence. At present, plastid
genome data are being used to solve phylogenetic relationships at different taxonomic
levels and have been demonstrated to be effective [24–26]. Although attempts to utilize
NGS to analyze plastome characterization and even though the phylogeny of Salvia have
been determined, few taxa of sect. Drymosphace were involved in these studies [27,28].

In this study, we sequenced eight plastomes of sect. Drymosphace and conducted
comparative genomics analyses together with two other data sets that have been published
on this section (Salvia meiliensis and S. miltiorrhiza). The aims of this study were (1) to
characterize the plastome structure within sect. Drymosphace; (2) to screen hyper-variable
regions of sect. Drymosphace; and (3) to infer the phylogeny of sect. Drymosphace.

2. Materials and Methods
2.1. Plant Materials, DNA Extraction and Genome Sequencing

In this study, 14 taxa (13 species and one variety) were sampled from Salvia subg.
Glutinaria, including 10 taxa from sect. Drymosphace (Table 1). Eight sect. Drymosphace
plastomes were newly sequenced, and the other sequences were downloaded from the
GenBank database. Additionally, three species from other subgenera were selected as
outgroups (Table 1).

The total genomic DNA was extracted from fresh or silica gel-dried leaves using the
modified CTAB method [29]. In order to obtain qualified DNA for library construction,
a Qubit Fluorometer was used to determine and calculate the DNA concentration and
yield when they were at least c > 12.5 ng/µL and m > 1 µg, and the sample integrity was
assessed by means of electrophoresis on a 1% agarose gel. Illumina Hiseq-2500 platform at
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BGI-Wuhan was utilized for sequencing by paired-end (PE) library of 150 bp, and 3 to 5 GB
of raw short sequence data were generated for each species.

Table 1. Voucher information and GenBank and SRA accession numbers for taxa used in this study.

Taxa Subgenus Voucher Locality GenBank
Accession SRA Accession

S. bowleyana Glutinaria GX Hu and F Zhao 131 China, Fujian MW435404 * SRR18650098 *

S. bulleyana Glutinaria NA NA MH603954 NA

S. chanryoenica Glutinaria s.n. (KH) South Korea MH261357 NA

S. dabieshanensis Glutinaria GX Hu and F Zhao 0165 China, Anhui MW435405 * SRR18587923 *

S. honania Glutinaria GX Hu and F Zhao 0168 China, Henan MW435406 * SRR18600490 *

S. meiliensis Glutinaria GX Hu and FZ Shangguan
Hu0089 China, Anhui MN520018 NA

S. miltiorrhiza Glutinaria Cultivated China, Beijing HF586694 NA

S. nanchuanensis Glutinaria JX Yang and XZ He YJX-01 China, Hunan MW435407 * SRR18595850 *

S. nanchuanensis
var. pteridifolia Glutinaria GX Hu and B Pan 615 China, Guangxi MW435408 * SRR18595337 *

S. plectranthoides Glutinaria GX Hu et al. 0006 China, Yunnan MW435409 * SRR18650097 *

S. prattii Glutinaria NA China, Yunnan MK944407 NA

S. przewalskii Glutinaria NA NA MH603953 NA

S. subbipinnata Glutinaria JX Yang and XZ He YJX-04 China, Zhejiang MW435410 * SRR18650096 *

S. yunnanensis Glutinaria GX Hu 603 China, Guizhou MW435411 * SRR18595336 *

S. hispanica Calosphace Cultivated, SD118 China, Shandong MT083896 NA

S. rosmarinus Rosmarinus Cultivated China, Shaanxi KR232566 NA

S. officinalis Salvia So_003 NA MG772529 NA

NA = information is unavailable. * = newly sequenced plastomes in this study. SRA = Sequence Read Archive.

2.2. Plastome Assembly and Annotation

After filtering the raw data and discarding the low-quality reads, the remaining PE
reads were assembled into whole plastomes using GetOrganelle v1.6.2a [30]. The as-
sembly graph of the generated complete plastome was verified by Bandage v.0.8.1 [31].
Plastome sequences were annotated using software PGA [32], using the Salvia miltior-
rhiza plastome [33] as reference. The tRNA genes were further verified using the online
tRNAscan-SE [34] search servers and then manually adjusted in Geneious 10.0.5 [35]. Or-
ganellarGenomeDRAW, an online program, was used to generate circular annotated plastid
genome maps [36], and the plastomes were deposited in the GenBank database (Table 1).

2.3. Codon Usage and Repeated Sequence Analysis

Relative Synonymous Codon Usage (RSCU) is a parameter that is used to evaluate
the codon usage preferences of protein-coding sequences. Here, the RSCU values for all of
the protein-coding sequences were computed using the program codon W 1.4.4 [37]. The
codon usage in the form of heatmap was conducted by employing R language with the
RSCU value. An RSCU value > 1 indicates that codon usage is highly preferred, an RSCU
value = 1 means that codon usage is not preferred, and an RSCU value < 1 indicates that
the codon usage is low [38].

The simple sequence repeat (SSR) of sect. Drymosphace plastomes were identified using
MISA [39] by setting the minimum number of repeat units to 8, 4, 4, 3, 3, and 3 for the
mono-, di-, tri-, tetra-, penta-, and hexanucleotides, respectively. Four types of dispersed
repeats (forward, reverse, palindrome, and complement repeats) in sect. Drymosphace were
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determined using REPuter [40] with a repeat size ≥ 30 bp and sequence identities ≥ 90
(Hamming distance of 3).

2.4. Comparative Genomic Analyses

The boundaries of single-copy (SC) and reverse repeat (IR) regions of sect. Drymosphace
were determined in Geneious 10.0.5, and the boundary expansion and contraction sketch
of IR was drawn using Adobe Illustrator CC. mVISTA [41] was used to determine the
variability in the complete plastome sequences of sect. Drymosphace in Shuffle-LAGAN
mode, and Salvia bowleyana was selected as the reference genome. Genome rearrangement
was carried out by Mauve [42] using S. bowleyana as a reference genome. DnaSP v.5.0 [43]
was employed to analyze nucleotide diversity (Pi) within sect. Drymosphace by setting the
step size to 200 bp with a 600 bp window length.

2.5. Phylogenetic Analysis

To infer the phylogenetic relationships of sect. Drymosphace, 14 plastid genomes from
subg. Glutinaria were selected to carry out analyses with S. rosmarinus, S. hispanica, and
S. officinalis from three other subgenera as outgroups. Seven matrices, including complete
plastome (CP) sequences with one IR region excluded, large single copy (LSC), small single
copy (SSC), IR, protein-coding exons (coding regions, CR), intergenic spacer and introns
(non-coding region, NCR), and nine hyper-variable region (HVR) data sets were prepared
for the phylogenetic analyses. The sequences were aligned with MAFFT [44] using Gblocks
v0.91 [45] to exclude the ambiguously aligned positions. The neat sequence matrices were
employed to infer phylogenetic trees using both maximum likelihood (ML) and Bayesian
inference (BI).

Under the GTRGAMMA substitution model, ML analyses were performed using
RAxML-HPC2 on XSEDE v.8.2.12 [46] on the CIPRES Science Gateway (http://www.phylo.
org/ (accessed on 20 March 2022)) [47]. With the exception of setting bootstrap iterations
(–#|–N) to 1000, the other parameters used default values.

BI analysis was carried out in MrBayes 3.2.6 [48] and implemented in PhyloSuite [49].
The ModelFinder [50] was utilized to select the best model according to the Akaike infor-
mation criterion (AIC) (Table 2). Four Markov chain Monte Carlo (MCMC) iterations were
run simultaneously for 2,000,000 generations. Each run started with a random tree, and
a random tree was sampled every 1000 generations. Stationarity was considered to be
reached when the average standard deviation of the split frequencies was less than 0.01.
After discarding the first 25% trees as burn-in, the remaining trees were used to calculate a
majority-rule consensus tree for each matrix.

Table 2. Summary of the data set information for phylogenetic analyses.

Data Matrix Aligned Length (bp) Constant Sites (bp) Variable Sites (bp) Parsimony
Informative (bp) Best Fit Model (AIC)

CP 151,218 144,550 (95.59%) 6668 2366 (1.56%) GTR + F + I + G4

LSC 82,556 77,911 (94.37%) 4645 1637 (1.98%) GTR + F + I + G4

SSC 17,531 15,967 (91.08%) 1564 567 (3.23%) GTR + F + G4

IR 25,563 25,335 (99.11%) 228 80 (0.31%) GTR + F + I

CR 66,888 64,304 (96.14%) 2584 921 (1.38%) GTR + F + I + G4

NCR 59,877 56,165 (93.80%) 3712 1346 (2.25%) GTR + F + I + G4
HVR 10,298 9096 (88.33%) 1064 363 (3.52%) GTR + F + G4

3. Results and Discussion
3.1. Plastome Features of Sect. Drymosphace

The length of complete plastomes of sect. Drymosphace ranged from 151,330 bp (Salvia
dabieshanensis) to 151,614 bp (S. meiliensis). All of the plastomes displayed a typical quadri-
partite architecture that contained a large single copy (LSC: 82,629–82,854 bp) and a small

http://www.phylo.org/
http://www.phylo.org/


Diversity 2022, 14, 324 5 of 19

single copy (SSC: 17,541–17,587 bp) separated by two copies of an inverted repeat (IR: 25,520–
25,590 bp). The total GC content varied slightly from 38.00% to 38.03%, and the IR regions
had the highest GC content (43.10–43.14%) followed by those in the LSC (36.12–36.15%)
and SSC (31.97–32.05%) regions (Figure 1, Table 3).

Figure 1. Complete plastome gene map of Salvia sect. Drymosphace. Genes outside of the circle
are transcribed in the counterclockwise direction, and those that are inside are transcribed in the
clockwise direction. LSC—large single copy; SSC—small single copy; IR—inverted repeat.

A total of 114 unique genes, including 80 protein-coding, 30 tRNA, and four rRNA
genes, were detected in each species (Table 3). Four rRNA, seven tRNA, and seven protein-
coding genes were duplicated in IR regions (Table 3). Of the 18 genes containing intron,
15 comprised only one intron, and three genes harbored two introns. The rps12 gene was
recognized as being a trans-spliced gene, with the 5′ end located in the LSC region and the
duplicated 3′ end in the IR region (Figure 1, Table 4).
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Table 3. Plastome features of 10 taxa of Salvia sect. Drymosphace presented in this study.

Taxa Clean
Reads

Reads Used
for Assembly

Mean
Coverage (×)

Complete LSC SSC IR Number
of Genes PCG tRNA

Genes
rRNA
GenesSize(bp) GC (%) Length (bp) GC (%) Length (bp) GC (%) Length (bp) GC (%)

S. bowleyana 6961,322 6,160,014 526 151,508 38.01 82,809 36.14 17,585 32.01 25,557 43.12 114 80 30 4

S. dabieshanensis 11,727,732 9,644,622 504 151,330 38.02 82,629 36.14 17,587 32.01 25,557 43.12 114 80 30 4

S. honania 7,221,162 6,369,236 514 151,522 38.01 82,768 36.13 17,586 31.97 25,584 43.11 114 80 30 4

S. meiliensis 68,112,046 25,577,470 1970 151,614 38.00 82,854 36.12 17,580 32.00 25,590 43.10 114 80 30 4

S. miltiorrhiza NA NA NA 151,332 38.02 82,698 36.15 17,556 32.01 25,539 43.12 114 80 30 4

S. nanchuanensis 9,188,568 7,579,704 507 151,426 38.02 82,791 36.14 17,563 31.99 25,536 43.13 114 80 30 4

S. nanchuanensis
var. pteridifolia 15,948,806 13,152,169 514 151,455 38.01 82,831 36.12 17,584 32.05 25,520 43.14 114 80 30 4

S. plectranthoides 6,978,570 6,231,469 512 151,416 38.01 82,775 36.13 17,563 32.03 25,539 43.12 114 80 30 4

S. subbipinnata 5,368,560 4,649,062 516 151,388 38.03 82,769 36.15 17,541 32.02 25,539 43.13 114 80 30 4

S. yunnanensis 6,448,098 5,394,701 508 151,413 38.02 82,652 36.14 17,581 32.03 25,590 43.11 114 80 30 4
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Table 4. Genes present in the plastomes of 10 taxa of sect. Drymosphace.

Gene Functions Group of Genes Name of Genes

Photosynthesis Subunits of ATP synthase atpA, atpB, atpE, atpF *, atpH, atpI

Subunits of NADH dehydrogenase ndhA *, ndhB * (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI,
ndhJ, ndhK

Subunits of cytochrome petA, petB *, petD *, petG, petL, petN

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,
psbM, psbN, psbT, psbZ

Subunit of rubisco rbcL

Self-replication Large subunit of ribosome rpl2 * (×2), rpl14, rpl16 *, rpl20, rpl22, rpl23 (×2), rpl32, rpl33, rpl36

DNA-dependent RNA polymerase rpoA, rpoB, rpoC1 *, rpoC2

Small subunit of ribosome rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12 ** (×2), rps14, rps15,
rps16*, rps18, rps19

rRNA Genes rrn4.5 (×2), rrn5 (×2), rrn16 (×2), rrn23 (×2)

tRNA Genes trnA-UGC * (×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA,
trnfM-CAU, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-CAU (×2),
trnI-GAU * (×2), trnK-UUU *, trnL-CAA (×2), trnL-UAA *,
trnL-UAG, trnM-CAU, trnN-GUU (×2), trnP-UGG, trnQ-UUG,
trnR-ACG (×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA,
trnT-GGU, trnT-UGU, trnV-GAC (×2), trnV-UAC *, trnW-CCA,
trnY-GUA

Other genes Subunit of Acetyl-CoA-carboxylase accD

c-type cytochrome synthesis gene ccsA

Envelop membrane protein cemA

Protease clpP **

Translational initiation infA

Maturase matK

Unknown function Conserved open reading frames ycf1, ycf2 (×2), ycf3 **, ycf4, ycf15 (×2)

* gene with a single intron; ** gene with two introns; (×2) duplicated gene.

The plastid genomes of sect. Drymosphace showed high consistency and similarity
in terms of their gene structure, order, and content. These results are consistent with
other plastomes of Lamiaceae [26–28,33,51] and are also as conservative as most of the
angiosperms that have been previously reported [52–56].

3.2. Amino Acid Abundance and Codon Usage

The number of codons in sect. Drymosphace ranged from 26,501 (Salvia miltiorrhiza) to
26,583 (S. dabieshanensis). Among these codons, leucine (10.59–10.64%) was the most fre-
quently observed amino acid, and cysteine (1.10–1.12%) was the least frequently observed
(Figure 2, Table S1). Most protein-coding genes had the same standard ATG sequence as the
initiation codon, but the rps19 and ycf15 genes started with a GTG sequence. This non-ATG
initiation codon has also been found in other angiosperm chloroplasts [28,57,58]. Heatmaps
showed that 30 of the total 64 types of codons used in sect. Drymosphace were preferred
codons (RSCU > 1), and with the exception of UUG (Leu), all of the preferred codons ended
with an A or a U (Figure 3, Supplementary Material Table S1). This codon usage bias shows
a similar trend observed in the majority of plastomes in higher plants [52,59,60].
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Figure 2. Amino acid frequencies in all protein-coding genes in the chloroplast genome of 10 taxa of
Salvia sect. Drymosphace.

Figure 3. Heatmap of codon distribution of all protein-coding genes from 10 taxa of Salvia sect.
Drymosphace. Higher red values indicate higher RSCU values, and lower blue values indicate lower
RSCU values.
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3.3. Simple Sequence Repeats and Long Repeat Sequences

Simple sequence repeat (SSR), also called microsatellite, is a sequence with a tandemly
repeated motif that ranges in size from one to six. Due to high repeatability and poly-
morphism, SSR is a molecular marker that is commonly used in population genetics and
evolutionary analysis [52,61–64]. In this study, a total of 1685 SSRs were identified with each
taxon bearing 166–173 SSRs from 10 plastomes of sect. Drymosphace (Figure 4, Table S2). Five
types of SSR (excluding penta-nucleotide SSR) were detected in sect. Drymosphace, of which
the mono-nucleotide SSR was the richest (1265, 75.07%), followed by the di-nucleotide
(346, 20.53%), tetra-nucleotide (69, 4.09%), hexa-nucleotide (4, 0.24%), and tri-nucleotide
(1, 0.06%) SSRs. In terms of repeat units, the A/T unit in the mono-nucleotide repeat was
the most abundant (1242, 73.71%), followed by the di-nucleotide AT/AT (136, 8.07%) and
TA/TA (100, 5.93%). The tri-nucleotide SSR (AAT/ATT) was only detected once (1, 0.06%)
in S. nanchuanensis var. pteridifolia, and the hexa-nucleotide SSRs (4, 0.24%) were detected
once in S. dabieshanensis (ATTCAT/ATGAAT), S. meiliensis (AATCAA/TTGATT), S. miltior-
rhiza (ACTTAG/CTAAGT), and S. plectranthoides (ACTTAG/CTAAGT). In addition, six
unique repeat units (AAT/ATT, AAAT/ATTT, TTAA/AATT, ATTCAT/ATGAAT, AAT-
CAA/TTGATT, ACTTAG/CTAAGT) were detected within sect. Drymosphace. The majority
of the SSRs resided in LSC regions (1125, 66.77%), and the others were located in other SSC
regions (320, 18.99%) and in IR regions (240, 14.24%). As reported in previous plastomes
of Salvia of Lamiaceae [28,51] as well as in other families [55,65,66], most of the SSRs in
sect. Drymosphace are composed of A/T mono-nucleotides, which represent a percentage
of 73.71%. Similar to most Salvia plastomes that have been reported upon before [28,51,67],
we did not detect the penta-nucleotide SSR in sect. Drymosphace. However, a recent study
reported a penta-nucleotide SSR from S. yunnanensis of sect. Drymosphace [68]. Salvia
yunnanensis was also included in this study as well as in another independent analysis [28],
in which the samples were from Guizhou and Yunnan Province, China, respectively, but
neither study identified the penta-nucleotide SSR in these species. Therefore, there is a
lack of the penta-nucleotide within sect. Drymosphace, or at the very least, it is rare. Even
though the mono-nucleotide SSRs showed significant differences among species, ranging
from 123 (S. miltiorrhiza) to 134 (S. yunnanensis), no significant differences were observed in
the number of the other four types of SSRs.

A total of 478 long repeat sequences with lengths greater than 30 bp, including 222
forward and 255 palindromic repeats and one complementary repeat, were detected in sect.
Drymosphace (Figure 5, Table S3). The number of repeats for each taxa varied from 42 to 49
and had lengths that ranged from 30 to 99 bp. Most of the long repeats were located in IR
(389, 81.38%) regions, followed by LSC (79, 16.53%) and SSC (10, 2.09%). In particular, most
of these repeats were detected in coding regions (378, 79.08%), with a few being located
in intergenic regions (50, 10.46%) and in introns (50, 10.46%). Long repeat sequences may
play a pivotal t role in plant evolution and could promote variation and rearrangement in
the plastid genome [69–71]. All of these repeats, together with the aforementioned SSRs,
may have potential utility in population studies.

3.4. Comparative Genomic Analyses

The contraction and expansion of IR regions at the borders is a main reason for size
variation in plastomes and plays an important role in the evolution of seed plants [72–75].
To explore the expansion and contraction of the IR regions, the boundaries between the SC
and IR regions of sect. Drymosphace were analyzed. The rps19 gene spanned the LSC/IRb
boundary in all species and had a length of 234 bp or 236 bp in the LSC and 43 bp or 45 bp
in the IRb, which generated a short rps19 pseudogene (ψrps19) that was 43 bp or 45 bp in
length at the IRa/LSC border. The ndhF crossed the IRb/SSC border and had an equal
length of 32 bp in the IRb and of 2185 bp or 2203 bp in the SSC. The SSC/IRa boundary
was located within the ycf1 gene and had lengths ranging from 4452 bp to 4470 bp in the
SSC and of 1056 bp or 1167 bp in the IRa, resulting in a pseudogene (ψycf1) at the IRb/SSC
border with 1056 bp or 1167 bp overlapping with the ndhF gene. In addition, the IRa/LSC
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boundary resided between the ψrps19 and trnH, and the distance from trnH was 8 bp or
10 bp (Figure 6). In Salvia, IR/LSC junctions are considered to be highly conserved, and the
expansion/contraction of the IR regions is infrequent [28]. Although a few IR contractions
have been reported in Salvia (e.g., S. hispanica, S. mekongensis, and S. rosmarinus) [28], no
contractions were detected in this study, suggesting that IR contraction events may not
occur in sect. Drymosphace.

Figure 4. Comparison of simple sequence repeats (SSR) among the plastomes of 10 taxa of Salvia sect.
Drymosphace. (A). Number of different types of SSRs; (B). number of different of SSR repeat units;
(C) frequencies of SSRs in LSC, IR, and SSC regions.
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Figure 5. Analysis of repetitive sequences in the plastomes of 10 taxa of Salvia sect. Drymosphace.
(A). Number of different types of longer repeats; (B). frequencies of longer repeats in the LSC, SSC,
and IR regions; (C). frequencies of longer repeats in protein coding regions, intergenic spacers, and
intron regions.

Figure 6. Comparison of junctions between the LSC, IR, and SSC regions among plastomes of 10 taxa
of Salvia sect. Drymosphace. Genes are denoted by colored boxes, with ψ indicating a pseudogene.
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Comparison of complete plastome sequences showed that the genes within sect.
Drymosphace were arranged in the same order and that the IR regions were more conserved
than the LSC and SSC regions (Figure 7), which may be related to the copy corrections
caused by gene conversion between the two IR regions [76,77]. In addition, noncoding
regions were found to be more divergent than coding regions, and the most varied regions
occurred in intergenic regions, such as accD-psaI, rps4-trnL, rps16-trnQ, and trnH-psbA.
Genome rearrangement analysis showed a collinear relationship, suggesting that there was
no rearrangement or inversion events in the plastomes of sect. Drymosphace (Figure S1).

Figure 7. Sequence alignment of the whole plastomes of 10 taxa of Salvia sect. Drymosphace using
mVISTA with S. bowleyana as a reference. The vertical scale indicates percentage of identity, ranging
from 50% to 100%.

Sequence divergence analyses showed that the nucleotide variability (Pi) values of
the sect. Drymosphace plastomes ranged from 0 to 0.01376, with an average value of 0.0014
(Figure 8). Nine highly variable regions with Pi values > 0.005 were detected, including
two genes (clpP and ycf1) and seven intergenic spacers (trnH-psbA, trnK-rps16, petN-psbM,
rps4-trnT, rbcL-accD, rpl32-trnL-ccsA, and ndhD-psaC). Among these hyper-variable regions,
six loci were located in the LSC, three were located in the SSC, and none were located
in the IR regions. trnH-psbA is the most variable region (Pi = 0.01376) among the nine
hypervariable regions. Due to high rates of insertion/deletion and universal primers,
trnH-psbA has been selected to be a plant barcode for species discrimination [78–81] and
has been used for phylogenetic analyses in Lamiaceae [82–84]. However, the resolution of
this DNA marker is not high enough to solve phylogenetic relationships at the section and
below levels for Salvia [2,85]. For the two hypervariable genic regions, the clpP gene has
not been used as a marker in phylogenetic study of Salvia, and ycf1 has been demonstrated
to be a promising maker for phylogenetic analyses within Salvia [28,86].
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Figure 8. Sliding window analysis of plastomes of 10 taxa of Salvia sect. Drymosphace. The X-axis
indicates the position of the midpoint of a window, and the Y-axis represents the nucleotide diversity
of each window. The nine hyper-variable regions with Pi > 0.005 are marked.

3.5. Phylogenetic Analysis

Seven matrices including 17 taxa were employed to conduct phylogenetic analyses
(Table 1). The aligned CP dataset had the longest length (145,835 bp), and the combined
nine HVRs had the shortest length (10,298 bp). The highest percentage of constant sites
were from the IR data set (99.11%), and the lowest were from the HVR data set (88.33%).
As opposed to the constant sites, the percentage of the informative sites in the HVR data
set was the highest (3.52%), and lowest percentage was in the IR regions (0.31%) (Table 2).

The topologies that were inferred by ML and BI analyses for each matrix were identical,
with the exception of a few weakly supported nodes. Therefore, only an ML tree with
posterior probabilities (PP) indicated above the branches and the ML bootstrap (BS) values
provided below.

In all of the analyses, monophylies of subg. Glutinaria and sect. Drymosphace were
recovered, and sister relationships between Salvia honania and S. meiliensis, S. dabiesha-
nensis, and S. bowleyana within sect. Drymosphace were strongly supported (Figure 9 and
Figures S2–S7). Within sect. Drymosphace, with the exception of the CR matrix, all of the
analyses supported the finding that S. honania and S. meiliensis together to be sister to the
rest of the section; with the exception of the IR regions, all of the topologies that were
inferred from other data set showed that S. dabieshanensis, S. bowleyana, S. miltiorrhiza, and
S. plectranthoides formed a strongly supported subclade. The phylogenetic positions of S.
nanchuanensis, S. yunnanensis, and S. subbipinnata varied slightly in different data set.
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Figure 9. Phylogenetic tree inferred from maximum likelihood and Bayesian inference based on
complete chloroplast genome. Posterior probabilities are provided above the branches, and the ML
bootstrap values are indicated below, with the ML bootstrap values <50% and PP < 0.90 indicated
by ‘-’.

Integrating molecular phylogenetic with morphological evidence, Hu et al. [2] estab-
lished a new sect. Drymosphace, but the interspecific relationships within the section are
confused, and the supported values for most subclades are weak. For example, S. honania
and S. meiliensis are two morphologically similar species [87]. They are easily distinguished
from the other species within sect. Drymosphace, as characterized by small and oblong
upper corolla lips and clearly exserted stamens that adhere laterally to the corolla [2,87].
The two species should have been sister group. However, they did not gather together
in previous analyses that were based on only a few DNA markers [87]. In this study, all
of the analyses indicated that the two species formed a sister relationship, supporting the
finding that S. honania is closely related to S. meiliensis [2,87]. Additionally, compared to
previous studies including sect. Drymosphace based on short DNA fragments [2,12,85], the
plastid phylogenomic analyses in this study based on all of the matrices greatly improved
the phylogenetic resolution (Figure 9). Although monophyly of sect. Drymosphace and
sister relationships of S. honania and S. meiliensis were confirmed in this study, the rela-
tionships between some of the taxa presented here are inconsistent with those inferred by
morphological characteristics. Morphologically, Salvia plectranthoides, S. nanchuanensis, and
S. nanchuanensis var. pteridifolia share long tubular corolla tubes and straight upper corolla
lips and are therefore placed in ser. Plectranthoidites [4,16]. They should have been found to
be closely related and grouped together in phylogenetic trees, especially S. nanchuanensis
and S. nanchuanensis var. pteridifolia. However, in this study, S. nanchuanensis is sister to S.
subbipinnata instead of S. nanchuanensis var. pteridifolia, and S. plectranthoides is sister to S.
miltiorrhiza, indicating that S. nanchuanensis and ser. Plectranthoidites are not monophyletic.
Therefore, the plastid genome is still unable to completely determine the interspecific
relationships of sect. Drymosphace.

Of all seven data sets, the IR regions generated the poorest phylogenetic resolution,
with four subclades having very low support values within sect. Drymosphace (PP < 0.9 and
BS < 50%) (Figure S4). Wu et al. [27] also reported similar results in plastid phylogenomic
results for Salvia [27]. The sequence length as well as informative sites may lead to this
result. Previous studies indicate that more and longer DNA sequences may greatly improve
the phylogenetic resolution and the support values of the branches [28,88,89]. In this
study, the IR regions (25,563 bp) and HVR (10,298) were the two shortest data sets, so the
phylogenetic resolutions that were inferred from them are lower than those of the other five
matrices (Figures S4 and S7). On the other hand, the IR region has the lowest percentage of
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informative sites, which may be the result of the low resolution. Therefore, the use of IR
regions separately is not suggested for phylogenetic analysis in Salvia.

4. Conclusions

In this study, we sequenced and assembled eight Salvia sect. Drymosphace plastomes.
The reported plastid genomes are conservative, showing high levels of consistency and
similarity to the chloroplast genomes of other species of Lamiaceae in terms of gene content,
order, and structure. Comparative analyses revealed that there is no rearrangement or
inversion events in the plastomes of sect. Drymosphace and that single-copy regions and
intergenic regions are more variable than IR regions and coding regions. Phylogenomic
analyses can recover the monophyly of the newly established sect. Drymosphace, consider-
ably improve phylogenetic resolution, and determine interspecific relationships for some
of the species within this section.
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sect. Drymosphace, Figure S2: Phylogenetic tree inferred from maximum likelihood and Bayesian
inference based on LSC, Figure S3: Phylogenetic tree inferred from maximum likelihood and Bayesian
inference based on SSC, Figure S4: Phylogenetic tree inferred from maximum likelihood and Bayesian
inference based on IR, Figure S5: Phylogenetic tree inferred from maximum likelihood and Bayesian
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Bayesian inference based on HVR.
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