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Abstract: The need for herbal medicinal plants is steadily increasing. Hence, the accurate identifica-
tion of plant material has become vital for safe usage, avoiding adulteration, and medicinal plant
trading. DNA barcoding has shown to be a valuable molecular identification tool for medicinal plants,
ensuring the safety and efficacy of plant materials of therapeutic significance. Using morphological
characters in genera with closely related species, species delimitation is often difficult. Here, we
evaluated the capability of the nuclear barcode ITS2 and plastid DNA barcodes rbcL and matK to
identify 20 medicinally important plant species of Caryophyllales. In our analysis, we applied an inte-
grative approach for species discrimination using pairwise distance-based unsupervised operational
taxonomic unit “OTU picking” methods, viz., ABGD (Automated Barcode Gap Analysis) and ASAP
(Assemble Species by Automatic Partitioning). Along with the unsupervised OTU picking methods,
Supervised Machine Learning methods (SML) were also implemented to recognize divergent taxa.
Our results indicated that ITS2 was more successful in distinguishing between examined species,
implying that it could be used to detect the contamination and adulteration of these medicinally
important plants. Moreover, this study suggests that the combination of more than one method could
assist in the resolution of morphologically similar or closely related taxa.

Keywords: medicinal plants; DNA barcoding; nuclear barcode; plastid barcodes; unsupervised
learning; supervised learning

1. Introduction

Large numbers of people in developing countries rely on wild plant species for their
medicinal needs. Over thousands of plant species are used in traditional medicine in
different parts of the world. During ancient and modern culture, the healing properties of
certain plants have been identified, and these plants currently play a significant role in the
treatment of various diseases [1]. Due to their medicinal properties, there is a continuous
and perpetual interest in researching and utilizing these valuable natural resources, as
demonstrated by a plethora of literature (e.g., [2–10]). Different plant species have been
used in ethnomedicine in the Arabian Peninsula since ancient times [5,10]. Sakkir [11]
provided an overview of the medicinal plants in the United Arab Emirates (UAE) flora
and indicated that roughly 18% of the total plant species identified have medicinal values.
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These authors attributed such a low representation of medicinal plants in UAE flora to
be most likely due to the unknown medicinal properties of the remaining taxa or lack
of documentation of their traditional uses. Cybulska et al. [12] reviewed the available
information on the medicinal uses of the halophytes in the UAE flora and highlighted
the presence of valuable medicinal plants. These medicinally important plants display
a specific tolerance to environmental stresses such as high temperature, drought, and
salinity. It is expected that these medicinal halophytes might represent a valuable source
of phytochemicals in salt marshes, where harsh conditions induce the production of both
enzymes and phytochemicals in response to Reactive Oxygen Species (ROS) [12].

A recent survey on the ethnomedicinal knowledge of commonly used medicinal plants
in a part of the UAE highlighted the importance of traditional medicinal plants and the
need for knowledge documentation [13]. Further, due to various threats to medicinal
plants, such as habitat loss and alteration, and overgrazing, there is a need for proper
identification and conservation. Phondani et al. [8] documented the ethnobotanical uses
of 58 medicinally important plants of the Arabian deserts. They emphasized the need to
document ethnobotanical knowledge for sustainability and scientific validation to conserve
these valuable medicinal plants native to the Arabian deserts. The above proves the
importance of using many UAE plants in folk medicine.

There is a continued increase in the demand for herbal medicinal plants. There-
fore, there are some accidental or intentional contaminations and adulteration with non-
medicinal plants or other undesirable plant tissues [14,15]. Such contamination could
reduce the effectiveness of the active ingredients, which might lead to detrimental health
consequences [16,17]. The authentication of plant material has become necessary for safe
use, avoiding adulteration, and trade in medicinal plants. Therefore, there is a need for
fast authentication methods to authenticate dried herbal medicinal plants from the other
components [18]. The detection of adulteration requires accurate, fast molecular techniques
for plant identification, especially if it is difficult to discriminate between closely related
plants morphologically [19]. In addition, the proper identification and documentation of
medicinal plants in the region could add to their conservation and sustainable utilization.

The classical taxonomic techniques based on morphology and anatomy complement
molecular techniques for accurately identifying morphologically similar closely related
plant taxa. Currently, there are initiatives for generating DNA barcode libraries of vascular
plant flora. Completing such libraries and making them available will help fast, accurate
identification, which would lead to the better conservation and utilization of native plants,
particularly those used in herbal medicine [20–22]. In this context, a tool such as DNA
barcoding could help resolve these issues and lead to the rapid and accurate identification
of medicinal species. Moreover, DNA barcoding could be helpful in the identification of
medicinal plants in trade, as most herbal material is traded as dried leaves, roots, and bark
or in powdered form, thus contributing to their safe use and avoiding adulteration [23].

DNA barcoding has become a useful complementary tool in diverse disciplines of
biological sciences. The application of plant DNA barcodes, especially in floristic inves-
tigations, ecology, evolution, and conservation fields, has gained momentum over the
last decade [24,25]. Several studies have highlighted the potential applications of DNA
barcoding in the accurate identification of taxa, discovery of cryptic species, and as an
crucial component in phylogenetics investigations [24,26–28]. However, this technique
also has some potential limitations, especially in plants where the selected barcode region
might lack enough information to provide DNA level species-specific differences and the
concurrent observation of such differences at the secondary metabolite level, similar to that
observed by Celiński et al. [29].

In medicinal plant research, DNA barcoding is emerging as a valuable molecular
identification technique that has greatly ensured the safety and effectiveness of plant
materials of medicinal value [30]. The reviews by Techen et al. [31] and Nazar et al. [32]
have discussed the selection of the genomic regions as possible barcodes for medicinal
plants, including new achievements in the field of DNA barcoding. Those reviews provide
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a comprehensive overview of DNA-based methods, technologies, and a combination of
three or more genomic regions that were investigated for medicinal plant identification by
various researchers worldwide.

Over the years, researchers have suggested different coding and noncoding genes in
the nuclear and plastid genomes as potential barcodes for plants [33–37]. The types of DNA
barcode markers used for plant identification range from a single chloroplast region to a
combination of different regions (see [30,31,38]). Significant progress has been made in the
identification of medicinal plants using DNA barcoding (e.g., [25,31,39–47]. For medicinal
plant identification, some researchers have used a combination of markers between matK,
rbcL, trnH-psbA, and ITS2 sequences. For example, Schori et al. [48] analyzed the rbcL,
matK, and psbA-trnH loci of fourteen species of medicinal plants and found that depending
on the plant to be identified, one region was preferred over the other, as a single barcode
region is not enough to ensure the species identification.

Moreover, along with the selection of efficient DNA barcode markers for species iden-
tification, it is necessary to utilize competent methods for effective species discrimination.
The results produced by one or more methods sometimes differ, which could require the im-
plementation of more than one method that must be applied and compared jointly [49,50].
The most conventional DNA barcode analysis method is the pairwise distance-based unsu-
pervised Operational Taxonomic Unit (OTU) picking method, where Automated Barcode
Gap Discovery (ABGD) is the most widely used tool, followed by the recently developed
Assemble Species by Automatic Partitioning (ASAP) [50,51]. Comparatively, some studies
have shown a higher rate of species discrimination using the supervised learning ap-
proach [21,52–55]. Thus, in this study, we used a comparative approach of implementing
both unsupervised and supervised methods for species delimitation.

The UAE has not received much attention to digitally record flora in the form of
DNA barcodes [22], as there are only three studies cataloging flora of the UAE to date.
Moreover, there are scarce studies on the DNA barcodes of medicinal plants [56], and
existing studies have amplified three barcode loci for the coding genes matK, rbcL, and
rpoC1 in 10 flowering plants from the UAE. Maloukh et al. [57] focused on authenticating
the morphological identification of 51 plant species using rbcL and matK regions. Further,
Mosa et al. [15] provided evidence that DNA barcoding was efficient in the detection of
adulteration in plant-based herbal products in the UAE. Based on the results obtained, these
authors also suggested rbcL as a promising barcode locus for resolving their studied species.

Since 2018, the Sharjah Seed Bank and Herbarium have engaged in the process of
DNA barcoding the entire UAE flora [20–22]. Here, we assessed the capability of plastid
DNA barcode markers rbcL and matK, and a nuclear marker, ITS2, for the identification of
20 medicinally important plant species belonging to the order Caryophyllales. The core
Caryophyllales represent one of the largest eudicot orders with about 12,000 species and
30 families worldwide [58], and some species are used medicinally [59,60]. Various molec-
ular systematic studies on Caryophyllales are available that have substantially increased
our knowledge of their phylogeny [61]. The Caryophyllales is represented in the UAE’s
flora by 11 families. These are Aizoaceae, Amaranthaceae, Caryophyllaceae, Frankeniaceae,
Gisekiaceae, Molluginaceae, Nyctaginaceae, Plumbaginaceae, Polygonaceae, Portulacaceae,
and Tamaricaceae [62,63]. Among the families of Caryophyllales that have difficulties
in morphological discrimination, especially during vegetative stages of the life cycles,
are Amaranthaceae (e.g., Haloxylon persicum, H. salicornicum, Salicornia persica), Polygo-
naceae (e.g., Calligonum comosum and C. crinitum), and Tamaricaceae (Tamarix aucheriana
and T. nilotica).

The objective of the present study was to barcode the medicinal plant species, compare
the discriminatory power of the standard barcode regions, and explore the taxonomic
implications in the studied taxa. Establishing a DNA barcoding system could facilitate the
conservation of the UAE’s medicinal taxa, help overcome the limitations of morphological
characters, and contribute to species identification for their efficient utilization. The study
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results could help generate DNA barcode libraries of the UAE vascular plant flora, which
could be a step toward completing the UAE and global DNA barcoding libraries.

2. Materials and Methods
2.1. Specimen Collection and Data Acquisition

Twenty species from the order Caryophyllales were included in this study. Of these,
13 species (36 samples) were collected from the field between 2019 and 2020, and 7 species
were retrieved from the NCBI GenBank. All the studied species are from the United Arab
Emirates (Figure 1), and their information is provided in Table S1. Overall, we collected
between one and eight specimens per species. Our collection did not involve protected
areas or endangered species.
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Figure 1. Map showing collection sites of plant samples for DNA barcoding and seed bank collections.

The collected species included herbaceous plants, shrubs, and trees, which occur
in a range of habitats, including sandy, coastal plains, mountain ridges, and wadi beds.
Species such as Haloxylon salicornicum, Gisekia pharnacioides, and Aerva javanica had the
highest number of accessions, while Tamarix nilotica and Amaranthus hybridus had the
lowest number. Morphological identification of all plant species was based on reliable
diagnostic characters and available literature on local flora [62–65], produced by researchers
who have worked in the field exploring UAE’s flora for about one decade. The voucher
specimens for collected species were curated by the Sharjah Seedbank and Herbarium
(SSBH), Environment and Protected Areas Authority (EPAA), for record and references.
According to the literature survey, the plant species included in the present study have
medicinal values and are used in the treatment of various ailments (Table S2).

2.2. Tissue Sampling and DNA Extraction

Plant tissues were sampled from 36 individuals and dried immediately with silica
gel at room temperature for DNA extraction. Unique identifiers were provided to the
specimens and the tissue samples. Further, the tissue samples were ground to a fine
powder using BeadBlaster 24 microcentrifuge homogenizer. Genomic DNA extraction was
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then performed using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol with minor modifications, where proteinase K was added,
followed by the AP1 buffer and RNase A, and the incubation time was increased to 1–3 h.
Samples were eluted in Nuclease-Free Water. The isolated DNA was tested for quality by
gel electrophoresis (BioRad, Hercules, CA, USA) on a 1% agarose gel and quantity using
spectrophotometric analysis (Denovix, Wilmington, DE, USA).

2.3. PCR Amplification and Purification

Two plastid barcode regions, rbcL and matK, and one nuclear ribosomal barcode
regions, Internal Transcribed Spacer (ITS2), were amplified via Polymerase Chain Reaction
(PCR) (Biorad, Biorad Laboratories, Singapore and Applied Biosystems Veriti Thermal
Cycler, Life Technologies Holdings Pte. Ltd., Singapore) using forward and reverse primers
of rbcL [35,66], matK (proposed by Ki-Joong Kim, see [67]), and ITS2 [68,69] (Table S3). The
25 µL PCR reaction using a 5× FIREPol master mix was prepared to amplify the respective
barcode region. The standard thermal profile of all primers used is shown in Table S3. Mod-
ification in the annealing temperature was performed wherever required. PCR products
were then verified through gel electrophoresis on a 2% agarose gel. Amplified products
were purified using the MEGAquick-spinTM plus total fragment DNA Purification Kit
(Intron Biotechnology) and then sequenced commercially.

2.4. Sequence Analysis

Bidirectional sequencing was performed for rbcL, matK, and ITS2 barcode markers. The
obtained sequences were assembled and aligned in Geneious Prime v2021 (geneious.com
(accessed on 27 December 2021).) and MEGA X. [70] using the Muscle algorithm. The
sequences were then submitted to NCBI GenBank through a web-based sequence submission
tool ‘BankIt,’ and accessions numbers were obtained for all the studied barcode markers
(Table S1).

Further, the sequences were subjected to the taxonomic evaluation using the NCBI Gen-
Bank BLASTn to obtain homologies between the fragments [71]. In addition, unsupervised
OTU picking methods were employed, where the phylogenetic analysis was performed
using MEGA, and the assessment of OTUs was performed using ABGD and ASAP.

Along with the unsupervised OTU picking methods, Supervised Machine Learn-
ing methods (SML) were also implemented to recognize divergent taxa. The aligned
datasets were formatted to the WEKA’s required file format using the FASTA to WEKA
converter [54]. Further, in WEKA machine learning, the random forest and sequential
minimal optimization classifiers were used through the 10-folds of cross-validation [72].

Phylogenetic tree construction was carried out in MEGAX. Initially, the phylogenetic
model test was performed to determine the best-fit nucleotide substitution model with the
lowest BIC scores (Bayesian Information Criterion). Accordingly, Maximum Likelihood
(ML) phylogeny was inferred using the Kimura-2-Parameter (K2P) model with discrete
gamma distribution was selected for the rbcL dataset. For the matK dataset, a ML phyloge-
netic tree was constructed using the General Time Reversible model (GTR) with discrete
Gamma distribution (G). For the ITS2 dataset, ML phylogeny was achieved using the K2P
model with discrete gamma distribution and invariant sites (G + I). All phylogenetic trees
were given a bootstrap support of 1000. Moreover, for the phylogenetic tree annotation, the
Interactive Tree of Life webserver was used. In addition, the ASAP webserver was used to
build the partitions for species delimitation.

3. Results
3.1. Barcode Amplification and Sequencing Success

The core plant barcode markers rbcL, matK, and ITS2 were amplified at various
temperature gradients and sequenced successfully (Figure 2).

geneious.com
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nealing temperature gradients used for the barcode amplification, (* represents the dual annealing
temperature 50|55 ◦C), (b) PCR amplification and sequencing success of the attempted samples.

The rbcL and ITS2 markers showed significant success rates in PCR amplification
ranging from 70% to 95%, while matK exhibited a lower success rate of about 60% (Figure 2).
In sequencing, the rbcL marker showed the highest (80%) success rate, followed by the
matK (76%) and ITS2 (75%) (Figure 2). In addition, another pair of matK markers was used
for the amplicon recovery, where only one sample was successfully amplified. Overall,
99 sequences were obtained belonging to the rbcL (35), matK (34), and ITS2 (30) markers,
representing about 13 species.

3.2. Taxonomic Assignment

The taxonomic identification of the collected specimens was initially made based on
their key morphological characters. Further, the taxonomic evaluation was performed at
the NCBI GenBank’s nucleotide database using the NCBI-BLASTn tool.

Overall, we obtained 99 barcodes belonging to 36 specimens and 13 species in the
present study. In addition, we retrieved 18 more barcodes belonging to 18 specimens and
11 species from the NCBI GenBank based on the records from previous studies performed
on the flora of the UAE. Altogether, the dataset comprised about 117 barcodes, 54 specimens,
and 20 species in common, viz., rbcL (n = 49), matK (n = 38), and ITS2 (n = 30).

Those barcode datasets were further analyzed using the unsupervised OTU picking
methods, viz., ABGD and ASAP. The ABGD recognized groups of about 10 to 16 species
only using J69 and K80 metrics. In addition, the initial partition exhibited lower accuracy
in the species resolution than the recursive partition. Thus, the recursive partitions were
further taken into consideration. The rbcL showed 6 partitions of which the fifth recursive
partition resolved about 28 specimens and 7 species correctly (a priori intraspecific diver-
gence of (P) = 0.0077, relative gap width (X) = 1.0) (Figure 3a and Table 1). In the case of
matK, about 9 partitions were recognized, of which the eighth recursive partition was able
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to successfully resolve 29 specimens and 9 species (at p = 0.035 and X = 1) (Figure 3b and
Table 1). In the ITS2 dataset, about 10 partitions were recognized, of which the seventh
recursive partition was found to resolve 29 specimens and 10 species (at p = 0.0215 and
X = 1) (Figure 3c and Table 1). The simple distance metric showed the lowest accuracy
compared to JC69 and K80. Thus, it was not considered.
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Table 1. Summary of species identification using unsupervised and supervised learning methods.

Barcode Marker Method Correct (%) Incorrect (%) Ambiguous (%) Singleton (%)

rbcL
(Spm. = 49,

Sp. = 20)

ABGD
SPECIMENS 57.14 40.82 0.00 2.04

SPECIES 35.00 60.00 0.00 5.00

ASAP
SPECIMENS 67.35 18.37 6.12 8.16

SPECIES 45.00 30.00 5.00 20.00

SVM
SPECIMENS 79.59 4.08 0.00 16.33

SPECIES 55.00 5.00 0.00 40.00

matK
(Spm. = 38,

Sp. = 15)

ABGD/ASAP
SPECIMENS 76.32 18.42 0.00 5.26

SPECIES 60.00 26.67 0.00 13.33

SVM
SPECIMENS 89.47 0.00 0.00 10.53

SPECIES 73.33 0.00 0.00 26.67

ITS2
(Spm. = 29,

Sp. = 12)
ABGD/ASAP/SVM SPECIMENS 96.55 0.00 0.00 3.45

SPECIES 90.91 0.00 0.00 9.09
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As seen in the ABGD analysis, the algorithm identified several species partitions for
each p-value (priori), which might derive uncertainty from the data [50]. Therefore, it is
recommended to implement an integrative taxonomic approach to evaluate the relevance
of the ABGD partitions [50]. Thus, the species assignment was further validated using
the ASAP, followed by the supervised machine learning approach. In the case of ASAP, it
appeared to provide a gap-width score, p-value, threshold distance dT, and the number
of species corresponding to each defined partition, and thus overcame the challenge of a
priori defined by ABGD. The partition could then be prioritized by considering the smallest
ASAP score and the asterisk marks that represent the overall best scores.

Accordingly, the partitions with the highest species resolution were discovered for
the matK and ITS2 datasets at the threshold distance of 0.029 and 0.0134, respectively
(Figure 4a,b). In the matK dataset, about 29 specimens and 9 species were resolved, while
in the ITS2, about 29 specimens and 10 species were resolved successfully (Figure 4a,b and
Table 1). However, for the rbcL dataset, the second successive partition at the threshold
distance of 0.0045 with lower ASAP scores was found to be the best partition showing a
higher resolution (Figure 4c), further accurately discriminating 33 specimens and 9 species,
and was thus taken into consideration (Figure 3a, and Table 1).
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p = 0.042); (c) rbcL 2nd partition (ASAP score = 4.50, number of species (Nb) = 18, p = 0.0052).
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Following the unsupervised approach, the analysis through the SML approach ex-
hibited the highest species resolution in all three markers, rbcL, matK, and ITS2. SML
appeared to resolve about 39 specimens and 10 species in rbcL, 34 specimens and 10 species
in matK, and about 29 specimens and 10 species in ITS2 (Figure 3a–c and Table 1).

Overall, in the rbcL dataset, the ASAP and SVM methods successfully differentiated
Paronychia arabica from Scelerocephalus arabicus, and resolved the Suaeda genus (Suaeda
aegyptiaca from Suaeda vermiculata, whereas Haloxylon persicum and Haloxylon salicornicum
could not be discriminated using all three methods (ABGD, ASAP, and SVM) (Figure 3a).
Moreover, in the rbcL dataset, ASAP alone was able to differentiate the Amaranthus genus
(Amaranthus viridis and Amaranthus hybridus), while SVM alone was able to delimit the
Calligonum genus (Calligonum crinitum and Calligonum comosum) (Figure 3a).

In the matK dataset, Suaeda aegyptiaca and Suaeda vermiculata were only resolved
by SVM (Figure 3b), while in the ITS2 dataset, both the species seemed to be accurately
differentiated using all three methods (ABGD, ASAP, and SVM) (Figure 3c). Altogether,
17 species were successfully resolved from the 20 barcoded species using the rbcL, matK,
and ITS2 markers, though the matK and ITS2 datasets lacked enough species memberships
for all 20 species.

3.3. Genetic Divergence

The genetic divergence analysis was conducted for the rbcL, matK and ITS2 datasets
using the TaxonDNA (Table 2). The highest intraspecific distance of 2.45% was observed in
the ITS2 dataset among the individuals of Salsola imbricata, while the highest interspecific
divergence of 2.58% was observed between the species of the genus Suaeda. Similarly,
the Suaeda genus seemed to exhibit maximum interspecific distances for the rbcL dataset,
wherein the matK Tamarix genus showed higher interspecific divergence, followed by
Suaeda. In the case of the species from the genus Suaeda, the genetic divergence in the rbcL
(1.55%) and matK (1.21%) was not enough for the ABGD (rbcL and matK datasets) and
ASAP (matK datasets) to discriminate the S. vermiculata from the S. aegyptiaca. However,
all methods employed successfully resolved species from the Suaeda genus using the ITS2
dataset at the genetic divergence of 2.58%.

Table 2. Intra- and interspecific genetic divergence.

Barcode
Marker

Max
Intra-Sp.

Dist.

Avg.
Intra-Sp.

Dist.

Min.
Intra-Sp.

Dist.

Max.
Inter-Sp.

Dist.

Avg.
Inter-Sp.

Dist.

Min.
Inter-Sp.

Dist.

rbcL 0.77 0.06 0 1.55 0.45 0
matK 0.69 0.18 0 1.21 0.74 0
ITS2 2.45 0.06 0 2.58 2.32 2.19

4. Discussion

The use of herbal medicine traditionally for disease treatment and as a precursor
for developing several important drugs [2,73] necessitates the accurate identification of
medicinal plants. The results of our study suggest that the applications of DNA barcoding
techniques can enhance the accurate identification of medicinally important species. Our
study is among the first to utilize different DNA barcode markers and confirms the potential
of the barcoding approach for the accurate identification of medicinally useful plants from
the UAE that will help generate a reference dataset for research and other applications.

We investigated the efficacy of the three DNA barcode regions (rbcL, matK, and ITS2)
for discriminating selected medicinal plant species belonging to the order Caryophyllales.
The first step in assessing the potential candidate barcodes was to estimate the universality
of the amplification and sequencing success rate across the studied taxa. The matK region
showed a lower amplification rate (60%) than rbcL and ITS2, although two matK primers
pairs were used with several attempts under different conditions (Figure 2a). The MatK
(P1 and P2) pair was highly effective in the amplification success. However, the matK
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(P3 and P4) pair resulted in low recovery (only one sample was amplified successfully).
The inconsistent success rate has been reported for matK. Several studies have indicated
that the matK region was less amplified than other regions in different angiosperms and
gymnosperms, including some arid desert plants [74–76]. The universality issues of the
matK primer could be attributed to the nucleotide variations in the respective binding
site that could inhibit the PCR amplification [74], or to the large amplified product size
(≈900 bps) that could be susceptible to the degradation [77]. Cräutlein et al. [78] suggested
the need for further efforts to improve primer design in matK to achieve higher efficiency.
For sequencing, a higher number of good-quality sequences (80%) were obtained for rbcL
than the other two regions. This result is aligned with previous studies that compared the
three barcode loci for the coding genes (matK, rbcL, and rpoC1) for the discrimination of
different plants of the UAE and concluded that the rbcL was more effective in discrimination
between species [15,56,57].

Several different approaches based on the DNA barcoding technique have been ad-
vised for assigning species to their relevant taxa [52,54,79,80]. Our analysis applied an
integrative approach for the delimitation of species using unsupervised “OTU picking”
methods, viz., ABGD and ASAP that use only pairwise genetic distances, along with
supervised methods for more data reliability. The ABGD method automatically iden-
tifies where the barcode gap is located in their distribution. This gap marks the limit
between minimum interspecific and maximum intraspecific divergence. Thus, it is crucial
to ensure the distance-based method’s effectiveness [51,81]. Our results showed that the
recursive partitions in ABGD recognized more OTUs than primary ones, exhibiting a higher
accuracy in species resolution under the analysis, which corroborates with previous obser-
vations [51,82,83]. Further, ASAP was performed to evaluate the relevance of the ABGD
partitions, as any species partition must be subsequently tested against other evidence as
recommended in an integrative taxonomy approach [50].

Our results indicated that the unsupervised ABGD method showed taxonomic con-
flicts in rbcL between Amaranthus species (A. hybridus and A. viridis), and between Paronychia
arabica and Sclerocephalus arabicus. Interestingly, these species differed morphologically and
could be discriminated easily (Figure 3a). Moreover, merged taxa were observed for the
genus Suaeda (S. aegyptiaca and S. vermiculata) in the rbcL dataset using ABGD, as well
as in the matK datasets using both the ABGD and ASAP methods (Figure 3a,b). More-
over, a low pairwise interspecific divergence of rbcL (=1.55%) and matK (=1.21%) was
observed between the species of Suaeda, thereby exhibiting a monophyletic relationship.
A similar result was observed by Kapralov et al. [80], who provided strong statistical
support for the monophyly. The taxonomic relationships might be confusing due to the
absence of a barcode gap, which can result from a limited number of sequences per species
(i.e., <3–5) [51].

Following the ABGD and ASAP methods, species delimitation through character-
based supervised machine learning methods was utilized to understand better the con-
firmation of the initial identification [84]. So far, several studies have performed the
character-based barcoding approach, which has proved its usefulness in identifying plant
species better than the conventional unsupervised methods [52–54,85]. In our analysis, the
unsupervised ASAP method tended to provide a better resolution potential for the rbcL
dataset than its neighboring ABGD method (Table 1). In addition, ASAP was able to resolve
two singleton species in the rbcL dataset that were not even recognized using the ABGD
method (Figure 3a). Moreover, when compared with the supervised learning approach, the
SVM method stood out as the more efficient method to provide an accurate identification
than the unsupervised approach with the higher number of species, as observed in the rbcL
and matK datasets (Table 1 and Figure 3a,b). In addition, S. aegyptiaca and S. vermiculata
were also recovered as separate clades, which indicates that the intraspecific diversity could
be hidden [34,86].

It has been reported that OTUs proposed by one or more methods could be inconsistent
in distinguishing between the members of closely related genera [49]. In our study, we
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observed that the members of genus Amaranthus (A. viridis and A. hybridus) were only
discriminated through ASAP, but members of Calligonum (C. crinitum and C. comosum) were
distinguished only by SVM. This supports the importance of using more than one method,
especially for closely related species that are difficult to discriminate morphologically,
such as C. crinitum and C. comosum. The use of more than one method can maximize the
probability of identifying morphologically similar species and overcoming the limitation
associated with each method [50,87].

Overall, the taxonomic performance of SVM was stronger than that of ABGD and
ASAP in the rbcL dataset. The SVM delivered the highest incidence of correct matches
(55.0%) across the 20 species compared to 35.0% and 45.0% for ABGD and ASAP, respec-
tively (Table 1). In the matK dataset, the performance of ABGD was similar to ASAP (60.0%)
and was improved to 73.33% using supervised learning methods. However, all the methods
delivered a similar percentage of correct matches in the ITS2 dataset (Table 1). Considerably,
it is now a well-known fact that the combination of the two plastid markers, ribulose
1,5-bisphosphate carboxylase gene (rbcL) and maturase K (matK), that were accepted as
the core barcoding regions [33], do not grant a suitable coverage of plant species. Thus,
they must often be implemented along with the other hypervariable sequences, such as
nuclear ITS or the plastid interspacer region trnH-psbA [88].

Moreover, the efficiency of the utilized markers and methods depends on the sample
size, as the singleton species or small sample size could lead to skewed results [21]. In our
study, we had about 10 singleton species, which were considered as singletons and not
independent OTUs to reduce the probability of biased identification. Thus, an adequate
sample size and proper implementation of the DNA barcoding technique can provide a
scientific basis for the molecular identification and conservation of valuable medicinal
species. Our study is among the first to utilize different DNA barcode markers and
to confirm the potential of DNA barcoding in the accurate identification of medicinally
important plants from the UAE. The dataset generated through this study will assist in
developing the reference library, and allows others to contribute and explore the genetic
potential of the available germplasm for various applications.

5. Conclusions

The results support the potential use of DNA barcoding in discriminating closely
related taxa of Caryophyllales. The ITS2 was more effective in the discrimination be-
tween studied species, indicating its potential for distinguishing between Caryophyllales
medicinally important plants and non-medicinal plants or other undesirable plant tissues.
However, due to the inability of one DNA barcoding analysis method to discriminate
between members of closely related genera, we propose combining two or more methods.
The results of this study could fill a small gap of generating DNA barcodes for local (i.e.,
the UAE), regional (i.e., the Arab Gulf region), and global libraries of vascular plant flora.
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