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Abstract: As an important topographical factor, slope aspect has an essential influence on plant
community structure and leaf traits. Leaf nitrogen (N) and phosphorus (P) stoichiometry is an
important leaf trait indicating plant growth. However, it has rarely been studied how leaf N:P stoi-
chiometry correlates with plant community structure along the slope aspect gradient. To understand
the variation of leaf N:P stoichiometry and community structure, as well as their correlation with
each other, the species composition and leaf N and P in Tibetan meadows were investigated across
three slope aspects: the south-, west-, and north-facing slope aspects (i.e., SFS, WFS, and NFS). In
our results, leaf N:P ratio was significantly lower on the NFS than on the SFS, indicating N and P
limitation on the NFS and SFS, respectively. Richness of forb species and all species was higher on
the NFS than on the SFS and was negatively correlated with leaf N concentration, whereas graminoid
richness was not statistically different among the slope aspects and showed a negative correlation
with leaf P concentration. Thus, our results provide evidence for the functional significance of leaf
N:P stoichiometry for species composition along a natural environmental gradient. Our findings
could provide applicable guidance in the refinement of grassland management and biodiversity
conservation based on topography.

Keywords: topography; community assembly; species richness; leaf functional traits

1. Introduction

Leaf nitrogen (N) and phosphorus (P) are the two most limiting elements of terrestrial
vegetation relating to plant growth, development, and reproduction [1–3] because N is
the key component of proteins that play pivotal roles in plant photosynthesis as enzymes,
whereas P is critical to the formation of NADPH, ATP, and ribosomal RNA in the process
of protein synthesis [4,5]. Furthermore, the critical leaf N:P ratio has been widely used to
diagnose the type of nutrient limitations to plant productivity [6–8]. Leaf N and P con-
centration and allocation have been found to vary along environment gradients; although
numerous studies have focused on their latitudinal and altitudinal patterns [9–16], it has
rarely been studied how they change along the slope aspect gradient. Investigations on leaf
N:P stoichiometry across slope aspects can provide applicable guidance in the refinement
of grassland management and conservation based on topography at the local scale.

Leaf N and P availability also shows important functional significance for community
composition [6]. In particular, relationships between plant N:P ratios and species richness
are of particular interest in the context of biodiversity conservation and anthropogenic
activities. Many studies have found the N:P ratio to be correlated with the richness and
composition of species [17–19]. The coexistence of species was suggested to be possibly
facilitated by P limitation, since the competition for P with lower mobility is weaker than the
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competition for resources of high mobility in soil [17,20] and is facilitated by colimitation
because differential nutrient limitations may reduce interspecific competition [21,22] but
could also be weakened by the P limitation possibly resulting from P deficiency or nutrient
imbalance [6] or the disproportionate increase in dominant clonal graminoids [23]. Hence,
different correlations of species richness with plant N and P stoichiometry have been
reported [17,18,24–26]. Moreover, a high leaf N:P ratio was expected to be associated
with more graminoids and fewer forbs in vegetation [23]. However, most of these studies
were indirectly demonstrated in experiments with nitrogen fertilization or deposition, and
direct evidence is rare along natural environmental gradients. The slope aspect gradient
significantly contributed to the heterogeneity of vegetation in mountain areas and thus
provided an ideal platform to explore the relationships between leaf N/P stoichiometry
and community structure.

Typically, south-facing slopes in the northern hemisphere (i.e., equator-facing slopes)
are hot and dry, as the equator-facing orientation is associated with the strongest solar
irradiation, whereas north-facing slopes (i.e., polar-facing slopes) are wet and cold, resulting
from the lowest solar irradiations; western- or eastern-facing slopes are intermediate in
terms of these aspects. Slope aspect substantially contributes to the heterogeneity of
vegetation [27–32], possibly owing to the substantial microenvironmental changes, such as
solar irradiance, soil moisture and temperature, and soil nutrients [33–36]. However, it is
still not clear how vegetation heterogeneity, including species richness and composition,
is associated with leaf N:P stoichiometry. Therefore, in the current study, based on a
slope aspect gradient in the Tibetan meadow, we mainly aimed to explore the following
questions: (1) How do leaf [N] and [P] and the N:P ratio vary in different slope aspects?
(2) How do species richness and composition change with slope aspect? (3) How does
leaf N:P stoichiometry correlate with species richness and composition along the slope
aspect gradient?

2. Materials and Methods
2.1. Study Sites

Our study was conducted in an alpine meadow in the eastern part of the Tibetan
Plateau in China. The Research Station of Alpine Meadow and Wetland Ecosystems of
Lanzhou University has locations at two elevations: 2960 m and 3650 m (Figure 1A). Data
were collected at these two sites: Hezuo (34◦44′ N,102◦53′ E) and Maqu (33◦39′ N,101◦53′ E),
with the vegetation landscape shown in Figure 1B. We also recorded the precipitation and
temperature of these two sites during the period of 1981–2017 according to geographical
coordinates using the climate dataset provided by National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn (accessed on 10 May 2021)). The mean annual precipitation in
Hezuo and Maqu was 570 mm and 690 mm, and the mean annual temperature was around
4 ◦C and 2 ◦C, respectively. The monthly mean precipitation and monthly mean, maximum,
and minimum temperatures are shown in Figure 1C. Details about the study site can also
be found in our previous publications [36,37].

2.2. Leaf N and P Concentration Measurements

In August of 2008, during the peak growing season, a 5 m × 5 m plot was established
on each of the south-, west-, and north-facing slopes (i.e., SFS, WFS, and NFS) based on the
shape of the hill and the ability to collect leaf samples at each site. At each plot, mature and
healthy leaf samples were collected from 3–5 individuals of the dominant species. Across
the six plots, 80 observations were collected in total, with 41 observations of 25 species in
Hezuo and 39 observations of 20 species in Maqu. The measured species in each site, with
their average leaf N and P content per unit of mass (hereafter leaf [N] and [P]), are shown
in Table 1. All the species were simply classified into three plant functional groups (PFGs):
graminoids (Poaceae and Cyperaceae), non-legume forbs (forbs), and legumes. However,
in two plots, dwarf shrub was also found on the NFS.

http://data.tpdc.ac.cn
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Figure 1. Site location in the Tibetan Plateau (Panel A), the vegetation landscape (Panel B), and key
climate factors (Panel C) of the two study sites (Hezuo and Maqu). Tmean, Tmax, and Tmin represent
the monthly mean, maximum, and minimum temperature, respectively.

After drying for 48 h at 70 ◦C, we ground the dry leaves to powder using a mortar. A
total of 0.2 g of leaf powder was digested with H2SO4-H2O2. Digested solution was used
to determine leaf [N] with a VAPODEST 40 programmable distillation system (Gerhardt,
Germany), and leaf [P] by the vanadium-ammonium molybdate colorimetric method [38].

2.3. Species Composition Measurement

In each plot, we placed three 50 cm × 50 cm quadrates as replicates to survey the species
by recording their names, coverage (%), and richness (i.e., the number of species) and then
classified all the species into the four plant functional groups: graminoids, forbs, legumes,
and shrubs (if any). The coverage was estimated visually, but significantly positive correlation
of coverage and species richness confirmed the data reliability (R2 = 0.418, p < 0.001).

2.4. Data Analysis

Firstly, the effects of slope aspect on leaf [N], [P], and N:P ratio were detected using a
linear mixed model by treating “site” as the random factor (LMM) for the mixed samples,
with species-level value as a replicate unit and one common species, Anaphalis lacteal, that
occurred in each of the six plots. Correlations among leaf [N], [P], and N:P ratio were
evaluated in each site using linear models. Comparison of the leaf N:P stoichiometry
between different PFGs was also conducted using the LMM. Secondly, the effects of slope
aspect on species richness and coverage and their correlations with leaf N:P stoichiometry
(using plot-level means) were analyzed using LMM.
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All the variables were log10-transformed. All analyses were performed with R version
4.0.3 (R Core Team, 2020) in RStudio version 1.3.1093 (RStudio Team, 2020).

Table 1. Mean value of leaf nitrogen (N) and phosphorus (P) concentrations of the 40 measured
species. PFG represents plant functional group.

SPECIES FAMILY PFGs Hezuo Maqu

N (mg g−1) P (mg g−1) N (mg g−1) P (mg g−1)

Allium beesianum Amaryllidaceae Forbs 16.69 1.43
Allium condensatum Amaryllidaceae Forbs 16.28 1.14
Anaphalis hancockii Asteraceae Forbs 17.86 1.28

Anaphalis lactea Asteraceae Forbs 26.02 1.66 10.45 0.78
Anemone trullifolia var. linearis Ranunculaceae Forbs 13.16 1.04

Aster tataricus Asteraceae Forbs 11.02 0.78
Astragalus membranaceus

var.membranaceus Fabaceae Legumes 24.52 1.73 29.29 1.83

Bupleurum sp Apiaceae Forbs 14.01 1.05
Cyperaceae sp Cyperaceae Graminoids 17.30 1.24
Daucus carota Apiaceae Forbs 7.80 0.99

Elephantopus scaber Asteraceae Forbs 20.89 1.60
Fragaria ananassa Rosaceae Forbs 13.33 1.65

Gentiana macrophylla Gentianaceae Forbs 22.42 1.25
Gentianopsis barbata Gentianaceae Forbs 14.10 1.25

Gueldenstaedtia verna Fabaceae Legumes 26.17 1.27 21.44 1.21
Hamamelis mollis Hamamelidaceae Shrubs 17.83 1.29
Kobresia humilis Cyperaceae Graminoids 14.61 1.01
Lancea tibetica Mazaceae Forbs 19.10 1.53

Leontopodium leontopodioides Asteraceae Forbs 13.61 0.93
Ligularia virgaurea Asteraceae Forbs 11.69 1.10

Medicago falcata Fabaceae Legumes 4.36 1.05
Medicago lupulina Fabaceae Legumes 32.35 1.90

Nardostachys jatamansi Caprifoliaceae Forbs 14.26 1.07
Nardostachys jatamansi Caprifoliaceae Forbs 8.15 0.88

Nepeta cataria Lamiaceae Forbs 25.12 1.65
Oxytropis sp Fabaceae Legumes 36.79 2.00

Pedicularis szetschuanica Orobanchaceae Forbs 13.38 1.94
Plantago asiatica Plantaginaceae Forbs 16.07 1.56

Polygonum macrophyllum Polygonaceae Forbs 9.63 1.01
Polygonum viviparum Polygonaceae Forbs 25.53 1.59 15.41 1.83

Potentilla anserina Rosaceae Forbs 13.79 1.57
Potentilla bifurca Rosaceae Forbs 17.76 1.25

Potentilla fragarioides Rosaceae Forbs 12.92 1.03
Roegneria kamoji Poaceae Graminoids 18.00 1.41

Saussurea graminea Asteraceae Forbs 9.40 0.54
Saussurea graminifolia Asteraceae Forbs 15.92 1.39

Saussurea sp Asteraceae Forbs 18.62 1.20 8.77 0.84
Scirpus triqueter Cyperaceae Graminoids 17.55 0.89

Stellera chamaejasme Thymelaeaceae Forbs 36.87 2.31
Taraxacum sp Asteraceae Forbs 33.27 1.85

3. Results
3.1. Variations in Leaf [N], [P], and N:P Ratio across the Slope Aspects

The leaf [N], [P], and N:P ratios ranged from 10.09 to 42.96, 0.89 to 3.10, and 8.10 to
23.63 mg g−1 in Hezuo and from 4.36 to 33.53, 0.536 to 2.33, and 4.14 to 21.21 mg g−1 in
Maqu, respectively. Overall, the leaf [N], [P], and N:P ratios were all significantly lower in
Maqu, with higher elevations than in Hezuo (Figure 2A,C,E).
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aspects. SFS, WFS, and NFS represent south-, west-, and north-facing slope aspects, respectively.
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Although leaf [N] and [P] were not significantly different between slope aspects,
leaf N:P ratio was significantly lower on the NFS than on the SFS for the mixed samples
(Figure 2). The one common species, Anaphalis lacteal, showed the same patterns as those
of the mixed samples (Figure S1). Moreover, significant correlations between leaf [N] and
[P] and between the leaf N:P ratio and leaf [N] rather than [P] were found in each plot
(Figure 3). In addition, legumes showed a significantly higher leaf [N] and [P] than forbs
and graminoids and a higher leaf N:P ratio than forbs (Figure S2).

3.2. Correlations of Leaf Traits with Species Richness and Coverage

Significantly higher richness of all species and forbs and lower richness of legumes
were found on the NFS than on the SFS and WFS (Figure 4A–D); however, the richness of
graminoids and plant coverage for each PFG and for all species did not differ significantly
among the slope aspects (Figure 4E–H).
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Figure 3. Linear regressions between leaf [N] and [P], between leaf [N] and leaf N:P ratio, and
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and north-facing slope aspects, respectively. Variables are in log10 scale.
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Figure 5. Correlations of species richness of each plant functional group and the whole community
with leaf N concentration (A–D), with leaf P concentration (E–H), and with leaf N:P ratio (I–L).
Variables are log10-transformed.

The correlations were found to be significantly negative between leaf [N] and richness
of all species (R2 = 0.615, p = 0.047) and forb species (R2 = 0.570, p = 0.061), between
leaf [P] and graminoid richness (R2 = 0.362, p = 0.093), and between leaf N:P ratios and
forb richness (R2 = 0.675, p = 0.032) (Figure 5). On the other hand, legume coverage was
positively correlated with leaf [N] (R2 = 0.809, p = 0.010), and the coverage of graminoids
and all species was negatively and positively correlated with leaf [P] and with marginal
significance and significance, respectively (R2 = 0.051 and 0.704, p = 0.103 and 0.029,
respectively) (Figure 6).
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4. Discussion
4.1. Variations in Leaf [N], [P], and N:P Ratio across Different Slope Aspects

Although leaf [N] and [P] did not differ significantly between slope aspects, we found
a significantly lower N:P ratio on the NFS, with a mean of 11, and a higher N:P ratio
on the SFS, with a mean of 16, which was consistent with a previous study reporting
that the lowest N:P ratio occurred on the NFS out of the four slope aspects [39]. Tessier
and Raynal [8] pointed out that plants were subject to N-, P-, and co-limitation when
the plant N:P ratio was less than 14, higher than 16, and between 14 and 16, respectively.
Therefore, our results indicate that plants on the NFS suffered N limitation. The tight
correlation of leaf [N] with N:P ratio suggests that leaf N:P is determined by leaf [N] along
the slope aspect gradient. A lower soil N availability reported in our previous studies [36]
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was probably the reason for the lower leaf N:P ratio on the NFS, which supports the
biogeochemical hypothesis suggesting that plant N and P are influenced by the availability
of soil nutrients [9]. The lower soil N on the NFS was perhaps due to lower temperatures
reducing the decomposition and mineralization of organic material.

In addition, the leaf [N], [P], and N:P ratio were lower in Maqu, which has a higher ele-
vation, which is consistent with previous studies of elevational gradients [14,40], indicating
an increase in N-limitation along altitudinal gradients.

4.2. Correlations of Leaf N:P Stoichiometry with Species Richness and Coverage across the Slope Aspects

Significantly higher species richness in each quadrate was found on the NFS than
on the SFS, which was mainly caused by the variation in forb richness. These results are
consistent with previous studies in which species richness was significantly lower on the
SFS [31,41], with the possible mechanism of lower soil water content as the limiting factor.

Community species richness was negatively correlated with leaf [N], which is con-
sistent with the negative effects of N-fertilization on species diversity [42–45]. Many N-
fertilization experiments showed considerable species loss, with the underlying improved
growth of dominating clonal graminoids excluding forbs through competition [45,46]. The
possible mechanisms may be that N-fertilization led to a tendency of P limitation, but
graminids are often considered stress-tolerant species due to their low requirement for P
and K [47]. Therefore, we found negative correlations of leaf [P] with graminoid richness
and coverage because higher leaf [P] indicated the rapid growth of P-sensitive species. The
significant negative correlations between leaf N:P ratio and forb richness provide direct
evidence that on the natural environmental gradient, a higher N:P ratio is associated with
fewer forbs and more graminoids, as hypothesized by Güsewell [6].

In addition, the higher legume richness on the SFS and the positive correlation of
legume coverage with leaf [N] were consistent with the higher N:P ratio on the SFS due to
their N-fixing functions.

5. Conclusions

In this study, we linked species composition and leaf N:P stoichiometry along a slope
aspect gradient. Our results reveal different types of nutrition limitation and species com-
positions in different slope aspects and highlight the functional significance of leaf N:P
stoichiometry in community composition along a slope aspect gradient. We found that leaf
N:P ratio was significantly lower on the NFS than on the SFS and WFS, although leaf [N]
and [P] were not statistically different between slope aspects, implying N limitation and P
limitation of plant growth on the NFS and SFS, respectively. Higher richness and coverage
of forbs were found on the NFS than on the SFS, whereas those that of graminoids did not
differ significantly between slope aspects. The variations in forb and graminoid richness
were largely explained by leaf [N] and [P], respectively, with the possible mechanism
of different N or P requirements for different PFGs. However, the mechanisms under-
lying the variations in leaf N:P stoichiometry and community composition across slope
aspects are still not clear because we did not explore their correlations with environmental
or soil factors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d14040245/s1, Figure S1: Comparisons of leaf [N] (A,B), [P] (C,D), and N:P ratio (E,F)
between sites and among slope aspects, respectively, for the species Anaphalis lacteal, Figure S2:
Comparisons of leaf [N] (Panel A), [P] (Panel B), and N:P ratio (Panel C) between different plant
functional groups (PFGs).
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