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Abstract: To study climate impacts, data integration from heterogeneous sources is imperative for
long-term monitoring in data sparse areas such as the High Mountain Ecosystems in the Rila Moun-
tain, Bulgaria—difficult to both access and observe remotely due to frequent clouds. This task is
especially challenging because discerning trends in vegetation location, condition and functioning
requires observing over decades. To integrate the existing sparse data, we apply the Whole System
framework adapted nationally in the Bulgarian Methodological Framework for Mapping and Assess-
ment of ecosystem services. As the framework mainly relies on field data, we complement it with
remote sensing vegetation indices (NDVI, NDWI and NDGI) for 42 years, together with Copernicus
High Resolution Layer products and climate change reanalysis data for 40 years. We confirmed that
the Whole System framework is extensible and semantically, ontologically and methodologically well
suited for heterogeneous data fusion, co-analysis, reanalysis and joint interpretation. We found trends
in ecosystem extent and functioning, in particular species composition, in line with climate change
trends since around 1990 and exclusively attributable to climate change since 2015. Furthermore,
we specified a data crosswalk between habitats and ecosystems at Level 3 (ecosystem subtype), and
define new candidate indicators suitable for remotely monitoring climate change’s effects on the
ecosystems’ extent and condition, as candidates for inclusion in the methodological framework.

Keywords: whole system approach; data fusion and integration; semantic and ontological
compatibility; mountain ecosystems; ecosystem condition; remote sensing; vegetation indices; climate
change reanalysis; dominant species level forest ecosystem classification

1. Introduction

The ecologically complex high mountain ecosystems (HMEs) are important study
areas for climate change impact on ecosystem structure and functions. There is a wide
range of concepts about ecosystem functioning, reviewed by Pettorelli et al. (2017) [1].

Scientists studying HMEs attempt to explain the influence of climate change on the
vegetation structure [2,3], causation processes [4], spatial distribution in HMEs [5–7] and
the adaptive capacity of HMEs to the influence of natural and/or anthropogenic changes [8].
In doing so, they invariably come across the overwhelming complexity of the interrelated
study objects of HMEs and climate change.

As a means to reduce complexity, research often focuses on specific aspects such as
the ecotone rather than the entire ecosystem [5,9–15], abiotic factors [16], species compo-
sition and dynamics [17,18]. However, a truly holistic assessment of both condition and
functioning trends for these highly sensitive and vulnerable zones in their entirety requires
an integrated interdisciplinary approach. Different types of data are collected at different
points in time and space, different scale, for different purposes and using different—in the
cases of remote sensing and climate modelling significantly improved—instruments and
methods over time. These objective challenges include:
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• Combining continuous and discrete data. Verifying ecosystem type typically relates to
one-off observations of ground data; remote sensing imagery is continuous in space
but discrete in time, while climate models have spatial and temporal continuity;

• Data heterogeneity. Even within the same ecosystem, the scope, field measurement
methods and even the underlying indicators, classifications and other conceptual
elements may vary significantly, making the results difficult to reconcile and reuse.
Climate models render differently accurate results and are periodically corrected
through reanalysis, resulting in different variables for the new data series;

• Data imbalances—biases in the scientific and management interest with data collection
(predominantly about the forest ecosystem), and technological imbalances due to the
different quality of remote sensing equipment over time and the increasing number
of missions in the last years. As a result, there is a much better availability and
quality of remote sensing scenes in the last five years than at any time before, and this
development is accelerating;

• In addition to the usual difficulties of data integration listed above, the study of HMEs
meets specific difficulties that lead to a data scarcity:

# HMEs are often difficult to access physically for surveys, species inventories or
installing/maintaining monitoring equipment for long-term observations;

# Automated measurements meet the challenges of weak or lacking internet
connectivity and natural hazards such as avalanches that damage or annihilate
the equipment;

# During the vegetation season HMEs in good condition act as a biotic pump
that increases air humidity [19,20] and hence their remote sensing often reveals
clouds. Even where there are no visible clouds, there often are variable patterns
of mist or fog [21,22] that may remain undetected in cloud masking. These
atmospheric conditions distort the sensor readings and cause errors in the
values of vegetation indices; their precise detection typically requires another
data source, i.e., ground data validation or accurate meteorological data. This
makes remote phenological observations virtually unfeasible;

# Scale discrepancies: Microclimatic influences largely shape developments on
the ground, while climate models such as ECMWF Re-Analysis (ERA) we use
in this study are much coarser. Satellite imagery is constantly improving, with
the pixel size reduced by orders of magnitude between early products and
current very high-resolution ones, making it commensurate with the size of
field sites. Such great differences in scale make data fusion imperative for the
use of ERA Interim and future use of ERA 5 together with other available data
since no sufficient downscaling is possible in such a discrepant scenario. While
ERA Interim uncertainty is relatively low at a large scale for the key parameters
relevant to our study (precipitation dry bias of −1% for Europe according
to [23], temperature uncertainty of ±2% according to [24]), regional (micro-
climatic) variation is not captured well due to their coarse granularity [25]
and downscaling them is challenging (as evidenced by the modelling effort
behind the Vito dataset “Climate variables for cities in Europe from 2008 to
2017” documented at https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis
-urban-climate-cities?tab=overview (accessed on 17 March 2022) which is not
maintained beyond the contract and did not manage significant downscaling
even in areas with a high density of meteorological observation points). This
great difference in scales of datasets is the reason to consider climate mod-
els only for exploring HMEs qualitatively at this stage, as they are far from
sufficiently detailed at the scales commensurate with most monitoring needs.
Their use remains indispensable despite the large scale since they are the only
available approximation of weather information in data poor areas.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
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# Finally yet importantly, protected areas containing HMEs are not so interesting
commercially which exacerbates the bias of data collection and monitoring
towards inhabited or managed territories such as cities or agricultural areas.

Despite these challenges, complex assessments mandate going beyond the sole use
of field observation methods that mainly inform on ecosystem structure, not functions [1].
This is especially true for Bulgaria where field observations are still the preferred method
of ecosystem research (also reflected in the parameter measurement methods in [26]).
Climate models are increasingly accessible and precise, and the verification in different
regions shows their suitability for observing trends even in the presence of biases in
some parameters [27]. They therefore provide useful guidelines on climate change over
longer periods in areas with no direct observations available. Remote sensing methods are
applicable to ecosystem monitoring [28] and widely used for landscape (ecosystem) change
detection and land cover classification, monitoring condition and functioning trends and
disturbance factors [29], changes in growth conditions, growing season length, shifts in
vegetation [30] and natural capital accounting [31,32]. The latest observations benefit from
the improved data quality due to the technological (sensor) innovation in the past decades
and increasingly allow for observing ecosystem services [33].

Combining data from sources as diverse as field surveys, remote sensing and con-
strained climate reanalysis models bring their own set of technological and cognitive
challenges. Different data require different sets of expertise to process and analyze. No
single researcher is equally proficient in all these methods and structuring teamwork for
interdisciplinary data integration requires each member of the interdisciplinary team to
be sufficiently aware of all data and the processing steps everyone else performs on it.
Therefore, the optimal and efficient reuse of the efforts of large teams in producing as-
sessments and models on the national or continental scale becomes essential for smaller
research teams. Data processing disciplines like ecoinformatics [34] rely upon solutions
that follow the Findable, Accessible, Interoperable and Reusable (FAIR) data principles [35]
and use standardized technology [36–39]. However, attempting to bridge the data silos
between research disciplines for interdisciplinary ecosystem research meet their cognitive
limits, as abundantly discussed by Villa et al. [40] who note the domain dependence of any
formalized system of terms and their relations (ontology). Each scientific discipline has
its own semantic structure, data and metadata collection models, and nomenclatures and
indicator systems (a few examples: (1) Mapping ecosystem to habitat types is a difficult task
which becomes ambiguous if such mapping is sought across climatic zones; (2) taxonomical
standards for Animalia and Plantae obey similar but not identical principles; (3) the way
anthropogenic pressures are described varies between the Driver-Pressure-State-Impact-
Response framework (DPSIR) and the reporting guidelines to the EU Habitats Directive;
(4) even the same indicator such as biomass may be observed differently depending on
the ecosystem type, e.g., using NDVI for terrestrial ecosystems and Chlorophyll A for
water bodies, and intercalibrating such different methods to obtain comparable results
may be very difficult); some researchers argue that assumptions not contained in the se-
matic annotation (priors, as termed by Chollet [41]) will always implicitly influence such
semantic structures and models. At the end, due to the very diverse and complex nature
of their research object, ecosystem researchers have the task to unify conceptual bases in
a convergent manner as a mean to integrate the corresponding data initially collected for
other purposes (divergent exploration [42]).

In effect, not resolving these issues prevents researchers from efficiently analyzing all
available data. Therefore, our first hypothesis is based on the assumption that, by design, a
unifying conceptual framework at the ecosystem scale allows for data integration that

(1) is more ecologically meaningful,
(2) is more reliable,
(3) is extensible in terms of indicators and methods, especially in cases of sparse and bi-

ased data which can significantly reduce the accuracy of many automated approaches
such as machine learning; and
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(4) allows for using all available data from multiple sources across space and time to the
extent possible.

In the context of this hypothesis, ecologically meaningful data integration refers to
the explainability, through known ecological processes, of data with different types and
provenances measured/modelled either at the same time or within ecologically meaningful
time intervals. For example, change trends in climate parameters (such as temperature and
precipitation) modeled over time, if correlating with field data indicating change of species
composition, are consistent with the ecologically meaningful process of upward shift of
deciduous species in coniferous forests. Similarly, climate change datasets together with
remote sensing data on changing ecosystem extent in the absence of land management are
consistent with succession. Of course, having a single ecologically meaningful hypothesis
consistent with the data is seldom the case, and in practice it is often necessary to estimate
the influence of different co-occurring natural or anthropogenic environmental factors to
avoid double counting [43,44]. More reliable data integration refers to the formulation
within the same conceptual framework of reproducible new indicators for new policy
or research purposes [45]. Such extension must by necessity be founded on the use of
different data sources to crosscheck data and exclude incorrect data instances and outliers.
Extensible data integration refers to integration methods that allow for adding more data,
updating data to perform reanalysis, upscaling or downscaling of data or other necessary
changes in the types and properties of data used in the analysis, while at the same time
preserving the ecologically meaningful interpretation. To test this hypothesis, in this study
we apply the Whole System approach [46,47] as adapted in the Methodological Framework
for assessment and mapping of ecosystem condition and ecosystem services in Bulgaria [26],
and use all available heterogeneous data. For more on the framework, see Section 2.2.

To our knowledge, to date no studies have been performed in the Whole System
context for the long timeframe of several decades on HMEs in Bulgaria or elsewhere.

Based on earlier work [2,5,7], we formulated a second hypothesis, namely: We ex-
pected that the species in our study areas’ HME develop in a changing climate, and assess
the response of the HME to changes in climate parameters.

The objective of this study is testing these two closely linked hypotheses—the first
pertaining to the general methodological principles of data fusion in the Whole System
context, and the second to a specific application concerning studying effects of climate
change in a representative ecologically interesting but data poor HME area. Testing the
second hypothesis using the framework of the first hypothesis allows for simultaneously
testing both the method and the ecological hypothesis at once.

To the extent possible, quantitative evaluation criteria are a focus of this assessment—
both measurable changes in ecosystems’ spatial distribution at the landscape level (e.g.,
succession), and observable ecosystem change parameters such as change in species com-
position [48,49] traceable over the past decades.

2. Materials and Methods
2.1. Study Area

The selected study area is located in the southwestern part of Rila Mountain, Bulgaria
(Figure 1). It has a total area of 14,334 ha and includes parts of the communal lands of
several populated settlements in Blagoevgrad District, as well as the Parangalitsa Reserve
which has been assigned as a reserve since 1933 and was later included in the National
Ecological Network Natura 2000 as a protected area for birds and habitats. The highest
point of the study area is Dzherman peak (also called Ezernik, 2485 m). Its main ecosystems
are woodland and forests, shrubs and grasslands as characterized by [50–54]. Small water
bodies including Lake Dzherman and the upper stream of Draglishka river (water body
BG4ME800R089 as per the River Basin Management Plan of the West Aegean River Basin
Directorate, Blagoevgrad) belong to “rivers and lakes” ecosystem type [53]. The steep
rocky surfaces near the top contain sparsely vegetated areas [54]. Thus, five of the nine
ecosystem types found in Bulgaria are present in the study area. Due to its inaccessibility,
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harsh climate, the lack of long series of ground data and the limited number of usable
remote sensing images, the study area is representative in terms of data sparsity in the
context of being rich in biotic and abiotic diversity—traits it shares with many of Bulgaria’s
remote wild areas.

Figure 1. Map of the area of interest: Potential study area (yellow) and parts of it studied in the
current paper (green).

Land use is mainly limited to pastoral habitat. Protection measures under the Common
Agricultural Policy include subsidy schemes for managed extensive grazing in protected
areas within the Natura 2000 network (we verified this using the Copernicus Ploughing
layers for 2015 and 2018). While no logging permits are issued in the study area itself,
the surrounding forests are logged actively, in some cases beyond the permitted scope—
as visualized in the forest website maintained by the Executive Forestry Agency and
WWF Bulgaria, which also contains crowdsourced information on irregularities (https:
//gis.wwf.bg/mobilz/#/23.38057/42.01433/12 (accessed on 17 March 2022).

This study area, although too small for regional or other large-scale assessments, is
commensurate with the characteristic scale [55] of the objects of our observation—high
mountain ecosystems and ecotones, and their growth patterns and dynamics. Having in
mind the availability of ground data on the location of ecosystems, we were able to use the
fact-based basic entity approach ([56]) instead of resorting to statistical methods that may
increase uncertainty. The study area satisfies three key criteria:

(i) its scale corresponds to the study objects;
(ii) it contains the widest possible variety of HME ecosystems and representative forest-

grassland and forest-shrub ecotones; and
(iii) it only covers protected areas so that the impact of other factors, in particular abandon-

ing the grazing or transition from intensive to extensive grazing, would not overlap
on the effects caused by climate change and distort the observations.

The selected study area is furthermore a good example of a place with biased and
sparse available data. Large scale field verification is limited due to the inaccessibility of the
alpine landscape; moreover, field verification through digitalization or combining datasets
is difficult to perform and often impossible for older data. Testing our first hypothesis in
such an environment is important since in such places it typically is much more difficult to
ensure the reliability and reach desired lower uncertainty levels when including them in
national or European scale wall-to-wall maps and models.

https://gis.wwf.bg/mobilz/#/23.38057/42.01433/12
https://gis.wwf.bg/mobilz/#/23.38057/42.01433/12
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In addition, the study area illustrates the great variety of scales in available data
sources. ERA Interim pixel size is 12 km and the size of our study area is covered by
approximately 2 pixels of that model while it also contains over 22,000,000 pixels of very
high resolution satellite products. The lack of meteorological data time series makes climate
models the only source of information on temperature and precipitation which we cannot
derive from other remote sensing data. At the same time, the large pixel size of ERA
Interim causes this dataset to be very imprecise at the smaller scale of the actual ecological
processes, which in turn increases the uncertainty of any statistical processing (as discussed
by Jelinski and Wu [56] in their exploration of the scale problem’s dependence on grain
size in the data).

2.2. The Whole System Framework—A Versatile Tool for Data Fusion and Co-Analysis

The Whole System approach regards the ecosystem as a complex of five subsystems—
structural (biodiversity, abiotic heterogeneity) and functional (balance of energy, matter
and water). As such, it is integrative to the extent of unifying the research subjects of
ecosystem functioning (as part of the biodiversity subsystem) and climate change (as part
of the abiotic heterogeneity subsystem). Being dynamic, the Whole System framework is
furthermore conductive to working with time series by observing the manifestations of the
matter balance and water balance subsystems through vegetation indices and the energy
balance—indirectly through the changes in temperature and the related evapotranspiration
intensity. Therefore, it is possible to use both climate models and remote sensing methods
for observing the system level structural and functional parameters within this framework,
as presented in Table S1 of the Supplementary Materials.

Our first hypothesis is based on the understanding that, by its design, the Method-
ological Framework for assessment and mapping of ecosystem condition and ecosystem
services in Bulgaria further facilitates wall-to-wall landscape, regional and national data
integration on a number of levels in a manner supportive of data fusion and, ultimately,
data integration and co-analysis. The layers of compatibility built into the framework are:

• Semantic compatibility: This applies the same indicator system to all ecosystems, as
detailed in Figure 2. In this manner, indicators vary little across ecosystems, creating
semantic links, whereas the huge diversity of observable ecosystem manifestations
is mostly contained at the parameter level but clearly linked to the indicators and,
through them, to the ecosystem structure or functioning.

• Ontological compatibility (for the purpose of this article, we understand ontology not
in the philosophical sense but as commonly defined in information technology and se-
mantic web applications as a means for users to create their own set of definitions—in
our case, definitions of ecosystem types/subtypes, habitats, etc. Pan (2006) [58] and
Serafini and Bogrida (2005) [59] derive mathematical formalism of ontological compat-
ibility and reasoning in the context of decentralized systems such as a multi-ecosystem
assessment): Creating links (crosswalks) is another systematic feature of the Method-
ological Framework. Each Level 2 ecosystem type contains more differentiated Level 3
subtypes (Figure 3). This creates an unambiguous basis for cross-referencing of indica-
tors and parameters collected under reference frameworks as different as ecosystem or
habitat classification, plant or animal taxonomies or genetic sequences specific to each
subtype. Thus, if lacking ground truth observations, field data collected in another
context (e.g., forest inventory including habitat data) about a subset of parameters can
be sufficient to find the ecosystem subtype (Level 3), as we demonstrate in this study.
Cross-referencing the classification of Level 3 to finer grained ecological concepts
such as habitats, while not replacing a detailed assessment, may allow to narrow
down the expected habitat types, species composition and other ecosystem traits even
with sparse ground data. Moreover, the Methodological Framework includes an in
situ verification guide [60] that provides a mechanism for resolving inconsistencies
between observations in a landscape, thus addressing the concerns raised by Pan [58].
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Figure 2. Semantic compatibility of the Methodological Framework: Translating highly variable
ecosystem structure and functions to a coherent set of indicators and parameters (general principle
and hierarchy of ecosystem subdivision). Adapted from [26,57].

Figure 3. Crosswalk links between different hierarchies of the Whole System and different observa-
tions at the appropriate scale: Above—system level; below—species and populations level.

We note that obtaining ontological compatibility across knowledge domains comes at
the cost of losing precision and growing uncertainty [61]. Therefore, automated fusion and
processing of datasets matched on the ontological level will be subject to using appropriate
mathematical apparatus and methods such as fuzzy logic [62] and fuzzy graphs [63] in the
inference of semantic and ontological links and processing of big data.

• Methodological compatibility: One key step of the Methodological Framework is to
assign non-dimensional numeric values between 1 and 5 to the ecological parameters
and 0 to 5 for ecosystem services (0 being assigned when a service is not provided by
this ecosystem). These scores are based on initial expert assessment and later field
verification (Table 1). This step ensures the possibility to assess semi-quantitatively
different parameters measured using different methods and expressed in diverse
measurement units, against the reference values established for different ecosystem
condition. Furthermore, the Framework foresees aggregating these semi-qualitative
reference values to form single indices for assessing the ecosystem integrity, overall



Diversity 2022, 14, 240 8 of 47

condition and service provision capacity (IP index). Akin to the carbon equivalent
in climate change, the IP index both enables a numeric expression of the ecosystem
condition/service provisioning capacity, and allows for an overall cross-ecosystem
comparison at the indicator or ecosystem level, which facilitates the compilation of
wall-to-wall assessments and analyses by IP index or indicator across all ecosystems
present on the landscape level.

Table 1. Example of cross-ecosystem compatibility of parameter assessments—(a) assessment scale
for a grassland condition parameter; (b) assessment scale for grassland ecosystem services; and
(c) adjustment of reference values for the same parameter after field verification with reference values
determined by ecosystem subtype (red indicates subtype present in our study area). These reference
values may be candidates for incorporating an update of the Methodological Framework.
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E2, E3 60 or less 61–70 71–80 81–89 90 or more

E4 50 or less 61–70 71–80 81–89 90 or more

E5 10 or less 11–20 21–40 41–60 61 or more

As with the ontological compatibility, the selected approach to methodological com-
patibility also introduces a degree of uncertainty and therefore any future automated
workflow for data processing may also require the use of fuzzy methods when analyzing
and modelling data across ecosystems.

• Information compatibility: Data reuse is possible by utilizing parameter observations
from existing sources, e.g., for forest ecosystems—data from forest inventories; for
water ecosystems—monitoring data collected while implementing the Water Frame-
work Directive or Marine Strategy Framework Directive (Figure 4a). In addition, the
Methodological Framework prescribes the same database structure and processing
workflow in the specific methodologies for assessing each ecosystem type (Figure 4b),
hence allowing for a meaningful data fusion [64] from the semantical down to the
instrumental level.
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Figure 4. Cont.
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Figure 4. Data fusion, processing and integration into workflows: (a) Example of cross-ecosystem
comparison of indicators by semi-quantitative parameter assessment (here, the key biodiversity
indicators for plants for the ecosystem types presented in our study area); (b) workflow of a landscape
level assessment, standard database structure and results for mapping and assessment.

• Extensibility: Incremental improvement within the same framework is key for ac-
commodating changes in research objectives and methods of observation. This is
especially important in a time of rapidly emerging new or improved technologies, and
is a key test of our first hypothesis. To enable data cross-checking, a necessary first
step is to match the available datasets to ecosystem parameters and, from there, to
condition indicators in the Methodological Framework. In this process, we also assess
the existing indicators on their fitness for purpose. The extent and condition indicators
for the ecosystems grassland, forest and heathland and shrubs (based on vegetation
cover and species composition) are static and therefore by themselves insufficiently
informative for assessing the ecosystem extent dynamics over time. This dynamic
must, however, be captured in order to cross-analyze it with time series on the climate
change parameters and other possible processes influencing the ecosystems such as
land management practices or protected-area management plans. This makes the
formulation of new indicators necessary. Since establishing these indicators at the
national scale is a process beyond the scope of this study, the testing of the extensibility
as part of our first hypothesis is limited to formulating candidate indicators based on
observations in a single study area.

The sparsity of existing field data is an additional challenge that renders difficult to
impossible the application of many of the existing approaches to fusing heterogeneous data
to a complete and consistent dataset, as proposed by [58]:

• Yager [65] implies that there is a single, well-defined variable that can be inferred
from different data sources, which is not the case in established literature either with
ecosystem integrity or with climate change. While such a variable is defined in the
Methodological Framework through the use of IP index, it has not yet been used to
characterize NATURA 2000 protected areas (including our study area).

• The too large scale of data derived from climate models (effectively the entire study
area is covered by a small number of pixels) makes them too coarse for automated
processing until reliable downscaling is developed—a problem faced even in data rich
areas like the cities that need more detailed projections to tackle urban heat islands
(the difficulties of downscaling climate models are apparent from the dataset Climate
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Variables for Cities in Europe from 2008 to 2017—a project that required standalone
modelling, has higher local uncertainty and is apparently no longer maintained. The
dataset is available online at https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis
-urban-climate-cities?tab=overview (accessed on 17 March 2022)).

• Automated data fusion through machine learning or AI typically uses high-resolution
images or consistent single-ecosystem data series [66,67], or performs experiments
with ground truth knowledge in curated datasets [68,69]. The latter also perpetuate
bias in algorithmic data fusion by being highly anthropocentric (such as [70], and
the datasets quoted therein, US Merced (http://weegee.vision.ucmerced.edu/datas
ets/landuse.html (accessed on 17 March 2022))), focused on ground truth labeling a
single ecosystem [71,72] or generally labeling a single variable for a given task ([73],
the Brazilian coffee dataset (www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-da
taset/ (accessed on 17 March 2022), etc.). In contrast, our remote sensing data is sparse,
of different resolution over time, heavily biased and does not form a regular data
series that covers the annual vegetation growth cycles. Its ancillary ground data is also
sparse and biased. Furthermore, landscape level classification including more than
one ecosystem type is more difficult algorithmically due to additional bias caused by
the different scale or area of landscape features representing different ecosystems and
their representation in a limited number of satellite bands. For example, rivers and
small landscape forms, like small woody features occupying in some cases less than
one pixel, need specific extraction different from the processing of remote sensing data
for vegetation massives like forest and grassland; these are in turn less homogeneous
than cropland monocultures. Finally yet importantly, its land cover (and the seasonal
land cover dynamics) is quite different from the existing labeled datasets, so transfer
learning would be difficult to impossible.

Due to these limitations, in this study we resort to joint semi-quantitative analysis of
existing data sources as detailed in the following sections. Automating the method through
a consequent implementation of fuzzy graph analysis is the subject of ongoing research,
and therefore outside the scope of this study.

The Methodological Framework focuses on fieldwork or other existing terrestrial data
while it mainly uses remote sensing information such as ortho-photo for visual inspection
and study object identification at the preparation stage prior to fieldwork. This approach,
however, causes a number of qualified scientists to become a bottleneck for large-scale data
collection, leading to data deficits, particularly in inaccessible or difficult study areas like
ours. In the currently accepted parameter system and its respective protocols, there are no
parameters based on vegetation indices or modeling (including climate change reanalysis).
Thus, the existing indicator and parameter system of the Methodological Framework is well
suited for mapping and assessment but not for continuous remote monitoring. This poses
another significant challenge in data sparse and/or inaccessible areas. Therefore, our cur-
rent study contributes to extending the Methodological Framework by proposing a means
to complement it additively with back-up methods for continuous remote monitoring in
sparse data environments (as detailed in sections Results and Discussion).

The Methodological Framework was developed in 2015–2017 before some significant
developments in the mapping and assessment of ecosystem services at the global and EU
level (such as the 2020 revision of the System of Environmental Economic Accounting
(https://seea.un.org/content/seea-experimental-ecosystem-accounting-revision (accessed
on 17 March 2022)) and the development of a systematic supply and demand spatial
analysis for ecosystem services led by the EU’s Joint Research Centre [74,75]). It therefore
lacks the conceptual basis for ecosystem extent and condition accounts and the supply
side of ecosystem services is insufficiently linked with the demand side. Against this
background, we emphasize the extent and condition assessment as two important elements
of extensibility when testing the first hypothesis in this study.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/
www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/
https://seea.un.org/content/seea-experimental-ecosystem-accounting-revision
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2.3. Data and Its Processing

Based on the Whole System approach outlined above, we test our first hypothesis
by attempting to use all available data to the extent possible. Therefore, we collected
heterogeneous data outlined below, and did not exclude any data available to us based on
metadata only (e.g., due to insufficient spatial or temporal resolution). This scope used
data wider than in studies that focus on a smaller number of datasets. Our approach is to
seek ways to ensure, for each available dataset, as a minimum semantic, but ideally also
ontological, methodological and/or information compatibility. The data selection process
also ensures that we aim at achieving at least partial data availability for the ecosystems’
biodiversity, abiotic structure and functions across all five subsystems of the Whole System.
We deem data to be similar in the temporal scale if the observed ecosystems’ phenomena
remain stable between two data points. For example when exploring phenology, similar
data are the data collected within the same vegetation stage, whereas, when studying
succession, the similar data may include data points collected within 2 or even 5 years.
We derive such timeframes for the different ecosystem types based on the Monitoring
Guide [76] of the Methodological Framework. For the purpose of our study, data from
Copernicus products for base year 2018 and data on the most dynamic meadow ecosystems
from the forestry database (2016) are less than 3 years apart and therefore we consider the
two datasets essentially similar across all ecosystems. If considering only slowly changing
ecosystems like forests, this interval may be even larger. Grounds for excluding a data
item or dataset may be its redundancy to more detailed or reliable data, or its proven high
uncertainty when cross analyzing with other data. Still, the exclusion of data is rather the
exception and not the rule in our data fusion method. Such an all-inclusive approach to
data collection and processing is important for uncovering synergies between datasets;
there is also the important emergent effect of ecologically meaningful reanalysis of multiple
datasets to improve the overall analytical quality or spatial/temporal scale.

2.3.1. Field Data

As a main source of information, we used official partial forestry inventory data in
GIS format (Executive Forestry Agency, 2016) to distinguish the main ecosystems on the
territory of the study area. This data includes information on non-forest formations such
as meadows, and was therefore suitable to delineate spatially the ecosystem types. Since
mapping and assessment of ecosystems within Natura 2000 protected areas has not been
performed yet in Bulgaria, for the ecosystems other than forest we used a variety of other
available data sources:

• data from the official agricultural subsidy layers for High Natural Value pasture
grasslands eligible for funding and actually funded (since 2015) (State Agriculture
Fund, access rules at https://www.dfz.bg/bg/selskostopanski-pazarni-mehanizmi/
school_milk/doc-up-uml-3-2/ (accessed on 17 March 2022))

• data from the surface water monitoring under the Water Framework Directive as
contained in the River Basin Management Plan 2013–2015 (A central database is
maintained by the Executive Environment Agency, more at http://eea.government.b
g/bg/nsmos/water (accessed on 17 March 2022) (in Bulgarian only))

• field photography data obtained by the lead author using a drone in the period
2016–2017

• publications (Bondev, 1991) [77] as digitized in 2013; other scientific publications on
ecosystem condition for the study area

• soil map (Executive Environment Agency) (the metadata for this dataset is available
at http://eea.government.bg/bg/nsmos/spravki/Spravka_2020/soil (accessed on
17 March 2022) (in Bulgarian only)

• real-time forest information system maintained by the Executive Forestry Agency and
WWF-Bulgaria and containing data on old forests, land use mode, logging permits
and crowdsourced information on irregularities reported by volunteers (view at https:
//gis.wwf.bg/mobilz/, accessed on 17 March 2022).

https://www.dfz.bg/bg/selskostopanski-pazarni-mehanizmi/school_milk/doc-up-uml-3-2/
https://www.dfz.bg/bg/selskostopanski-pazarni-mehanizmi/school_milk/doc-up-uml-3-2/
http://eea.government.bg/bg/nsmos/water
http://eea.government.bg/bg/nsmos/water
http://eea.government.bg/bg/nsmos/spravki/Spravka_2020/soil
https://gis.wwf.bg/mobilz/
https://gis.wwf.bg/mobilz/
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We found a strong bias both in the research and administrative efforts made to inven-
tory the different ecosystem types. Forest ecosystems are subject to routine data collection,
and their growth, disturbances and pests are much better studied and mapped with a
relatively high level of detail on species composition (dominant species and up to 7 other
species are being entered). In contrast, much sparser data was available in the forestry
database on ecosystems other than forest, except for the heathland and shrub ecosystems
also classified under the EU Habitats Directive as habitat 4070—bushes with Pinus mugo
and Rhododendron hirsutum. In contrast, the only description of grasslands as “meadow” is
very broad. Data on the availability of alpine and subalpine grasslands outside the forest
management area are insufficiently georeferenced (either due to missing coordinates or due
to coarse scale mapping). In the sense of data integration, this limited the scope of much of
the present analysis—determining Level 3 ecosystem subtype had to be constrained to the
spatial–temporal trends in the parts of the study area inventoried in the forest management
databases (colored in green in Figure 1). At this time, the only practical way to classify
ecosystems in the remaining part of the potential study area (outlined in yellow in Figure 1)
is to resort to Level 2 classification as the use of remote sensing and climate data requires
additional ground truth validation by a larger team.

The study area is subject to vivid scientific interest with over 100 publications. How-
ever, there is a strong disparity of study objects on the ecosystem level, with prevailing
forestry studies and scarcely any publications on the grassland, sparsely vegetated or
river/lake ecosystems. Forestry publications taken into consideration include forest con-
dition assessments, climate studies fieldwork, water balance and pollution studies; we
discarded species level papers focusing on single species of flora, fauna or fungi, which
form the bulk of the publications. Particularly relevant to our study are publications on the
condition of forest ecosystems, including publications on large-scale disturbances causing
changes in condition or functioning that may influence the vegetation index values [78–85].
These sources show that windthrows seem to be the major cause of disturbance. To further
specify the classification of ecosystems across the study area, we restored to the crosswalks
defined by Kostov et al. (2017) [50], Velev et al. (2017) [51] and Apostolova et al. (2017) [52].

2.3.2. Remote Sensing Data and Products

In this study, we use three types of remote sensing data: Ortho-photo data (2013) (Data
upon request, GIS viewer at http://gis.mrrb.government.bg/ (Bulgarian only) (accessed
on 17 March 2022)), satellite derived expert products to determine the current ecosystem
extent and a long time series of remote sensing scenes as means to derive vegetation
indices to assess ecosystem condition. This section lists and describes the data while details
of data processing to overcome the shortcomings in each product type are provided in
Supplementary Materials, Section S5.

Expert products are better suited for static features such as the positioning and char-
acteristics of specific vegetation types. They are released in a sparse data series (for
Copernicus—typically every 3 or every 6 years, depending on the product) and their
production involves significant processing and quality control that does not need to be
repeated by the authors. A shortcoming of expert products is that they do not provide
complete (wall-to-wall) coverage but focus on single ecosystem types and therefore their
joint use leaves gaps when pixels do not belong to any of the ecosystem types in the
respective products.

For ecosystem extent, we chose the Copernicus High Resolution Layers (HRL) expert
products for grassland (grassland extent layers) and forest (tree cover density and dominant
leaf type), the two products that, taken together, provide the most coverage in our study
area’s landscape, while also distinguishing between dominant forest type and detailing the
tree density. We chose reference years 2015 and 2018 since these are the only two reference
years available for both the grassland and forest HRLs.

In contrast, remote sensing scenes are processed to a much lesser extent (e.g., orthorec-
tification, cloud removal, etc.) but are available on average once in two to three weeks,

http://gis.mrrb.government.bg/
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which makes them suitable for forming longer, seasonal data series to perform functional
observations or confirm vegetation location to explore spatial extent.

On ecosystem condition, we performed a selection of vegetation indices (VIs). Essen-
tially, VIs are based on the reflectance properties of the vegetation and are designed to
measure vegetation quantity and vitality in different aspects—canopy area and structure,
concentration of chlorophyll [86]. For the long-term condition and functional assessment
of the selected HME in Bulgaria’s Rila Mountain, we applied an empirical method based
on two well documented vegetation indices (the Normalized Difference Vegetation Index
(NDVI) and Normalized Difference Water Index (NDWI) [87]) as well as the newly devel-
oped Normalized Difference Greenness Index (NDGI) [88]. Research on the relationships
between NDVI and climatic variables already enables predictions and trend definitions [89],
albeit at much larger scale.

We selected for use of multispectral satellite data from MultiSpectral Instrument
(MSI) sensors of Landsat from the United States Geological Survey (USGS) database cover-
ing 42 years (1977–2019) and Sentinel 2 data with high spatial, spectral and radiometric
resolution [90].

2.3.3. Climate Data

In our study, we use climate data for the parameters ‘t2m’ (temperature 2 m above
ground level), ‘tp’ (total precipitations), ‘evpt’ (evaporation) and ‘v10’ (10 m V wind com-
ponent) extracted from the public daily subset of the ECMWF Re-Analysis (ERA Interim)
dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF) database.

The multidimensional files in NC format contain information for each parameter
within the vegetation periods (May–September) for most of the studied period—40 years
from 1979 (the starting year of ERA Interim reanalysis time series), to the time series’ end
in August 2019. We prepared these NC files for further use by ArcMap 10.3 processing. We
produced raster files of each parameter for every month within the vegetation period for
the 40 years of climate simulations and converted them into shapefiles to facilitate data
extraction. We extracted the attribute data and transferred it to SigmaPlot 11.0 where we
performed the regression and line plot analyses.

The retrieval and processing of climate data also has some limitations. ECMWF
discontinued ERA Interim—the dataset containing relevant variables for our study in
August 2019. It provides the follow-up reanalysis dataset ERA 5 [91] in stages and currently
ERA 5 is only available starting 1981. In addition, it had some errata and is still being
verified across the globe [91–93] with no verification yet for Europe on all climate variables
needed for replicating our study using ERA 5 data.

2.3.4. Data Processing Workflow
Processing of Single Datasets

The remote sensing data preprocessing steps include:

• Review and selection of scenes from both sensors. While satellite missions regularly
fly over our study area, it often is cloudy or misty, and in some years there is snow
in parts of it well into May. Therefore, we had to handpick suitable scenes (listed in
Table S4 in Supplementary Materials). Unfortunately, these scenes do not adequately
cover all vegetation seasons with satellite imagery. Even in the handpicked scenes that
we analyze in this study, there are still some clouded areas (visible in the false color
renderings in Figures S7e, S9d, S10a,d, S12a,h, S13d and S16d,g,j of the Supplementary
Materials and Figure 5). Based on cloud coverage masks over the study area and
additional visual review, we selected a set of 33 satellite scenes with minimal to no
cloud coverage, taken within a time frame of 42 years;

• Creating composite images containing spectral bands of the images. In this step we
used ERDAS 14.0 software.

• Creating a raster file of each scene containing the Area of Interest (AOI), i.e., study
area boundary.
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• Calculation of VI from the selected scenes. We calculated Normalized Difference
Vegetation Index (NDVI) for all 33 scenes and produced raster files. Older Landsat
sensors with fewer bands do not allow calculating NDWI and therefore in 12 of the
Landsat MSI satellite scenes we could not obtain the values of this index.

Figure 5. Processing of climate data series: t2m (a,b) and tp (c,d) plots and regression results for the
months of June and July in 1979–2019.
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Table S4 of the Supplementary Materials contains a summary of the data provenance
of the satellite scenes used in the study.

NDVI is the most widespread index for vegetation condition assessment indicating
its energy absorption and reflectance capabilities, photosynthetic capacity and biomass
concentration [94–97]. According to Pettorelli et al., 2005 [89], “it could be used to predict
the ecological effects of environmental change on ecosystems functioning”.

To clarify the relationship between climate parameters and NDVI values and define
their influence on NDVI values within the studied period (1977–2019), we analyze the VIs
of single scenes within a vegetation season together with the available climate data. We
aim at inferring trends of condition changes for the HME in the study period.

We visualize the distribution of NDVI through 3D graphics including the index values
for the forest within the HME as a whole. Because of the large data volume, the elaboration
of a single 3D graph for this period is challenging, both computationally and visually.
Therefore, we constructed six 3D graphs (Figure S6 of the Supplementary Materials) con-
taining NDVI data from dates in the beginning (Figure S6a,b), in the middle (Figure S6c,d)
and in the end of the period (Figure S6e,f) to present the distribution of NDVI values. We
based the data grouping by dates on calculation of correlation coefficients between NDVI
values in the satellite scenes.

After the calculation of the VIs, we prepared 33 thematic maps (TM) of NDVI, 21 TM
of NDWI and 5 TM of NDGI using ArcMap 10.3, as well as six 3D graphic models using
SigmaPlot 11.0.

Since our satellite time series is composed of images from several satellite missions
with different sensor characteristics that influence the respective NDVI values, we cross-
verified the results using the sensor-invariant Normalized Differential Greenness Index
(NDGI) [88]. NDGI is a dynamic index calculated for pairs of satellite scenes in remote
sensing time series and therefore suitable for change detection and verifying the changes in
vegetation conditions in situations where NDVI from different sensors may not be fully
compatible between scenes. It is very sensitive to even small increments of vegetation
development; furthermore, it is designed to detect changes in vegetation cover for a specific
time interval, which makes it useful for vegetation processes (photosynthetic capacity),
i.e., vegetation functional assessment. Based on the spectral reflectance characteristics
of the vegetation, this index is defined through the greenness component obtained via
orthogonalization of the satellite images. Using the greenness component causes NDGI
to be sensor and time invariant. Furthermore, the error stemming from external factor
influences during satellite image capturing is significantly diminished [88]. The index
values range from −1 to +1, where the negative values (NDGI < 0) correspond to a decrease
of the vegetation process (loss of vegetation) and the positive values (NDGI > 0) indicate
an increase of the vegetation process, i.e., photosynthesis takes place (appearance, devel-
opment of vegetation). When NDGI = 0, biomass production remains unchanged for the
studied period.

Due to the limited number of available cloud free scenes, we only generated five NDGI
TMs (Figure 8). Four of them have a full set of correspondent climate parameters for the
years in which the starting and final scenes of the NDVI comparison were taken. For the
period 1984–1977, we lack the climate parameters for 1977 to compare with NDGI. We
assessed the suitability of scene pairs for calculating NDGI based on correlation analysis.

For Copernicus HRL products, we performed GIS-based analysis and identified areas
of interest based on the different attributive information in pixels with the same location in
2015 and 2018 to identify changes over time. We used this data to localize changes in extent
for grassland and forest ecosystems, as well as changes in species composition in forests.

For the retrieved climate data, we extracted the single variables of interest for each
month and performed regression analysis on them. Figure 5 presents a sample of the
results, for the variables t2m and tp in the months of June and July during the period
1979–2019, while the full range of climate data time series plots and regression analyses for
tp is available in the Supplementary Materials (Figures S1–S5).
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Cross-Validation of All Available Data

We use the Whole System paradigm to organize data and jointly analyze different high
mountain ecosystems in our study area and the different datasets available from their mea-
surements. To this end, we re-compiled a table of combined data sources complementing
the parameters in the Methodological Framework (for a list of indicators common across
the ecosystems see Table S1 and for their availability in the ecosystems in our study area
Table S2 of the Supplementary Materials). We furthermore perform the following analyses:

• At the semantic level, we explore relationships between potential new parameters
derived from remote sensing and climate models, and the indicator they describe. This
approach allows for identifying and proposing alternative observation techniques for
the same indicator (see Table S3 of the Supplementary Materials). Cross-calibrating
such data sources to identify their accuracy, measuring ecosystem parameters can
help to establish them as alternatives to field observation data (the standardization of
observations for different ecosystem types is part of ongoing work in the European
Long-Term Ecosystem Research Network and globally in several initiatives. As such,
performing it is currently outside of this paper’s scope). Furthermore, complement-
ing the Methodological Framework with Earth observation and climate modelling
allows us to look at a larger scale landscape mosaic and easily locate the most dy-
namically changing areas of interest such as the forest ecotone or areas with rapid
changes in species distribution. In this manner data co-analysis at the semantic level
allows for using the synergies between available data from all sources to both observe
changes in the whole area of interest and identify focus areas for observation efficiency,
both within the same conceptual framework. The semantic linking also allows us to
combine data mostly related to ecosystem extent and data typically used to study
ecosystem conditions by applying ecological knowledge to infer the links between
extent and condition.

• At the ontology level, we verify/specify the crosswalks between habitat type data in
the forestry database and ecosystem types, as applicable to this specific study area.
The crosswalks are established as a one-to-many relationship in the respective ecosys-
tem mapping methodologies—parts of the Methodological Framework [50–54]; see
Figure 6a. Verification consists of a georeferenced view of available data for habitats
and an on-the-spot check of respective ecosystem type/subtype having in mind the
overall ecosystem structure. The level of detail of the crosswalk depends on the rela-
tions of different labels of available data according to different classifications in the
crosswalk. For example, the finer grained habitat labelling of a polygon allows for
deducing the coarser ecosystem subtype or type classification for the same polygon
while data on the ecosystem type does not automatically translate to ecosystem sub-
types or habitats and typically requires further field validation and/or co-analysis
with other available data. Heathland and shrub ecosystems are specified in the forestry
database to have Pinus mugo as their dominant species and were therefore assumed
to be of the “Arctic, alpine and subalpine shrub” ecosystem subtype. To overcome
the limitations of existing data on grasslands, we analyzed the forestry database’s
information on elevation, slope, exposition and soil types (the latter being also verified
using the classification in the Executive Environment Agency’s soil type layer). We
then defined the possible ecosystem type as Alpine and subalpine grasslands based
on Apostolova et al. (2017) [52] and an unpublished interpretation key produced
during the mapping and assessment of grassland ecosystems in 2015–2017 by the
same authors.

• At the methodological level, we fuse semantically and ontologically compatible
datasets to verify the hypothesis that climate change causes changes in ecosystem
spatial distribution within the landscape mosaic and ecosystem condition/functioning
over time, including change in species composition. We use the spatial distribution
of ecosystem types in this crosswalk derived from ortho-photo and forest database
data, together with Copernicus HRL products for grassland distribution and forest
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tree cover density for 2015 and 2018 to geolocate areas of recent location and dynami-
cally changing composition of ecosystems in the landscape. In the resulting mosaic
(Figure 6b, bottom), the data fusion of remote sensing and climate data conforms
to the ground truth observations concerning the dominance and location of forest
ecosystems. The highest parts of the study area are covered with shrub vegetation and
grasslands, which are unevenly distributed, covering sub-alpine and alpine territories.
Following the crosswalk validation, we combined data from the different available
sources to form time series in the sequence depicted in Figure 6b. We performed a
correlation analysis of the NDVI TMs generated for the satellite images to analyze
the spatial correlation of NDVI across satellite scenes and find pairs of scenes of an-
alytical interest (Figure 7). This data is complemented with ecosystem location and
species composition towards the end of the period, as derived from ground data and
Copernicus HRL.

• Having in mind the need to update the Methodological Framework with developments
that occurred after its publication, we furthermore used the co-analysis of climate and
spatial distribution data from satellite products to derive reference values for candidate
indicators based on remote sensing and thus test the framework’s extensibility.

1 
 

Figure 6. (a) Whole System approach: Conceptual view, data crosswalking and ecosystem type
(level 2 or level 3) distribution on the ground; (b) Selection of pairs of satellite scenes by correlation
analysis of NDVI between scenes; 3D graphic of the correlation coefficient values obtained via Pearson
correlation analyses of NDVI between scenes, and georeferenced supplementary information on
ecosystem types derived earlier and used for reference along with the results of vegetation change
detection in Copernicus HRL products.
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Figure 7. Cross-verification of single satellite images’ time series using different vegetation indices.
Anomalies in NDVI and NDWI can help locate the residual clouds in the TM (such is the case over
the mountain ridge in the scene from August 2011).

Using all available data on both extent and condition proved necessary for the re-
analysis of data in the earlier part of the study period and therefore complements the
missing or insufficiently detailed ground data on the beginning of succession in the forest–
grassland ecotone, as well as the upward crawl of deciduous species, causing the change in
species composition in forests. To verify the data fusion, we defined that the datasets for
spatial extent must contain georeferenced data on ecosystem existence at least at Level 3
(ecosystem type) but preferably at ecosystem subtype or habitat level. Data on ecosystem
condition must relate to condition and functional parameters over time, such as biomass
production observed via the proxy of vegetation indices. The stages of cross-validation at
the methodological level are detailed below:
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(1) We performed a combined analysis of NDVI and where available—also NDWI to
verify the observed vegetation growth in each scene. A sample of such results is
presented in Figure 7, while the full set of processed images is available in the Supple-
mentary Materials (Figures S7–S16 and S18). This approach is necessary due to the
chosen scale of observation—in contrast to expert products that cover all of a given
ecosystem type but do not contain its dynamic characteristics, factors like clouds ren-
der parts of the few available scenes unusable, which only allows partial processing
of these scenes.

(2) We analyze the derived vegetation indices (NDVI and where available—NDWI) for
each year together with climate data for the respective vegetation season to observe
the ecosystem functioning and its relations to the climate parameters in the respective
year. Since the climate reanalysis does not yield detailed projections, the only way
to observe the influence of local parameters determining the microclimate, such
as elevation, slope, aspect, is by comparing the geolocated vegetation indices in
scenes from different stages of the vegetation period with the data on abiotic factors
derived from the forestry database. At this stage, we perform this analysis in a
qualitative manner.

(3) To improve the precision of change detection in the early Landsat images, we restore
to the sensitive NDGI index [88]. NDGI is a valuable part of the remote sensing
indices portfolio for different purposes, including crop monitoring [98,99], disturbance
detection and response [100,101], flood detection [102], ecosystem risk assessment [28],
wetland ecosystem services [103], etc. Earlier work [7,90] proves its usefulness for
evaluating shorter time series of remote sensing images in this same study area. In
this study, we use NDGI to cope with the lack of georeferenced historical data on
ecosystem species composition. The earliest available spatial atlas [77] has very low
resolution (1:600,000) and a description of communities that is very different from
the current EU level and global classifications. Therefore, its usefulness concerning
inferring the semantic and ontological compatibility is only limited to ecosystem
type and does not allow for tracking subtler changes in ecosystem conditions or
species composition. In a first analytical step, we analyzed the NDGI TMs together
with climate data (Figure 8) to identify the climatic constraints to vegetation growth
(such as extreme temperatures or insufficient precipitation). The resulting scenes
are useful both for observing the ecosystem conditions’ dependence on climate and
local environmental factors influencing microclimate (in particular elevation), and
for determining changes in spatial distribution/exploring species composition, as
detailed below.

As an additional analytical step, the generated NDGI TMs also proved useful for
detecting outliers and eliminating problematic satellite scenes such as the image derived
on 13 September 2019, which we identified through co-analyzing the NDGI TM between
13 June 2009 and 16 September 2019 and climate data. The reasoning behind this process is
detailed in the Supplementary Materials, Section S5.
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Figure 8. Relation between NDGI and the respective climate conditions: (a) TM of NDGI between
22 August 1977 and 23 May 1984 and diagram of climate parameter dynamics for 1984; (b) TM of
NDGI between 27 June 1985 and 29 June 1994 and diagrams of climate parameter dynamics for 1985
and 1994; (c) TM of NDGI between 3 July 1987 and 11 July 1990 and diagrams of climate parameter
dynamics for 1987 and 1990; (d) TM of NDGI between 13 June 2009 and 23 September 2011 and
diagrams of climate parameter dynamics for 2009 and 2011; (e) TM of NDGI between 12 August 2019
and 13 September 2019 and diagram of climate parameter dynamics for August and September 2019.

(4) The lack of a long time series for tracking changes in spatial extent of the ecosystems
within the landscape is a particularly challenging case for data fusion. This is so
partially due to the coarser resolution of early satellite imagery that increases the
uncertainty in detecting succession, and partly due to the changing signal within the
same ecosystem type caused by changes in species composition, local microclimate,
etc., which prevents geospatial reasoning on ecosystem extent based on single satellite
scenes. At the same time, our data does not cover full vegetation seasons to enable
reliable location of vegetation types by phenology. The most convenient data sources
on ecosystem extent among the available data are the Copernicus High Resolution
Layer (HRL)—new products currently only available with the information needed
for our analysis in two baseline years, 2015 and 2018. Such a short “timeline” of
two points is by itself insufficient for exploring trends in the change of ecosystem
extent, being at most sufficient to specify the current extent and approximate species
composition of ecosystems. Observing long-term changes in extent therefore requires
creating a semantic link to data not directly attributable to extent. Such semantic
linking allows, in effect, for performing reanalysis of multiple, various scale data
sources for extent and condition. In the case of succession, the semantic inference
that enables reanalysis back in time includes detecting the earliest signals of active
growth in locations with proven later changes in ecosystem extent detected at the
end of the period. In this manner we can use, information on the ecosystem type,
location and first detection of the vigorous new growth to approximately date the
beginning of the succession. Such an approach also has its limitations since it only
applies to clearly defined and spatially stable ecosystems (deciduous and coniferous
forests, heathland and shrubs). It is therefore not applicable to ecosystems with
features less discernible through remote sensing (in our study area: Grasslands, water
ecosystems). The data reanalysis consists of locating stable features detected at the
end of the period and locating the earliest available signals for the forming of these
features. To cross-check the changes in ecosystem extent, we compared the resulting
change maps from the Copernicus Grassland HRL to the corresponding decline in
grassland extent, and cross-validated the findings with earlier ortho-photo, our own
drone imagery and the forestry database. Figure 9 shows representative spots of cross-
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checking the spatial extent. Targeted collection of dendrochronological information
through ground studies in the identified spots could provide for further reduction of
uncertainties, better dating and ground-truthing to form datasets for machine learning
or AI applications.

Figure 9. Cross-verification of ecosystem extent change detection in the upper ecotone—succession
from grasslands through shrubs to coniferous forests. Verification of Copernicus HRL change in tree
cover density (red pixel centroids represent increase in tree cover density between the base years
2015 and 2018 at 100 m pixel) as compared to the actual vegetation cover in (a) ortho-photography
(2011), and (b) our georeferenced drone imagery (2016). The northernmost and southernmost of these
centroids are outside the scope of the 2016 forestry database, whereas the remaining are within a
polygon of the coniferous ecosystem type.

For the purpose of species composition data reanalysis, semantic inference on the
change in species composition includes locating places of known changes in the ecosys-
tem composition in Copernicus HRL between 2015 and 2018 (in our case—spread of
broadleaved species within coniferous forests) and observing the vegetation indices back
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in time to date the beginning of this process. The process is illustrated for representative
parts of our study area in Figure 10.

Figure 10. Data reanalysis: Spatial patterns of change in species composition at locations with known
long-term modifications. Copernicus HRL change in tree cover density (red pixel centroids represent
increase in coniferous and green pixel centroids represent increase in the broadleaved tree cover
density between the base years 2015 and 2018 at 100 m pixel) is the baseline to locate changes in
NDGI values for earlier periods: (a) 07.1987 to 07.1990; (b) 06.1985 to 06.1994. Similar values of NDGI
correspond to similar changes in vegetation growth intensity between the pairs of years used to
generate NDGI. A comparison between the two NDGI TMs and the HRL spatial overlay suggests
that active change in tree species composition started around 1990. The higher precipitation in June
1985 strengthens the baseline signal and therefore accounts for smaller differences found in NDGI
and vegetation growth in the second scene.

In this manner, the fusion of different data sources can form a longer quasi time series
of heterogeneous data sources on extent and condition. In our case, the composite data
series covers the period 1987–2018 and includes the earliest Landsat 1–3 missions at the
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beginning of the period (images of 80 m pixel in two spectral bands); orto-photo and
terrestrial data for the 2011–2016 period; and Copernicus HRL (100 m pixel) grassland and
tree cover density products for the base years 2015 and 2018.

3. Results
3.1. Results of the Remote Sensing Data Processing
3.1.1. Remote Sensing of Spatial Extent and Distribution Trends

The cross-verification of the expert products together with forest database data shows
a high degree of correlation between the datasets (see Figure 11). The available HRL
products for grassland and forest ecosystems (which comprise most of the landscape
mosaic) are presently insufficient to form a timeline of only two data points for three years.
However, as detailed in Section 2.3.4, data fusion and re-analysis allows for forming a
longer timeline of different but semantically compatible datasets. In particular, the co-
analysis with NDGI for earlier satellite scenes and climate data (correlations can be seen in
Table S5 of the Supplementary Materials) supports our second hypothesis about climate
change-induced ecosystem dynamics. This is so since the remaining abiotic parameters are
largely unchanged, while anthropogenic activity was traditionally weaker and extensive
in most of the inaccessible parts of the study area and has ceased completely since its
inclusion in the Natura 2000 protected areas network. The comparison of spatial trends
shows upward expansion of both broadleaved and coniferous forests—with broadleaved
expansion occurring as high as 2000–2100 m—and decline in grassland ecosystems’ extent
in the lower elevations bordering the forest. Figure 11 presents the results of data reanalysis
and fusion across the entire study area. The upward extension found by joint analysis
of Copernicus HRL and the forest database is confirmed and dated more precisely by
extending the data series back in time through NDGI between selected satellite scenes. The
fused data further reveal that southern slopes are more conductive to accelerated growth
of broadleaved species, whereas accelerated upward expansion of coniferous species is
more frequent on the northern slopes. This finding is important for focusing future field
monitoring and dendrochronological verification.

The available ground data also support the observation on the transition from conif-
erous to deciduous forests due to climate change. In addition to our spatial analysis, all
24 polygons assigned to coppices in the forestry database are marked as “forest in transition”
in the “forest type” field, some having been earlier classified as “rock” or “non-afforestable”.
After disturbances, four polygons underwent transition to habitat 9130—Asperulo-Fagetum
beech forests.

We observe the same general dynamics across the study area when analyzing the
earlier vegetation growth through NDGI (see Figure S18 in the Supplementary Materials).
The only negative NDGI values we observed are in the comparison of August 1977 and
May 1984. They are attributable to the earlier stage of seasonal vegetation growth in the
second scene.

The greatest difference in the NDGI TMS comparing scenes taken in the same stage
of vegetation growth (between July 1987 and July 1990, and between June 1985 and June
1994) is noticeable in higher altitudes, both in coniferous forests and shrubs. There are areas
showing growth trends despite the seasonal difference in temperature and precipitation in
the two years (coppices, broadleaf deciduous forests, coniferous forests in lower altitudes).
They contain faster growing vegetation that has net biomass gain and builds up carbon
depots in the seven years between scenes, whereas grasslands’ small positive and negative
NDGI numbers point to a relatively stable state or decline.
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Figure 11. Changes in spatial distribution of grassland and forest ecosystems at pixel size of 100 m
between base years 2015 and 2018. The extent of areas with higher tree cover density in 2018 is
marked with coniferous and deciduous symbols at the centroids of the respective pixels. The changes
are confirmed by NDGI in satellite scenes as early as 1990.

Both NDGI TMs between July 1987 and July 1990, and between June 1985 and June
1994 demonstrate the importance of temperature differences for the vegetation growth,
especially in higher-altitude coniferous forests and shrubs containing coniferous trees.
With most of the parameters being similar, both the rise in temperature between 1987 and
1990 and the earlier onset of higher temperatures seem to have a positive influence on all
ecosystem types in the higher altitudes. Almost lacking precipitation appears to be the
limiting factor on growth for all ecosystem types in the lower altitudes. The earlier onset of
higher temperatures has an even more marked effect in June (comparison between 1985
and 1994) even though the temperature differences themselves are minimal and 1985 was a
year with higher precipitation at the beginning of the vegetation season.

3.1.2. Condition and Functional Dynamics of the HME—Vegetation Indices (VI) and
Climate Data Co-Analysis

Following the reanalysis of combined climate and vegetation indices data, we found
correlations between NDGI that indicate patterns of active vegetation growth between two
satellite scenes to be much stronger when calculated at the observation object’s characteristic
scale. This is illustrated in Figure 12, which compares potential determinants of growth
for each characteristic area of rapid coniferous and broadleaf growth (as identified by the
changes in extent towards the end of the period) with the much more heterogeneous and
large scale study area as a whole. In both focal areas, the correlation between ecosystem
type and overall seasonal growth indicated by the NDGI signal is stronger than the same
type of correlation in the entire study area (Figure 12b,c).



Diversity 2022, 14, 240 28 of 47

Figure 12. Cont.



Diversity 2022, 14, 240 29 of 47

Figure 12. (a) Location of smaller scale focal areas with observed predominant coniferous and
predominant broadleaf active growth within the study area; (b) Correlation coefficients between
NDGI mean and other environmental factors within a vegetation season (note that correlations
in the first scene are inverse since the 1977 scene is later in the vegetation season than the 1984
scene); (c) Correlation coefficients between NDGI mean and other environment factors as year-to-year
comparison in the same part of the vegetation season.

In addition, both in areas with broadleaf and coniferous expansion, the seasonal
growth strengthens between earlier and later NDGI scenes as the expanding species grow
in their new location, indicating their role as driver of overall growth (Figure 12b).

At the same time, the strong positive correlation of coniferous growth and elevation in
coniferous expansion areas on a year-to-year basis between 1987 and 1990 (Figure 12c) is
in line with the observed upward shift in ecosystem extent and emergence of succession
in former grassland areas. The relatively strong negative correlation between dominant
coniferous species and the expanding broadleaf species in the same year is in line with the
change in species composition from coniferous towards mixed forest.

Annual climate differences, however, can significantly influence the year-to-year
growth patterns, as shown in the NDGI comparison between early seasons of 1985 and
1994 (Figure 12c). While ERA Interim’s scale is much greater than the two focus areas, it
informs the understanding of observed NDGI correlation anomalies. The climate mod-
elling shows that 1994 had virtually no precipitation in June, whereas in 1985 the peak
precipitation was in June (Figure S18c–e). As a result, the much weaker growth for 1994
in the more water-deprived higher plots of coniferous forest translates to a negative cor-
relation between year-on-year growth and elevation (and to smaller extent, aspect). A
slower upward expansion of broadleaf species is also observed in the less water deprived
broadleaf focus area where the dominant coniferous species have grown much stronger
than the expanding broadleaf species (as evidenced by the positive correlation between the
coniferous dominated ecosystem type and NDGI in the 1985–1994 scene).

Positive NDVI values prevailed throughout the study period, which indicates good
conditions with the HMEs. NDVI values vary according to the phenological stage within
the vegetation period; we found that they correspond to the changes of t2m parameter,
which confirms the correlation between t2m and NDVI established by a number of authors—
Wang et al. (2003) [97], Pavlova and Nedkov (2005) [94], Katrandzhiev (2018) [90] and
Katrandzhiev and Bratanova-Doncheva (2019) [7]. The seasonal dynamics of NDVI is
most obvious in the last 3D graphic (Figure S6f) which presents the dynamics of NDVI
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changes in 2019. At the beginning of the VP (24 April 2019) when t2m values varied within
4 ◦C (see Figure 9) NDVI values were negative and close to 0 due to the presence of snow
cover (Figure S16a). In the middle of the VP (03 July 2019) when the t2m varied within
16.5 ◦C high values of the NDVI were observed (0.5–1), i.e., the amount of the leaf biomass
increased and the functioning of the vegetation cover became more active. At the end of
the VP (Figure S17b,e,h,j) we observe decreased NDVI values, suggesting decreased values
of the t2m parameter. This confirms the expected influence of temperature on NDVI.

We assessed the selected HME condition by means of NDVI calculation based on a
set of satellite data and the influence of the t2m parameter on the NDVI. We verified the
results via NDWI and NDGI calculations (Figures S7–S18)

Snow cover is one of the major distorting factors in analyzing time series of veg-
etation indices from satellite imagery during the vegetation period, appearing as late
as May/June and as early as October (Figures S7c, S8d, S14a,i, S15a and S16a in the
Supplementary Materials).

Close to the beginning of the VP, the seasonal fluctuations in temperature and precipi-
tation seem to have a strong influence on the intensity of vegetation growth. The snow in
April and early May in Figures S14b,j, S15b and S16b had less impact on vegetation growth
farther down from the ridge than the snow in late May at the beginning of the time series
(Figures S7d and S8e). This finding corresponds to the trend of rising temperatures over
the period, as well as a steepening of the temperature curves in the 1990s. It suggests that
the lengthening of the vegetation season in September contributes to increasing the HME’s
resilience to cold spells occurring at the beginning of the vegetation season, with overall
conditions remaining good despite the seasonal shift. This proves that resilient ecosystems
can better mitigate climate stress.

The presence of snow in remote sensing imagery corresponds to low values of t2m
from the climate model, thus proving the value of fusing these two types of data despite the
lack of sufficient spatial resolution in the climate model. Temperatures vary between 6 ◦C
in May 1984 and up to 8 ◦C in May 2017, and the NDVI values are correspondingly low
(0–0.2 for the alpine shrub and grass vegetation, 0.2–0.4 in conifer forests and above 0.5 in
the broadleaf and coppice stands in May). As a reference, NDVI is almost uniform 0.2–0.4 in
most ecosystems and 0–0.2 in the shrubs closest to the snow cover. This finding confirms
the usefulness of cross-referencing between the remote sensing data and climate model.

There is strong seasonal dynamics during the growing season, with similar growth
patterns in June and July for all ecosystem types except the broadleaf deciduous forests:
Growth has not reached its maximum and its speed distribution appears to be mostly
dependent on the altitude and not so much on the ecosystem type. The leaf biomass
of broadleaved deciduous forests grows faster than all other ecosystem types. At the
beginning of the available observations, NDVI is in the range 0–0.2 for the alpine shrub
and grass vegetation, 0.2–0.4 in conifer forests and above 0.5 in the broadleaf and coppice
stands. In this period, whenever precipitation is not a constraining factor, the intensity
of leaf biomass growth appears to best correlate with temperature (and grow as the tem-
perature rises and the vegetation season possibly lengthens). This progression is visible
in Figures S9b,e, S10b, S11b,f and S13e,h,k. At the end of the period, the NDVI values in-
creased (0.6–0.8) in the dominant conifer forests in unison with the rise in temperature
(~12 ◦C in June 2019, Figure S16g in the Supplementary materials).

The vegetation growth peaks in August and September, as seen in the higher NDVI
values in the late summer thematic maps. Apart from 1977 which has low NDVI values
in most ecosystems, the index varies between 0.4 and 0.6 in most territories in the study
area in 1985 (Figure S8b) and between 0.4 and 0.6 for shrubs, 0.6 and 0.8 for the dominant
forests and up to 1 for deciduous forests in 2019, confirming the increase in forest biomass
production and carbon sequestration with warming climate.

At the end of the VP, the prevailing NDVI values vary from 0.2 to 0.4 in the higher
parts and 0.4 to 0.6 in the lower part of the study area in the first available scene from
October 1986 (Figure S8e,h). With growing temperatures, vegetation is more active in
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October with slowdown mostly in the shrubs at the highest elevation, as evidenced in the
two scenes of Figure S15h,k.

Apart from these general trends, the second part of the study period displays a number
of anomalies. In 1994, the climate model shows the lowest precipitation in the entire time
series, causing a break in the early season growth pattern. There is a relation between
the climate model showing almost no precipitation at the beginning of the vegetation
season (Figure S10f), and the NDVI readings of a slow growth in the NDVI thematic
map (Figure S10e). In comparison, low precipitation in September 1992 after the high
precipitation in mid-season is still a limiting factor for high NDVI, but to a lesser extent
(Figure S10b,c). We observed a similar albeit less acute water limitation in 2000. The
years 2009, 2011, 2016 and 2018 show an unseasonal high precipitation peak preceded
by too low precipitation in the beginning of the VP (Figures S12g,n, S13g and S15m).
The frequency of such occurrences suggests that they may form a new trend in shifting
precipitation patterns with climate change, which needs close monitoring in the coming
years. However, the existence of such a trend is not certain since 2019 displayed a double
peak in precipitation (Figure S17l)—a possible stress factor for the vegetation growth. While
there appears to be corresponding fluctuations of NDVI readings within just one month in
Figure S17b,e,h,j, we infer that one of the scenes in 2019 may be an outlier (see Section S5 in
Supplementary Materials).

In observing these fluctuations, the cross-verification of NDVI with NDWI for the
same scene has a growing importance. It can be used to explain spatial differentiation
in growth patterns. For example, Figure S8f shows a correlation of growth patterns with
NDVI in Figure S8e but also a correlation with the climate model in Figure S8i since the
precipitation modeled for early June (Figure S8c) is still visible as evaporating water reserve
in the snow on the ridge. Where available, NDWI also demonstrates the spatial distribution
of water content in the foliage at a much more fine-grained scale than the climate model’s
precipitation component (Figure S11d). In combination with NDVI and climate modeling,
it can help verify time lags between precipitation and changes in vegetation growth. An
example of such verification is the overall correlation of timing between high NDWI and
precipitation fluctuations; e.g., the June 2009 simultaneous dip in NDWI and precipitation
was followed by increased precipitation and a delayed recovery in July 2009; the opposite
correlation of peak precipitation, growth and leaf water content occurred in August 2011—
see Figure S12. NDWI is also prone to distortion by clouds (as shown in Figure S13d–f),
and to avoid misconstruing the simultaneous dip in NDVI and NDWI as disturbance, there
is a need to use improved cloud masks as these become available in newer remote sensing
products, observing a longer time series over such spots or using ground measurements
from meteorological stations. The usefulness of NDWI grows with the number of high
quality satellite images available. For example, in 2018 the interplay of NDVI, NDWI and
climate modeling shows the decrease of available water in parallel with vegetation growth
in May. While there is almost no precipitation, the available moisture is absorbed by the
vegetation and does not evaporate even after the rainfalls in August (Figure S15), indicating
resilient ecosystem functioning. Similarly, better understanding the effect of the double dip
in precipitation in 2019 is possible once we account for:

(a) the using of water from melting snow in April (higher water content despite lacking
precipitation—Figure S16a,c);

(b) a slowdown of growth in August as the June rains are absorbed and no additional
precipitation comes while the temperature keeps rising (Figure S17a,c), and

(c) the second surge in growth in the second half of September with the new precipitation—
see Figure S17d,f,j,k.

Based on the findings of this and the previous sections, we can find ecologically
meaningful links between different datasets and can go beyond the statistical analysis,
therefore confirming the first hypothesis on the utility of data fusion on the semantic and
methodological levels and utilizing all available data.
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We furthermore achieved a co-benefit of testing the hypothesis of data extensibility
by developing corresponding candidate indicators that use remote sensing data sources
and address a more integrated approach to ecosystem monitoring by widening the data
sources used in it. These indicators are adapted for easy remote monitoring with a min-
imum of ground data, thus contributing towards the ongoing monitoring of changes in
ecosystem extent and condition caused by climate change. We settled for proposing for
future use two linked indicators describing the ecosystem dynamics related to extent and
condition of HME that are sufficiently underpinned by existing data: “Habitat extent
increase/reduction attributable to climate change”, and “Ecosystem succession attributable
to climate change”. These two candidate indicators on ecosystem condition may, after veri-
fication, become part of the methodologies for terrestrial ecosystems (Table 2) and facilitate
automated monitoring of climate change impacts on HME through remote sensing. Both
candidate indicators aim at complementing the existing indicators in the methodologies
of the respective ecosystems that form the landscape in our study area. Adding them to
the Methodological Framework is important with a view to the scientifically established
acceleration of climate change.

Table 2. Candidate indicators and their parameters proposed for inclusion in the terrestrial ecosystem
methodologies. Data sources: (a) Copernicus HRL change product or difference between status prod-
ucts of two consecutive releases (every three years), with spatial resolution of 20 m per pixel or below;
(b) Difference between Copernicus HRL status products for the two ecosystem types/subtypes.
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(a) Condition indicator: Habitat
extent increase/reduction

attributable to climate change
Parameter: Change in area (%)
covered with ecosystem of 10%

vegetation cover or above.

Woodland and
Forest

Coniferous >−1.7 −1.7 to −0.75 −0.75 to 1.5 1.5 to 3.5 >3.5

Deciduous >−9.6 −9.6 to −5 −5 to 12 12 to 25.9 >25.9

Grassland Alpine &
Subalpine >−17.2 −17.2 to−12 −12 to −7 −7 to 0 >0

Heathland &
Shrubs

Only one reference product layer available yet; to be filled in once HRL
Small Woody Features 2018 is released

(b) Condition indicator:
Ecosystem succession attributable

to climate change
Parameter: Change in area, %,

due to climate related succession
between two ecosystem types

Woodland and forest: coniferous
to deciduous >−20 −20 to −15 −15 to −10 −10 to −5 >−5

Grassland to Heathland
and Shrubs

Only one reference product layer available yet; to be filled in once HRL
Small Woody Features 2018 is released (announced for the end of 2021)

The proposed indicators require a quite rigorous approach to distinguishing between
extent change and succession caused by climate change, and similar changes caused
by other factors, notably grazing and land management that are identified as the main
factor influencing the speed of changes in the HME grassland–forest ecotone [5,104,105].
Therefore, they are only suitable for forward-looking remote monitoring of the spatial
ecosystem extent in our study area and other HMEs with a high degree of naturalness
(reusing them in intensively managed HMEs would require additional research and their
adaptation to account for human influence on the ecotone and species composition). While
our study area has been protected with no large-scale anthropogenic influences since 1933,
the data in [77] proves the existence of land management and grazing in the late 1980s.
Therefore, we take the expansion of the NATURA 2000 network in Bulgaria (legislation
adopted in 2007 and extended in 2008) as the moment in which these influences were
legally suspended.

To avoid biases in the indicators, establishing the causes underlying the change in
extent is important. At the same time, it would be difficult or even impossible by only
looking at ecosystem information since there is a need to consider a time lag after the
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establishment of the legal protection status of NATURA 2000. Therefore, we verified the
lack of disturbances in the ecosystem by other means available, including:

- scientific publications and official documents: The orders determining the manage-
ment regimes for the Parangalitsa reserve (in force during our entire study period)
and NATURA 2000 protected areas for the rest of our study area (in force since 2007,
extended in 2008)—both stipulating the seizing of economic activities;

- georeferenced sources: Bondev [77] for the land use and management regimes in the
1980s as well as the subsidy eligibility layers for grassland management (since 2015);

- agricultural data to confirm that the alpine and subalpine grasslands are largely
undisturbed after this date and any occurring grazing is extensive (therefore, not
significantly influencing the landscape).

In this context, the use of semantically consistent data fusion allows the deduction
that the main driver of succession in this landscape since 2008 is climate change.

Based on the above, we can evaluate the parameters for the two candidate indicators
only for periods of proven lack of anthropogenic disturbances for at least 8–10 years of
undisturbed ecosystem development to ensure that the dynamics of ecosystem processes is
exclusively attributable to climate change. This means that, in our study, only the latest part
of the study timeframe is useful for deriving reference values for our candidate indicators—
a minimum of 5 to 10 years without disturbance, that is from 2015 onwards for the entire
study area.

We selected the reference values of the parameters measured to contain easily available
but quality controlled remote sensing and expert products. In this manner, changes in data
sources will be easily traceable through the metadata of the expert product versions and
a reanalysis in the expert products performed by their publisher can be monitored and
trigger a reanalysis of our indicators as well.

We estimate the initial values in Table 2 having in mind the observed speed of ecosys-
tem change in Copernicus products produced for two base years, by ecosystem type.
However, as more such products will become available in the form of continuous data
series, these values will have to be reviewed and verified before including them in the
Methodological Framework. The availability of new data or satellite products is very
likely to prompt an adjustment of reference percentage values, especially for the proposed
succession indicator (red in Table 2). We expect that with establishing the Long-Term
Ecosystem Research site Parangalitsa (whose infrastructure development started in 2021),
better ground data on biodiversity and abiotic heterogeneity will also become available
over time and will be conductive in establishing the proper reference values for these
candidate indicators.

Having in mind the observed dynamics in ecosystem condition (Section 3.1.2) and
the observed NDVI values in our time series, we propose a new, functional parameter to
complement the largely static IP index of the terrestrial ecosystems where a detailed field
inventory is not possible (Table 3). A correlation analysis with the IP index calculated using
the forest database or a future forest inventory will allow for finding outliers and reducing
uncertainty, for a more robust remote monitoring of ecosystem conditions. In this manner,
it can also semantically and ontologically connect the ecosystem condition and ecosystem
service indicators in the methodologies.

This candidate indicator requires additional verification, including some or all of
the following: Cross-verification with NDWI and climate data time series (temperature,
precipitation); error correction via NDGI; field verification: Vegetation inventories and IP
index if it becomes available for NATURA 2000. In addition, a more precise localization
of heathland and shrubs is a prerequisite for determining the missing reference values for
this ecosystem type since it has very few polygons in the forest database but according
to the Copernicus HRL products is likely to be one of the most dynamically developing
ecosystem types.
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Table 3. Candidate indicator for remote ecosystem monitoring of the terrestrial ecosystems. Data
source: Copernicus and Landsat remote sensing. Due to the very limited extent of heathland and
shrubs, we were not able to derive reliable reference values of all reference states and left these
reference values empty for further research and verification.
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Condition indicator:
Ecosystem functioning

Parameter: Peak
vegetation season

NDVI

Woodland and
Forest

Coniferous −1–0 0–0.2 0.2–0.4 0.4–0.6 0.61–0.76

Deciduous −1–0 0–0.2 0.2–0.4 0.4–0.6 0.68–0.84

Grassland Alpine & Subalpine −1–0 0–0.2 0.2–0.4 0.4–0.6 0.69–0.87

Heathland & Shrubs 0.37–0.77

3.2. Analysis of Climate Parameters and Cross-Validation with Vegetation Indices

We analyzed the climate parameters ‘t2m’ (temperature 2 m above ground level), ‘tp’
(total precipitations), ‘evpt’ (evaporation) and ‘v10’ (10 m V wind component) (Table S5 in
the Supplementary Materials) and plotted graphics of their dynamics for the entire period
of available ERA Interim data (40 years) within the vegetation periods (VP). Based on the
results by climate parameter, we could establish a trend of increasing values of the t2m
parameter during the months May–July and September for the full 40-year period. Only for
August, we found a trend of decreasing t2m values (Figure S3 in Supplementary Materials).

In order to test if there is an acceleration in climate change, we divided the 40-year
period of ERA Interim data into two shorter periods: (1) 1979–1999 and (2) 1999–2019 (ex-
cept for September parameters that are not available for 2019 in ERA Interim and therefore
end in 2018). In each half period, we calculated the mean values of t2m given the minimal
and maximal values for each month within the VP (Table S5 in Supplementary Materials).
We observe trends of increasing mean temperatures in May–July and September during
the studied period. In the second period, we observed increased mean values of the t2m
parameter compared to the first period—for May by 2.2 ◦C, June by 1.1 ◦C, July by 0.9 ◦C
and September by 1.2 ◦C. The only exception is August when we observe a trend towards
decrease in the mean values of t2m by 0.6 ◦C for the study period (Table S6 in Supplemen-
tary Materials). We carried out Pearson correlation analysis between the NDVI and the
t2m parameter in the study area which revealed sufficiently strong correlation between
these variables (correlation coefficient- R2 = 0.605). The correlation table for this analysis is
available in Table S5 in the Supplementary Materials.

The review and analysis of the annual climate plots reveal that, apart from the overall
rise in t2m, high temperatures occur about a month earlier at the end of the period as
compared to 1977, 1984 and 1985, suggesting a lengthening of the vegetation period.
Confirmation by studying even longer-term observations and/or the new Copernicus
Phenology HRL product when it becomes available for our study area appears necessary
to confirm this conclusion as it may provide insights into the drivers of vegetation change.

Based on regression analyses and temporal dynamics analysis (Figures S1 and S2),
we establish trends of tp decline in May (Figure S2a) and June (Figure S2b) within the
studied period. In addition, we observe trends of tp increase in July (Figure S2c), August
(Figure S2d) and September (Figure S2e) for the same period within the study area. In order
to test the existence of a relationship between the NDVI and tp, we conducted Pearson
correlation analysis (Table S5) between them in the study area. We found R2 = 0.0228
and p = 0.907 (i.e., p > 0.050). We established negative correlations for both NDVI–evpt
and NDVI–v10, with correlation coefficients −0.275 and −0.0184, respectively. Therefore,
we did not find definite trends of influence of the evpt and v10 in the NDVI. The find-
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ings of Section 3.1.1, however, suggest that such trends may well exist in some parts of
the study area where other abiotic factors influence a strong dynamic of the ecosystem
development/succession.

In Figures S4 and S5, we present the change dynamics of these parameters. When
compared to the changes in the NDVI values throughout the study period, we were not able
to establish a connection. Therefore, in the current study we establish that cross-analyzing
the influence of the t2m parameter on the NDVI and HME conditions yields the best results
as it is the only parameter showing strong correlation to the NDVI (R2 = 0.605).

This semi-qualitative analysis is in line with the complicated interplay of environmen-
tal factors that limit vegetation growth in different parts of the vegetation season; climate
parameters are only part of these factors. Among climate variables, temperature seems to
be the most obvious overall limitation to vegetation growth, while other parameters may
influence it in different years without a clear trend.

We performed correlation analysis of NDGI and local parameters from the forestry
database using the corrplot library in R (Figure S19 of the Supplementary Materials). The
overall weak correlations between any two parameters taken across the whole study area
is ecologically meaningful since it confirms the complex interrelations between growth
and microclimatic environmental parameters, in line with the findings of Section 3.1.1
about the microclimate’s importance. It also reveals a scale mismatch for some of the
possible correlations as they likely occur only in parts of our study area, as suggested by
the data fusion reanalysis in Section 2.3.4. On the current scale of observation, the higher
correlations would exist only in areas where favorable microclimatic conditions influence
the vegetation dynamics, whereas large areas with relatively homogeneous microclimate
or vegetation or weaker changes in vegetation growth (typically alpine grasslands or
shrubs) yield weaker signals and therefore weaken the overall correlation. This is visible
in Figure S19b, where the strongest observed correlations are to parameters determining
the microclimate—elevation and slope. In contrast, strong climate fluctuations lessen the
impact of local microclimate—see Figure S19c for year-to-year comparison and Figure S19c
for the seasonal comparison. As such, the sensitive NDGI must be used at smaller scale for
cross-validation of both NDVI and NDWI.

As to the nature of microclimatic determinants, the spatial analysis of Figure 9 strongly
suggests the need for more detailed, field-measured climate data in focal points of par-
ticularly dynamic ecosystem change, specifically the southern facing slopes in the higher
altitudes and the forest—alpine grassland ecotone, especially in locations with established
succession. Such targeted data collection would enable a georeferenced and hopefully
much more precise correlation analysis.

4. Discussion

The present study in some of its parts repeats the methodology of earlier work of
some of the authors in the same study area [7]. However, it is much wider in terms
of data integration and consistent application of the Whole System approach. To our
knowledge, this is the first study that makes use of the ontological and semantical power
of structured indicator–parameter systems as defined in the Bulgarian Methodological
Framework [26] and, in this sense, also contributes to the worldwide research on the Whole
System application. A summary of the results follows in this part.

4.1. Methodological Results

With a view to ontological similarity defining one-to-many relations between ecosys-
tems and habitats, forestry data and our field verification (Section 2.3.4), we were able to
narrow down the ontological similarity on level 3 (ecosystem subtype to habitat) for the
forest ecosystems in the study area by verifying the types of habitats occurring in the forest
ecosystems (Figure 7, middle). Due to insufficiently granular data about the other ecosys-
tem types, we were only able to verify the level 2 relation for the other ecosystems present.
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4.2. Hypothesis Verification

Our study confirms both the working hypotheses we presented in the introduction. In
support of our first hypothesis:

• We confirm the semantic consistency of the Methodological Framework by using
new data sources in a manner consistent with the Whole System approach. Based on
this work, we propose an ecologically meaningful extension by adding a candidate
indicator set on climate change impact. These indicators are of particular importance
for the sensitive HME. They are balanced on a landscape level and reflect the trade-offs
between the extent and condition of different ecosystems in the course of climate
change-induced succession since in the limited habitat the expansion of one ecosystem
type is at the expense of another. In addition, we explore the scale of observation and
confirm its importance in reducing uncertainty when a dataset’s scale (in our case,
ERA Interim) significantly exceeds the characteristic scale of the object of observation.

• We use an ontologically consistent approach to utilize data collected for different
purposes (in this case use habitat data) for verification of a Level 3 crosswalk for forest
ecosystems. In addition, through this crosswalk field data on habitats can be useful
in conjunction with vegetation indices for a future remote monitoring of forest areas
where the dominant vegetation type consists of climate-vulnerable species. This allows
for focusing our limited fieldwork resources on problem spots.

• The production pipeline of Copernicus remote sensing products delivered by the
European Environment Agency utilizes significant human and financial resources to
ensure their methodological consistency within a single information infrastructure;
they also undergo rigorous quality checking and control of both data and metadata.
Incorporating them in a future remote monitoring within the Bulgarian Methodologi-
cal Framework would therefore add to the strong methodological and information-
technical consistency of the Whole System approach with very low additional costs
for exploring data poor biodiversity hotspots like our study area. This seamless incor-
poration of a new data source as a basis for new candidate indicators further confirms
the extensibility clause of our first hypothesis. Data fusion and co-analysis form the
basis to confirm the possibility to derive ecologically meaningful information from all
available data sources.

• We use data fusion also to cross-check and verify data sources, thus reducing un-
certainty and supporting our hypothesis that applying the Whole System approach
allows for more reliable data integration. In the course of our research, we confirm
the suitability of the selection of vegetation indices and their combination with expert
remote sensing products, climate models, publications or other non-georeferenced
documents and field data as a set of mutually complementary data sources that allows
confirming synergies and identifying outliers.

• Beyond the expected results, we further found that using data integration:

# allows the additive introduction and use of a higher number of very diverse
data sources for a more reliable monitoring of both the ecosystem extent and
conditions in data sparse environments;

# supports finding the appropriate observation scale for different scientific ques-
tions; and

# enables extending the holistic approach of the Methodological Framework to
accommodate for future ecologically meaningful linking of ecosystem condition
and ecosystem services in the sense of natural capital accounting principles that
can replace their current assessment within the Methodological Framework.
This, in turn, underpins the use of the Whole System approach in a socio-
ecological context.

The analysis of fused data also supports our second hypothesis. We were able to
observe the impact of climate change on both ecosystem conditions and functioning, and
the landscape level changes in the spatial distribution of different ecosystems and the
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species composition. Based on the conceptual and instrumental advantages of the Whole
System approach, the selected toolbox allows for complex monitoring that goes beyond the
observation of species, ecotones or single ecosystems.

In terms of ecosystem extent, our study suggests that climate change may influence
the ecosystem succession. A longer time series may confirm an acceleration as suggested
by NDGI observations of early succession signals in the 1990s and the more rigorous recent
changes found in Copernicus HRL data. In such cases, regular ecosystem extent monitoring
may identify the possible approaching of tipping points in extent reduction or species
composition for some ecosystems. For the grassland ecosystems in our study area, such
speeding decline may also influence the overall ecosystem resilience and reduce the habitat
of endemic species. Should the observation of a longer time series confirm such accelerating
trends, the observation frequency for some ecosystem types might also need reconsidering
in the Monitoring Guide [76] of the Methodological Framework.

On ecosystem condition and functioning, we made a number of observations.
We established the correlation between vegetation indices and the changes of selected

climate parameters (temperature, t2m; total precipitation, tp; evaporation, evpt; and 10 m
V wind component, v10) throughout the 40-year period—from 1979 to 2019—within the
study area. We found an overall increase in the t2m parameter during the vegetation period
between the start and end years of observation; with the exception of August the values
of the t2m decrease. In addition, based on the regression analysis, we found an overall
increase of the tp parameter. These trends suggest that climate change challenges the
resilience of HME ecosystems, which are increasingly subject to dryer and hotter weather
during the vegetation peak seasons. At the same time, lengthening the vegetation season
contributes to increase in biomass production and overall resilience. Seasonal shift in
phenology is important to observe closely, as revealed by the NDGI correlation analysis
(Section S5 in Supplementary Materials).

With regard to the forests, we could not establish conclusive long-term links between
tp, evpt and v10 parameter change and the NDVI changes over the entire study area. The
results of detailed analysis in different years suggest that the limiting factor to growth
changes depending on the combination of climatic variables and can be precipitation (years
1994, 2000) or temperature (years 1986, 2009). The only direct connection and dependence
we were able to confirm is the connection between the t2m parameter and NDVI. Overall,
the interplay and combined influence of both the t2m and tp on the NDVI across the study
area confirms the findings of previous studies.

At the same time, the spatial analysis of species change patterns in the forest parts of
our study area suggest the importance of microclimatic parameters, in particular elevation
and slope. This finding points out the need for meteorological ground data and smaller scale
data fusion to verify the importance of these factors in the conditions of climate change.

We observed seasonal and annual dynamics arising from these interrelations in the
NDVI value distribution in the main ecosystem types and forest ecosystem subtypes, form-
ing the composition of the studied HME. The increasing temperature and total precipitation
in the last two decades appear to have led to an increase in the NDVI values, suggesting an
improvement in the vegetation functioning and conditions through the last 20 years, as
well as changes in species composition accompanied by growth acceleration. The subalpine
and alpine grassland and shrub ecosystems may be more susceptible to climate parameter
changes compared to the forest ecosystems. Since grassland ecosystem dynamics develop
at a higher speed, the collection of time series for these sensitive ecosystems is necessary
to facilitate better remote monitoring. On a subtype level, conifer forest ecosystems show
resilience to changes in climate parameters and remain functionally stable; there is also a
trend of succession towards higher altitudes. The more vigorous vegetation process that
we observed in the broadleaf and coppice forests is an indication of future changes in their
distribution to higher habitats atypical for them, thus influencing the species composition.
We furthermore found indications that the changes in climate parameters led to a longer
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vegetation season, most clearly seen in 2019. Future phenological observations and analyses
are necessary to confirm and specify these trends.

By introducing a rigorous approach to extent and condition observations, our study
also creates a basis for further research on the HME’s capacity to provide ecosystem
services related to the primary production ecosystem function along with the new UN
System of Environment Economic Accounting (SEEA) standard. Further analyses based on
a combination of field observations of the energy budget and remote sensing are necessary
to specify and assess the dynamics of these ecosystem services. A more detailed study of
some key services such as pollination will also require additional holistic methods such
as pollinator efficiency studies [106–108], observation of environmental stress [109] or
eDNA [110,111] to establish a better overview of species composition and within our large
study area.

The evaluation of vegetation indices confirms the resilience of the HME ecosystems,
whereas the spatial analysis using HRL products demonstrates spatial changes at the
landscape level. Since the study area is protected and human intervention is minimal, we
expect that climate change will remain the main driver for most of the developments in
quickly developing ecosystems (grassland, sparsely vegetated areas). As tree growth is
much slower than the retreat of grasslands, we expect these ecosystems’ dynamic to benefit
from increased observation frequency enabled by the better availability of remote sensing
imagery. While both forest and grassland ecosystems show increasing growth dynamics as
climate change accelerates (as confirmed by joint analysis of the Copernicus HRL products
for the end of our observation period), the relatively late appointment of NATURA 2000
protection for all of our study area means that both succession and change in species
composition started before its full protection. Therefore, we cannot fully attribute the
succession in the tree line ecotone to climate change for the period 1990–2015. Nonetheless,
we can conclude that:

• Observing the gaps between the Copernicus Grassland and Tree Cover Density HRL
products is a good way to localize succession areas of particular monitoring interest for
both future fieldwork and observation of the newly formulated extent and condition
candidate indicators for climate change impact;

• The use of new remote sensing products will allow for a finer grained monitoring. This,
in turn, would enable downscaled monitoring, the early identification of potential tip-
ping points and problematic areas resulting from climate change-induced disturbances
such as storms, hails or pests. Such upcoming potentially useful new products to add
to our remote sensing portfolio are the small woody features for remote localization
of heathland and shrub ecosystems and phenology for better tracing the effects of
climate change on the ecosystem.

• Changes in forest ecosystems are slower but still observable over longer timescales.
Due to the slower processes in forests, both the impact of earlier anthropogenic activity
and the results of natural disasters are of stronger local influence. As they require more
accurate and frequent observation, the introduction of Synthetic Apreture Radar (SAR)
products for monitoring in cloudy days and the upcoming launch of hyperspectral
Copernicus missions are prospective important directions for enhancing the remote
sensing parameter portfolio of the Methodological Framework.

• Together, these directions will largely enhance the toolbox available for the monitoring
of climate change effects on HME. They will be better suited to inform and support:

• future directions for targeted fieldwork,
• scientific products delivered through the European Long-Term Ecosystem Research

Network, and
• the implementation of national and regional climate change adaptation policies.

5. Conclusions

The current paper presents, for the first time in a Bulgarian high-mountain ecosystem,
a Whole System approach to long-term (42-year period) assessment of the response of the
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worldwide sensitive HME ecosystems to changes in climate parameters. We demonstrate
the usefulness of a toolset of complementary approaches: Selected indices from satellite-
derived data (NDVI was verified by the NDWI and the NDGI), HRL products and cross-
validation with climate modeling data and ground observations/inventories as an integral
part of the Whole System approach.

Studying long time series also presents a number of challenges and uncertainties. In
our study area; these consisted in:

# Technical constraints of the sensors used in the earlier years. Since missions of different
space agencies overlap, the granularity of available imagery varies with the imaging
satellite’s sensors, sometimes even within the same year or month. Thus, a source of
uncertainty is the need to intercallibrate data series, e.g., between different Landsat
sensors and Sentinel—which is only partially alleviated by the use of NDGI.

# Uniform and precise climate modeling is not available for the first years of our study
period. The ERA Interim data series started in 1985 and was discontinued in August
2019; the replacing dataset ERA 5 was not available for the entire period at the time
of data processing. Using ERA 5 in later studies requires careful cross-checking of
available data and identifying (where possible—also assessing) the cross-calibration
uncertainties and errors.

# A dearth of suitable satellite images due to the shorter vegetation season and the
frequent occurrence of clouds. Therefore, our dataset is imbalanced towards the last
years when Landsat was complemented by Sentinel imagery and both the frequency
and quality of available image data, as well as the number of vegetation indices
retrievable from the new sensors, increased.

# Uncertainty of data in the forestry database. The existing forestry database has no
QA information either in the published official data collection guidelines or in the
dataset itself. Furthermore, the relatively limited data on species composition suggests
limitations in the scope of field surveys over the years.

# We found significant data and research bias towards studying forest ecosystems and,
consequently, could not perform the same quality analysis on the grassland, shrubs
and sparsely vegetated ecosystems in the study area. To be able to repeat the study
uniformly within the entire area of interest, a more detailed mapping, aimed at filling
the spatial gaps on an extended study area (yellow colored parts from the outline in
Figure 1), would be necessary.

# The great scale disparity of data sources at the appropriate observation scale for
our study object limits the current climate data fusion approach to semi-qualitative
observations.

All of the above, along with the incorporation of new remote sensing products as spec-
ified in the Discussion section above, presents a number of instrumental research directions
to improve the methodology of our study as new methods and products become available.

At the same time, this toolbox of complementary methods allows for specifying new
ecological research questions that present a wide field for future work:

# Exploring a denser time series of satellite imagery and the corresponding ERA 5 cli-
mate parameters along with field data would be conductive to determining the best
time slots for reliably identifying ecosystem types and subtypes depending on the
best correlations with other environmental factors during the vegetation period.

# Data fusion involving climate models requires additional research in finding the
appropriate observation scales of complementary ground and remote sensing data.

# The joint analysis also allows for hypothesizing on a shift in the extent and upper bor-
der of the forest ecotone, as evidenced by the surge in the vegetation growth of shrubs
(containing coniferous trees) located in the highest parts of the study area. Another
key direction, therefore, is the regular observation of phenology shifts and seasonal
differences between the reflectance of ecosystem types/subtypes, with broadleaf
forests being easiest to spot remotely within the vegetation season.
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# Focused dendrochronological studies, in areas where persistent changes in ecosystem
extent, conditions or species composition are detected, are necessary to support the
automation of monitoring through machine learning and AI.

# Due to the sensitivity of NDGI, a correlation between the NDVI variation and distur-
bances (e.g., windthorows) in much smaller spots as described by Panayotov [81] in
some parts of our study area could be the object of further research.

# With a view to the delay in mapping and assessment of ecosystems within Natura 2000,
another important research direction is the field verification and detailed mapping of
the location of ecosystems other than forest, by incorporating a wider toolset of field
methods such as the ones mentioned in the Discussion section above.

# The assessment of the provisioning capacity for ecosystem services related to the biomass
is likely to become easier as more and better quality remote sensing imagery becomes
available in conjunction with field data using new standard observation methods.

# The use of climatologic publications may prove useful for cross-checking climate
model projections for longer time series before 1985.

# Downscaling of ERA Interim/ERA 5 or obtaining finer grained climate projections—or
even better, targeted collection of field data on climate variables—would be beneficial
for a geospatially detailed correlation analysis of factors determining changes in the
ecosystems. This, in turn, would yield better understanding of the drivers of change
over the study area which has significant variation in its relief, slope and elevation.
Until such data are available, coping with datasets whose resolution is much coarser
than the characteristic scale of HMEs remains an important research direction.

# Scaling up our approach to data integration to cover entire landscapes at a national or
regional scale (wall-to-wall mapping).

# Exploring the use of fuzzy logic and fuzzy graphs for automating the data processing.

The greatest research challenge is undoubtedly the smooth and incremental integration
of these future work directions in an automated and holistic manner beyond the statistical
analysis. The speed with which new open data and research tools become available will
make the shift towards machine learning and artificial intelligence an imperative next step
for near-real time processing of ensembles containing ground data, climate models and
satellite imagery in order to better assess the response of HME to climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14040240/s1: Tables: Table S1: Whole System condition indi-
cator set grouped by subsystem of the ecosystem as defined in Methodological Framework, 2017;
Table S2: Cross-reference of indicators between ecosystem types—Biodiversity subsystem; Table S3:
Measurement methods for ecosystem parameters according to the Whole System approach as per
the Bulgarian Methodological Framework for mapping and assessment of ecosystem condition and
services (Methodological Framework, 2017). Preferred single methods are marked in bold. Models
(in italic) are only applicable for areas with sufficient and consistent data; Table S4: Satellite data
sources. Note that Landsat images before Landsat 7 TM have a coarser grid; Table S5: Data collection
of the NDVI and climate parameter values used for Pearson Correlation analyses and correlation
coefficients; Table S6: Changes in t2m parameter values during the months May, June, July and
August for the period 1979–2019 and 1979–2018 for September. Figures: Figure S1: Long-term
trends in tp parameter during the vegetation season: (a) May; (b) June; (c) July; (d) August, and
(e) September; Figure S2: Long-term linear regression trends of tp by month: (a) May; (b) June;
(c) July; (d) August, and (e) September; Figure S3: Long-term trends in monthly temperatures in
the active vegetation months (May to September); Figure S4: Graph of evpt by month: (a) May;
(b) June; (c) July; (d) August, and (e) September; Figure S5: Long-term graph of v10 by month:
(a) May; (b) June; (c) July; (d) August, and (e) September; Figure S6: 3D graphics of the NDVI
values for the period 1977–2019: a,b—in the beginning; c,d—in the middle; e,f—in the end of the
period; Figure S7: Data collection for vegetation periods in 1977 and 1984: (a,c,e)—satellite images;
(b,d,f)—TM of NDVI: (b) The NDVI values were above 0 all over the study area and the advanced
vegetation phase (i.e., leaf biomass production), which suggests overall good functionality of the
HME; (g)—diagram of climate parameters dynamics. Due to the lack of t2m data, for 1977 we only
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show NDVI data; Figure S8: Data collection for vegetation period in 1985 and 1986: (a,d,g)—satellite
images; (b,e,h)—TM of NDVI; (f)—TM of NDWI; (c,i)—diagrams of climate parameters dynamics;
Figure S9: Data collection for vegetation periods in 1987 and 1990: (a,d)—satellite images; (b,e)—TM
of NDVI; (c,f)—diagrams of climate parameters dynamics; Figure S10: Data collection for vegetation
periods in 1992 and 1994: (a,d)—satellite images; (b,e)—TM of NDVI; (c,f)—diagrams of climate
parameters dynamics; Figure S11: Data collection for vegetation period in 2000: (a)—satellite image;
(b)—TM of NDVI; (c)—diagram of climate parameters dynamics; (d)—TM of NDWI; Figure S12:
Data collection for vegetation periods in 2009 and 2011: (a,d,h,k)—satellite images; (b,e,i,l)—TM
of NDVI; (c,f,j,m)—TM of NDWI; (g,n)—diagrams of climate parameters dynamics; Figure S13:
Data collection for vegetation periods in 2012 and 2016: (a,d)—satellite images; (b,e)—TM of NDVI;
(f)—TM of NDWI; (c,g)—diagrams of climate parameters dynamics; Figure S14: Data collection for
vegetation period in 2017: (a,f,i)—satellite images; (b,d,g,j)—TM of NDVI; (c,e,h)—TM of NDWI;
(k)—diagram of climate parameters dynamics; Figure S15: Data collection for vegetation period
in 2018: (a,d,g,j)—satellite images; (b,e,h,k)—TM of NDVI; (c,f,i,l)—TM of NDWI; (m)—diagram
of climate parameters dynamics; Figure S16: Data collection for vegetation period in 2019-part 1:
(a,d,g,j)—satellite images; (b,e,h,k)—TM of NDVI; (c,f,i,l)—TM of NDWI; Figure S17. Data collection
for vegetation period in 2019-part 2: (a,d,g,i)—satellite images; (b, e, h, j)—TM of NDVI; (c,f,k)—TM
of NDWI and diagram of climate parameters dynamics (l); Figure S18: Relation between NDGI and
the respective climate conditions: (a) TM of NDGI between 22/08/1977 and 23/05/1984; (c) TM of
NDGI between 03/07/1987 and 11/07/1990; (f) TM of NDGI between 27/06.1985 and 29/06.1994
(i) TM of NDGI between 13/06/2009 and 23/09/2011; (l) TM of NDGI between 12/08/2019 and
13/09/2019; (b,d,e,g,h,j,k,m)—diagrams of climate parameter dynamics for 1984, 1987, 1990, 1985,
1994, 2009, 2011 and 2019, respectively.
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