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Abstract: Climate change has greatly altered plant habitats, resulting in greater biodiversity loss
at different scales. Therefore, it is important to quantify such changes for better monitoring and
conservation. In this study, we adapt the EUROMOVE model and its mean stable area indicator
(MSAi) to the conditions in the Czech Republic. Our objective was to predict change in species
richness from a representative pool of 687 species from 1990 to 2100 under the RCP 8.5 climate
scenario, focusing on the current period (2018). Another objective was to assess the effectiveness
of the MSAi as a tool for quantifying landscape vulnerability. Our result shows that species habitat
expanded between 1990 and 2018, although about 2 per cent of species were lost. The average
MSAi of the most favourable highland habitats may decrease from 0.85 to 0.65 by 2100 as >20%
of baseline species may be lost. Indicator species of Alnus (alder) and Festuca (fescue), typical of
lowland habitats, are among the most vulnerable, already showing a net loss of their current habitat
extent. The MSAi can be applied as a comprehensive tool to quantify the impact of climate change on
landscape vulnerability as more survey data becomes available.

Keywords: climate change; EUROMOVE; species richness; mean stable area index; Czech Republic

1. Introduction

Climate change continues to accelerate species diversity loss, shifting species and
their habitats northward [1–7]. Such changes have been captured at different spatial and
temporal scales with the help of species distribution models SDM [8–12]. However, this
evidence of change does not adequately quantify the state of landscapes for monitoring
biodiversity loss and related ecosystem function [13].

The statistical correlation between species occurrence and the current environmental
conditions is often the basis for projecting future distribution patterns from SDMs [2,4,7].
Subsequently, the results from SDMs can be used to choose conservation sites [7,14] and
assess the risk of extinction [2,4,5]. In the case of multiple plant species, individual bi-
nary species maps can be additively aggregated into stacked species distribution models
(S-SDMs) [15–17]. The approach is based on the fact that each species in a community
will adapt differently to changing environmental conditions [17,18]. The importance of
how modelled changes may affect ecosystems can be drawn from experimental studies
showing a positive correlation between species richness, stability and functioning [19–21].
More importantly, there is evidence that above a 20% threshold, the impact of species loss
on some ecosystem functions is comparable in magnitude to that of climate change and
other major drivers of change [22]. Thus, detailed changes in species richness and habitat
extent from S-SDMs is needed to comprehensively quantify and facilitate the application of
S-SDMs in monitoring and conserving biodiversity [13,23].

Several biodiversity models and indicators have been proposed to quantify biodiver-
sity loss at the global and regional scales. These metrics, including the mean species abun-
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dance (MSA) from the GLOBIO model [24,25], the biodiversity intactness index (BII) [26]
and the living planet index (LPI) [27], have been tested at different scales. They are all
variants of the natural capital index (NCI) indicator and measure population trends among
species, ecosystems’ state, and their degradation extent relative to a predefined historical
species abundance [28–30]. A less commonly tested indicator, the mean stable area index
(MSAi) from the EUROMOVE model, has been used to quantify the impact of climate
change on plant species diversity within the European region [2,5]. EUROMOVE is an
S-SDM based on multiple logistic regression between representative plant species and
climate data for different climate scenarios in the European region. The MSAi indicator
was used to quantify the stability of the entire European landscape on a scale of 0.0 for
highly impacted landscapes to 1.0 for unimpacted landscapes [2,5]. Like most global and
regional biodiversity indicators, MSAi was calculated from coarse climate data, ignoring
local topography, hydrology, and geological variations. Hence, it is likely that the estimated
MSAi values for most European countries may not reflect the actual situation. A detailed
estimation at a national scale is necessary to improve conservation management.

The current locations of vascular plant species diversity in the Czech Republic, like
in most parts of the European region, are restricted to national parks and protected areas
in mountains and hilly areas [31]. In the Czech Republic, the distribution of high plant
species has been classified into nine forest vegetation zones (FVZ) to reflect changes in
microclimatic conditions and the transition from one type of species to another with
changes in altitude [1,32–34]. Oaks-beech species dominate in lowlands; fir-beech are
common at moderate altitudes. Spruce-beech dominates in high altitudes, while dwarf
pines are restricted to the most elevated areas [1,33,34]. Under a partially mitigated climate
scenario, the FVZs have been projected to contract or shift to higher altitudes. Although
their response under the baseline climate scenario is not well known, related studies have
shown that high altitudes are equally at risk of losing their climate space by 2100 [35,36].

This study uses a representative sample of plant species to predict and quantify
species richness patterns in the Czech Republic from 1990 to 2100 under the baseline
climate scenario, focusing on the current period (2018). The main goal is to adapt the
EUROMOVE model to the environmental conditions in the Czech Republic. We seek to
assess the vulnerability of landscapes in the Czech Republic to species loss. Achieving this
aim should improve our understanding of landscape vulnerability to biodiversity loss and
its implications for policies and conservation management in the Czech Republic.

We present the results of a detailed multispecies distribution model capturing simulta-
neous changes in species richness and potential habitat extent with time. We also include
the distribution of species indicative of distinct vegetation zones to understand the impact
of climate and environmental factors. Our results confirmed that the most vulnerable areas
in the Czech Republic are lowlands. Highland habitats are the most stable but are highly
at risk of losing their climate space. Their current MSAi values range from 0.8 to 1.0 and
may decrease from 0.5 to 0.8 by 2100 without efforts to mitigate climate change. About
2% of the baseline (1990) species pool was lost by 2018. However, the average MSAi for
the entire landscape has remained the same. While MSAi is a broad and comprehensive
tool for quantifying the impact of climate change on landscape vulnerability, there is a
need to quantify vulnerability at the ecosystem level in detail. This paper is structured as
follows: Section 2 describes data sources and the modelling approach used to achieve the
research aim; Section 3 describes the results in four subheadings; Section 4 discusses the
results, limitations and suggestions for future research and ends with concluding remarks
in Section 5.

2. Materials and Methods

We processed and selected relevant species and environmental data in R (R Develop-
ment Core Team 2021), QGIS 3.x and ArcMap 10.x software. Next, we modelled species
distribution in R using Maxent [37,38]. Lastly, we used the model output to calculate the
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mean stable area index for the Czech Republic. A description of the data and modelling
approach is presented as follows.

2.1. Species Data

We obtained georeferenced survey records (presence only) of higher vascular plant
species from 1960 to 1990 (baseline species data) from the Agency for Nature Conservation
and Landscape Protection of the Czech Republic. The data which excluded alien species
consisted of 3044 species and ~1.9 million records. We created 315,960 spatial sampling
grids with a dimension of 500 m × 500 m for the entire Czech Republic to process species
data. We joined each species’ data to the spatial grids by location, counting the total number
of each species in each grid (species abundance). We then reduced species abundance to
presence-only records by assigning a value of 1 to each grid having species abundance ≥1
to estimate species richness. We removed all species with less than 50 observations for the
entire country because we thought these could not be accurately modelled. Hence, this
resulted in a total of 1117 baseline species.

2.2. Climate and Environmental Data

We obtained the following category of environmental data: climate, soil, topography,
geology, hydrology and drainage and prepared them at a resolution of 500 × 500 m. The
sources and scale of each environmental data are summarised in Table 1. The climate
variables selected to reflect varying conditions of moisture and energy included: the
mean annual temperature (antemp), mean annual sum of rainfall (anrain), mean annual
temperature of the coldest month (tcold), mean temperature of the growing season above
5 ◦C (tempgs), the effective sum of temperature above 5 ◦C (efstemp) and the length of the
vegetation season (lenvegt). We obtained the monthly averages of these variables from 1961
to 2099 as shapefiles or as raster layers. From this time span, we considered four modelling
periods, namely, 1961–1990 (baseline climate), 1990–2018 (current climate), 2041–2060 (near-
future climate) and 2081–2100 (distant future climate). Future climate data sets were based
on the unmitigated representative concentration pathway -RCP 8.5 [39], which was the
only projected data set of the Czech Republic with the finest resolution (500 × 500 m)
available at the time of this study. The projected datasets were dynamically downscaled
from the HadGEM 2-ES global model, chosen because it was the most accurate model,
capturing change in precipitation patterns in the Czech Republic. These datasets excluded
the unavailable monthly averages from 1961 to 1979. In ArcMap 10.x Geostatistical analyst,
we interpolated the historical climate data using ordinary kriging and fitted a spherical
model to each climate variable. The Pearson correlation coefficient between the observed
and predicted historical climate variables ranged from 0.80 to 0.88.

We obtained non-climatic data in vector or raster format, which included: vegetation
cover, soil texture, soil depth, geology, distance to water bodies, soil drainage, slope and
aspect. Soil depth and texture were scaled from 1 to 2, where 1 represented shallow and
coarse soils, respectively, while 2 represented deep and fine soils. Distance to water body
varied from 15 to 3539 m. Soil drainage varied from 1 for poorly drained to 5 for well-
drained soil. Geology considered different rock fragments and varied from 1 for coarser
and heterogeneous rocks to 1.9 for finer and homogeneous rocks. Slope angle range was
from 0 degrees for flat areas to ~35 degrees for mountainous areas. All vector layers were
converted to raster and resampled to match the resolution of the climate data. Before
modelling, we removed redundant variables (annual temperature and the effective sum of
temperature) having a variance inflation factor (VIF) > 10. We also eliminated vegetation
cover data because it was missing in most of the chosen species locations.
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Table 1. Summary of research data.

Category Source Description Original Scale

Species

Agency for Nature Conservation and Landscape
Protection (OAPK)

(http://www.ochranaprirody.cz/en/), accessed
on (26 September 2019)

Raw survey data of over 3000
higher vascular plant species in the
Czech Republic from 1960 to 1991

500 × 500 m

Climate 1

Climate change in the Czech
Republic (http://www.klimatickazmena.cz)

accessed through Czechglobe
(http://www.czechglobe.cz), on (1 May 2020)

Long-term means; 30 years for the
historical climate and 20 years for

the future climate. The model used
is HadGEM2, scenario RCP 8.5

500 × 500 m

Topography
(Slope)

(Aspect)

The Czech Office for Surveying, Mapping, and
Cadastre (https://ags.cuzk.cz/arcgis2/services/
dmr5g/ImageServer) accessed on (15 June 2021)

5 m

Soil
(Soil texture)
(Soil depth)

Research Institute for Soil and Water
Conservation + Forest Management

Institute (2018)

Soil associations, on an agricultural
soil map of rated

soil-ecological units
1:10,000

Hydrology
(drainage)

Research Institute for Soil and Water
Conservation + Forest Management

Institute (2018)

Combination of soil infiltration
ability, group of forest types and

maps of soil associations
1:10,000

Distance to rivers Open street map (OSM) 10 or 100 m distance from the river

Vegetation quality
(Plant cover) CzechGlobe + ESA + Palacký University 1:10,000

Geology Czech Geological Survey
(Geological maps) Geological materials 1:100,000

1 Climate variables include annual temperature (antemp); annual rainfall (anrain; the temperature of the coldest
month (tcold); average temperature of the growing season above 5 ◦C (tempgs); effective sum of temperature
above 5 ◦C (efstemp); and length of the vegetation season (lenvegt).

2.3. Spatial Models

We adapted the EUROMOVE modelling approach to predict species richness from
1990 to 2100 and then calculated the mean stable area index (MSAi). The EUROMOVE
model, as mentioned earlier, is a European regional model for higher vascular plants. The
model was used to capture changes in species composition from the additive overlay of
binary species maps for different modelling periods. It calculated the mean area covered
by species for each modelling period and then aggregated these outputs into the mean
stable area indicator. Thus, on the regional scale, the model predicted both appearing and
disappearing species in each European country based on the regional species pool. In the
case of the Czech Republic, species distribution was estimated on grids of about 500 m2. We
replaced logistic regression with the maximum entropy algorithm—Maxent [37,38], accept-
ing all default settings. Maxent optimises prediction by comparing the probability density
of environmental conditions where a species is observed to the probability density of back-
ground environmental conditions in an area based on minimum distance [40]. Thus, we
sampled 10,000 background points and their environmental attributes for each species and
implemented Maxent in R from the dismo package [41]. Before modelling, we randomly
partitioned (without replacement) 70% of each of the 1171 species datasets for model train-
ing and 30% for model evaluation. We used the trained model to predict species richness for
subsequent periods. We also assessed selected species’ response to climate-environmental
gradients using Random Forest [42,43] and logistic regression [44,45]. Random Forest
is based on an ensemble of decision trees built on different bootstrapped samples and
predictors. The algorithm is robust to nonlinear variation and depends on the most votes
from decision trees to classify unique cases in an observation. In contrast, logistic regression
is a flexible extension of linear models with the possibility to handle nonlinear variation
and different families of probability distribution in the data [44]. Thus, we studied response
curves from the best of the three modelling approaches and further assessed landscape

http://www.ochranaprirody.cz/en/
http://www.klimatickazmena.cz
http://www.czechglobe.cz
https://ags.cuzk.cz/arcgis2/services/dmr5g/ImageServer
https://ags.cuzk.cz/arcgis2/services/dmr5g/ImageServer
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vulnerability as the net loss or gain of the simulated current and future climate space. The
workflow is summarised in Figure 1.

Diversity 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

species and implemented Maxent in R from the dismo package[41]. Before modelling, we 
randomly partitioned (without replacement) 70% of each of the 1171 species datasets for 
model training and 30% for model evaluation. We used the trained model to predict spe-
cies richness for subsequent periods. We also assessed selected species’ response to cli-
mate-environmental gradients using Random Forest [42,43] and logistic regression 
[44,45]. Random Forest is based on an ensemble of decision trees built on different boot-
strapped samples and predictors. The algorithm is robust to nonlinear variation and de-
pends on the most votes from decision trees to classify unique cases in an observation. In 
contrast, logistic regression is a flexible extension of linear models with the possibility to 
handle nonlinear variation and different families of probability distribution in the data 
[44]. Thus, we studied response curves from the best of the three modelling approaches 
and further assessed landscape vulnerability as the net loss or gain of the simulated cur-
rent and future climate space. The workflow is summarised in Figure 1. 

 
Figure 1. Summary of research methods and workflow. 

2.4. Model Evaluation 
Model evaluation was performed to assess performance and classification ability. We 

calculated the area under the receiver operator curve (AUC) [46,47] and the true skill sta-
tistics (TSS) [48]. The AUC gives the overall performance of a mode. It is a probability 
measure of a model’s ability to distinguish between presence and absence locations. The 

Figure 1. Summary of research methods and workflow.

2.4. Model Evaluation

Model evaluation was performed to assess performance and classification ability. We
calculated the area under the receiver operator curve (AUC) [46,47] and the true skill
statistics (TSS) [48]. The AUC gives the overall performance of a mode. It is a probability
measure of a model’s ability to distinguish between presence and absence locations. The
AUC ranges from 0.5 for poor models without discrimination ability to 1 for perfect
models [46,47]. The TSS is a robust threshold-dependent matrix used to determine a
model classification ability not happing by chance [48]. It measures the level of similarity
between observed and modelled distributions. The TSS index ranges from −1 to 1, where
≤0 indicates random agreement and values approaching 1 indicate a strong agreement
between predicted and observed distribution [48]. To further reduce the baseline species
pool to 687 species, we only considered species models with Maxent TSS ≥ 0.4. We chose
TSS over AUC because the latter largely depends on the prevalence of sample locations and
tends to be biased [47]. Subsequently, we used these 687 representative baseline species
models to predict their distribution under current and future environmental conditions.
From the 687 species, we chose eight common species in the Czech Republic [1,32–34,49,50]
to compare and assess their performance using Random Forest and GLM Logistic regression.
Where necessary, we included the subspecies of the selected species among the 687 species
to avoid ambiguity and ensure sufficient observations for each species in both monitoring
periods (1960–1990 and 1991–2018). Monotypic species included spruce (Picea abie) and
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beech (Fagus syvestica L.). In contrast, those with two to 11 subspecies included alder
(henceforth as Alnus sp.), fescue (henceforth as Festuca sp.), lipnice (henceforth as Poa sp.),
oak (Quercus sp.), blackberry (Rubus sp.) and willow as (Salix sp.).

2.5. Mean Stable Area Index (MSAi)

The MSAi quantifies changes in habitat extent and indirectly measures conservation
status. It was computed in two steps: first, we reclassified each species distribution map
into binary maps based on each species-specific threshold for each modelling period.
Second, for each modelling period, we compared (ratios) each binary species map with
its corresponding baseline map in terms of habitat extent and calculated the mean of the
comparison. We used the simulated species distribution from the baseline species data
and not current empirical species data to ensure consistency and comparability. Hence,
MSAi was computed considering changes in species composition and habitat extent as
Equation (1).

MSAi = ∑n
i=1 Ai1,y2/Ai1,y1

N
(1)

where Ai1,y1 is the area of species i for the baseline period and Ai1,y2 is the area of species
i for a later modelling period. N is the total number of species that should be the same
for the two modelling periods, irrespective of whether some species have disappeared in
the future.

3. Results
3.1. Climate Indices

The range of key climate indices for the different modelling periods is summarised in
Table 2. The table shows a general increase in the average values of each climate index by
2100. Although the minimum and maximum annual rainfall (rain) may vary irregularly,
the average value is projected to increase by ~154 mm. Likewise, the average minimum
temperature may increase by 5.2 ◦C by the end of the century. The average temperature of
the growing season (tempgs) and the length of the vegetation periods are also projected
to increase by 2.3 ◦C and 53 days, respectively. Compared to the current situation (2018),
the table shows that the average minimum temperature has increased by 0.15 ◦C, the
temperature of the growing season has increased by 0.85 ◦C while the average length of the
growing season and annual rainfall have increased by ~3 days and 132 mm respectively.

Table 2. Summary statistics of the main climate indices for 1990 and 2018.

Anrain Tcold Tempgs Lenvegt

Min Max Min Max Min Max Min Max

1990 445 1345 −8.0 −2.9 9.1 13.8 151 240
2018 352 1713 −8.3 −3.3 9.6 15.0 116 281
2060 457 1541 −6.8 0.7 10.4 15.0 154 283
2100 480 1617 −4.1 3.6 12 15.8 173 324

3.2. Model Performance

A summary of the model evaluation statistic for the initial 1177 baseline species
modelled is presented in Table 3. The AUC varies from 0.43 to 0.99 and shows that fewer
species models were randomly classified, while the majority was moderate to very good.
The model TSS varies from 0.026 to 8.3 and shows that the correlation between observed
and predicted species distribution for 50% of the species modelled was greater than 0.43.
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Table 3. Summary of model evaluation for a baseline of 1777 species.

Min Mean Max

AUC 0.43 0.80 0.99
TSS 0.026 0.43 0.83

The performance measures of the eight selected species are presented in Table 4.
The table shows an overall improvement in AUC based on the Random Forest classifier
compared to Maxent and the GLM logistic regression. The Random Forest model for
all selected species also estimated a moderate TSS comparable with the Maxent model.
However, Maxent consistently predicted a higher TSS and showed a better match at the
observed species locations than Random Forest or GLM models. Notwithstanding this
difference, model performance was also consistent among modelling methods for some
species. For example, the AUCs for the species beech, spruce and willow were almost
consistent among the classification methods. While the AUC based on the GLM model was
generally comparable to Maxent, it was the least accurate as it consistently underestimated
the TSS value for all species.

Table 4. Model evaluation for selected species.

Classification Methods

Evaluation
Metrics Species Maxent Random Forest GLM (Logistic)

Alnus sp., n = 544 sites, subspecies = 2

AUC 0.80 0.79 0.70
TSS 0.54 0.46 0.34

Fagus syvestica L., n = 884 sites, subspecies = 1

AUC 0.79 0.82 0.80
TSS 0.52 0.50 0.44

Festuca sp., n = 9031 sites, subspecies = 11

AUC 0.64 0.78 0.62
TSS 0.62 0.41 0.17

Picea abie, n = 16,301 sites, subspecies = 1

AUC 0.73 0.75 0.73
TSS 0.58 0.39 0.34

Poa sp., n = 6215 sites, subspecies = 6

AUC 0.66 0.80 0.58
TSS 0.59 0.44 0.13

Quercus sp., n = 4939 sites, subspecies = 3

AUC 0.76 0.82 0.75
TSS 0.57 0.50 0.38

Rubus sp., n = 16,899 sites, subspecies = 4

AUC 0.69 0.80 0.69
TSS 0.58 0.47 0.28

Salix sp., n = 617 sites, subspecies = 2

AUC 0.76 0.79 0.71
TSS 0.50 0.47 0.29

3.3. Species Richness and Distribution

The estimated species richness for the baseline period is presented in Figure 2. Species
richness is skewed to the right as expected and varies from 0 to ~580. The mean species
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richness of the initial 11,117 species selected is ~26. The modelled species richness from the
pool of 687 baseline species is presented in Figure 3. The baseline species richness varies
from 1 to 576, with about 80% of the landscape having 1 to 200 species (Figure 3a). Areas
with high species diversity are mainly in the highlands of the northeast and some isolated
plains. Compared to the current situation (2018), species richness varies from 39 to 531.
About 70% of species richness is below the mean value (Figure 3b). The figure shows a
spatial shift in species richness toward the highlands at borders. Figure 3c shows a drastic
reduction in habitat extent and species richness by 2060, which will continue until 2100
(Figure 3c,d). Unlike the current and baseline situation with a few suitable areas on plains,
the most favourable areas in the future will be restricted to highlands. The mean species
richness is expected to drop from ~200 species to ~84 species by 2100.
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A general estimate of the simultaneous change in habitat extent (area) and species
composition, summarised as MSAi for each modelling period for the entire landscape,
is presented in Table 5. The estimated MSAi calculated as the product of the change in
species richness and mean habitat extent between the baseline and each modelling period
is projected to decrease by the end of the century. However, the current MSAi is the same
as in the baseline period. The table also shows that ~11 out of the 686 (about 2%) of the
baseline species may have been lost by 2018. About 25 species (~4.1%) of the baseline
species may be lost by 2060. About 140 species (~20%) of the baseline species will become
extinct by 2100. While the mean habitat extent expanded by ~7.0% in 2018, it is projected to
decrease to ~49 and 46% by 2060 and 2100, respectively.

Table 5. Change in habitat extent, species richness and MSAi with time.

Modelling
Period

Mean Area
(km2)

Species
Number

Species
Lost

Estimated
MSAi

1990 22,194 686 - -
2018 23,746 675 11 ~1.0
2060 11,544 661 26 0.50
2100 12,021 548 140 0.43

The variability in the mean stable area (MSAi) values for the different modelling
periods is shown in Figure 4. In Figure 4a, near-natural to natural areas with MSAi values
close to 1 are currently confined to highlands around the borders and a few patches of flat
areas inland. However, the extent of these areas are projected to rapidly decrease in the
future (Figure 4b,c).
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3.4. Species Respond to Climate and Environmental Conditions

The species selected to assess the role of climate, topography and environmental
conditions showed diverse and nonlinear response patterns as expected. The four main
variables affecting the distribution of all species included annual rainfall (anrain), minimum
temperature (tcold), the temperature of the growing season (tempgs) and slope. The length
of the vegetation period (lenvegt), the type, drainage, and to a lesser extent, the type of
geologic material were equally important. The response patterns for the top four most
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important predictors, explaining at least 70% variability in distribution, are shown in
Figures 5 and 6.
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Figure 5. Species response to climate and environmental gradient: panel 1: alder; panel 2: beech;
panel 3: fescue; panel 4: spruce; “anrain” = annual rainfall; “tcold” = average minimum temperature;
“tempgs” = temperature of the growing season; “lenvgt” = length of the vegetation period and “geo-
mat” = geological material. (a–d) annual rainfall, (e,o) average minimum temperature, (f–h) variation
with slope angle, (i) average temperature of the growing season, (j–l) length of the vegetation season
in days, (m) geological material scaled from 0 for very coarse to 1.9 for very fine material, (n,p) soil
drainage scaled from 1 for poorly drained to 5 for well-drained soils.

Alder (Alnus sp.) responded positively to precipitation. Their distribution was optimal
in areas with annual total precipitation of 900 mm. Their distribution was optimal on gentle
slopes (5 degrees) and generally facing the north or east. They also showed a near-stable
response to minimum temperature (tcold) up to −5 ◦C, followed by a strong negative
response with rising temperatures (Figure 5b,e,i).

Beech (Fagus syvestica L.) response was similar to alder. Their distribution was optimal
on gentle slopes (10 to 25 degrees) and facing the north. They also preferred well-drained
soils because their distribution expanded with distance from water bodies. Beech distribu-
tion increased with the length of the vegetation period (Figure 5b,f,j,n).

Fescue (Festuca sp.) The distribution of fescue generally decreased with precipitation
and slope angle. However, their distribution increased as minimum temperatures rose
above −4.5 ◦C. They tend to be common on gentle and south-facing slopes and showed a
strong negative response with distance to water bodies. Their distribution was optimal in
areas where the duration of the vegetation period was up to 220 days (Figure 5c,g,k,o).

Spruce (Picea abie) showed a positive response to precipitation and distance to water
bodies similar to alder and beech and a similar response pattern to minimum temperature
and slope variation as beech. They preferred well-drained soils typically on moderate
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slopes facing north to northeast and will grow optimally at 12 ◦C like beech species
(Figure 5d,h,l,p).
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Figure 6. Species response climate and environmental gradient: panel 1: lipnice; panel 2: oak; panel
3: blackberry; panel 4: willow; “anrain” = annual rainfall; “tcold” = average minimum tempera-
ture; “tempgs” = temperature of the growing season; “lenvgt” = length of the vegetation period;
and “geomat” = geological material. (a–d) annual rainfall, (e,o) average minimum temper-ature,
(e) geological material scaled from 0 for very coarse to 1.9 for very fine material, (f–h) slope angle,
(i,j,l) average minimum temperature, (k,n) soil drainage scaled from 1 for poorly drained to 5 for
well-drained soils, (m,o,p) average temperature of the growing season.

Lipnice (Poa sp.). The distribution of lipnice gradually increased with precipitation
above 750 mm. They showed a stable response to minimum temperature variations but an
irregularly positive response above −4.5 ◦C. They became common above 12 ◦C and were
optimal on south-facing slopes. They also preferred well-drained soils (Figure 6a,e,i,m).

Oak (Quercus sp.) responded negatively to annual rainfall. However, their distribu-
tion increased with slope values and distance to water bodies, as minimum temperatures
warmed above −4 ◦C. They also show a bimodal positive response to changes in tempera-
ture of the growing season (Figure 6b,f,j,n).

Blackberry (Rubus sp.) distribution increased with annual rainfall and was optimal at
1000 mm. Their distribution also increased with the temperature of the growing season
and optimal on gentle slopes having well-drained soils (Figure 6c,g,k,o).

Willow (Salix sp.). The impact of annual variations in precipitation on the distribu-
tion of willows was like that of oaks and generally decreased with precipitation. Their
distribution also decreased with slope values and annual rainfall. They may be optimally
distributed on southeast-facing slopes where annual rainfall and slope values are 650 mm
and 10◦, respectively. (Figure 6d,h,l,p).

The selected species’ habitat extents for the current period are summarised in Table 6.
In general, the average climate space of these species expanded by ~12% between 1991 and
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2018. Spruce and willow are the most adaptable, accounting for about 72% of net habitat
expansion. The distribution of fescue and alder is already declining, while Lipnice and oak
are equally at risk of losing their climate space.

Table 6. Net change in habitat suitability based on Random Forest classification.

Species Net Change (%)
2018 a –1990

Alnus sp. −2
Fagus syvestica L. +10
Festuca. sp. −1
Picea abie +42
Poa sp. +6
Quercus sp. +5
Rubus sp. +9
Salix sp. +26

a The presence-only species records in 2018 were modelled before calculating the net change in species loss
between 1990 and 2018.

4. Discussion

The impact of climate and environmental change on individual species distribution
is very diverse but varies with the local topography. Rising temperatures have generally
shifted species towards highlands (Figure 3b). Species richness has slightly declined under
the current climate as more than 97 per cent of the representative baseline species are
currently preserved in most areas (Table 5). The change is due to the near stable climate
between the two modelling periods (Table 2). Our results show little change in climatic
conditions. The average minimum temperature was nearly the same between these two
periods. The mean temperature of the growing season increased by 0.85 ◦C, while the
mean length of the vegetation period increased by three days. Although species richness is
nearly the same, species habitat expanded remarkably between the two modelling periods
as growth conditions have become more favourable for most species. Although these
conditions have extended highland habitats where low temperature is a limiting factor
for growth [51], further increases in temperature will be devastating to these habitats.
Our results show that species composition and habitat extent will decline as the average
minimum temperature and the growing season temperature rise by +5 ◦C and +3 ◦C,
respectively (Table 2). More than 20% of the baseline species may be at risk of becoming
extinct at the end of the 21st century (Table 5). These results are comparable to [1,33],
who predicted frequent heat spells in lowland habitats based on a moderately mitigated
climate scenario. As growth conditions under the baseline climate scenario may become
too extreme for most species, these results should be interpreted with caution because
they are only a simulation of what may be possible [39,52,53]. They do not consider global
or country-specific efforts such as substituting coal with clean and renewable energies to
reduce greenhouse gas emissions [53]. Hence an objective assessment based on a mild or
moderate climate scenario will be necessary for future studies.

The variability in MSAi values has reaffirmed that the most stable areas of the Czech
Republic are currently in protected and mountainous areas (Figure 5f,g,h). Their current
MSAi values range from 0.7 to 0.94 and may drop from 0.5 to 0.8 by 2100 without inter-
vention or mitigation efforts. Lowlands with the least species variety are the least stable
and the most vulnerable. Our results show more variability in the MSAi ratio for the
Czech Republic than the regional EUROMOVE model for Europe [2,5]. A possible reason
for the difference could be that we modelled change based on 686 species for the Czech
Republic compared to 430 species for the entire Czech Republic, Slovakia, and Hungary in
the regional EUROMOVE model [2]. The extra details also highlight the benefits of using
high-resolution climate and environmental data to account for local variations [6,54].

The advantage of quantifying change in terms of MSAi is that additional information
about the state of the landscape, which is more related to ecosystem functions than species
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richness alone, is known. Experimental studies have generally associated a decline in
species richness with a decline in biomass production, leading to a 20 per cent loss in
species as a proposed threshold for stable ecosystems [22]. The application of such species-
based thresholds in nature has been questioned due to inconsistencies in the underlying
processes that affect species richness [55]. Our results also show that species loss may
not be proportionate to the loss of potential habitat extent. (Table 5). Second, the loss
of a few dominant species may drastically shrink or expand habitats, impacting selected
ecosystem function and services. Thus, integrating both parameters to obtain information
about the state of landscapes, we expect vulnerability thresholds established from MSAi to
be more reliable and applicable than those based solely on species richness. While assessing
ecosystem function is not our focus, our result also shows that MSAi may be used as a
validation tool or dataset to supplement such studies because changes in stable areas are
based on surveyed records. Stable areas can be compared to favourable areas or classes
of land use and land cover data preserved or appearing over time as criteria for assessing
ecosystem function and services [56,57]. Therefore, the detailed spatial variation in MSAi
has highlighted highly vulnerable areas where a decline in species richness relative to
habitat extent should be accompanied by a loss of key ecosystem functions and services.

The response of the eight selected species justifies grouping species with nearly the
same ecological requirements into distinctive FVZs as an effective management option for
biodiversity in the Czech Republic. Generally, species most tolerant of high precipitation,
including alder, beech and spruce, become more adaptable as minimum temperature
decreases [1,33]. These species will typically prefer well-drained soils and are expected
to thrive on moderate to steep slopes. In contrast, species tolerant of low and moderate
precipitation, including fescue, lipnice, oak, blackberry, and willow, prefer gentle slopes
where soil moisture is high and soil drainage is low to moderate. Because these major
species impact the distribution of understory species, current efforts should focus on their
preservation. Appropriate species mixing in the different FVZs could be adapted as a
long-term strategy to buffer the most vulnerable species and minimise further species
loss [58]. The selected species’ response also reflects how habitats have shifted within
the main forest vegetation zones of the Czech Republic from 1990 to 2018. The results
in Table 6 show that habitat contraction has occurred primarily in the first, second and
third FVZs, typical of lowlands and dominated by alder, oak, and fescue species. Habitat
contraction has been accompanied by a wider expansion in the higher (sixth to eighth) FVZ
where spruce and willow species dominate. These trends are consistent with the works
of [1,32], who attributed the shift to rising temperatures and decreasing precipitation in the
lower FVZs.

The main limitations of this study are that while MSAi broadly captures the impact
of climate change on species richness and landscape vulnerability, it does not adequately
quantify ecosystem vulnerability. The impact of climate change on key biomes or individual
FVZs of the Czech Republic has not been assessed to understand habitat vulnerability
and biodiversity loss. Because resistance to climate change varies across ecosystems, we
hope to address this limitation in a future study by adapting the GLOBIO modelling frame-
work to understand how different drivers of change related to land use (agriculture and
infrastructure) will affect biodiversity [25,26]. Second, we did not evaluate change under a
mild or moderate climate scenario because such data were not available at the appropriate
resolution when this study was carried out. Future studies should be based on recently
downscaled climate models within the coupled model intercomparison project (CMIP6)
framework, which are more likely to show variability in climate indices on a smaller scale
than CMIP5 models on which our results are based [59]. Third, EUROMOVE and its MSAi
indicator heavily depend on species data quality. They may produce inconsistent and
incomparable results for species records acquired over different periods. We have observed
(results not presented) a rather weak correlation between the species richness map for
2018 projected from 1990 SDM models compared with that directly modelled from the
2018 species records. Although the discrepancy may have been due to slight differences
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in species composition between the two modelling periods, it also suggests possible un-
certainties in the MSAi. Uncertainties may also be introduced because the interaction we
assumed to be present among species both in the present and in the future may not be the
case. In addition, species richness was probably overestimated because we did not model
rare species and the level or type of association among common species [16,60]. Lastly,
although our results reflect the response of key and representative species to climate and
environmental change, they are based on species richness rather than species abundance or
both. As such, we acknowledge the fact that information about population trends between
species and ecosystem stability has been lost or not adequately captured [30].

5. Conclusions

The richness of plant species in the Czech Republic is slowly declining in response
to climate change. Although the current species habitat has expanded compared to the
baseline, species typical of lowland habitats are the most vulnerable. The decline in species
richness may be drastic in the future without any mitigation efforts. Our assessment of
the entire landscape stability using the mean stable indicator (MSAi), adapted from the
EUROMOVE model, has reaffirmed that the most stable areas are currently restricted to
highlands. However, their stability will rapidly decline if local temperatures rise to extreme
levels. Thus, there is a need to objectively quantify change based on a mild or moderate
climate scenario, given that such extreme conditions are unlikely with the current efforts to
curb greenhouse gases. The MSAi does not specifically quantify the stability of key biomes
and forest vegetation zones (FVZs) of the Czech Republic. However, it is a comprehensive
tool that broadly summarises the impact of climate change on habitat extent and species
composition into an indicator of area stability that can also be considered an indicator
of landscape vulnerability. It may be used to validate habitat-based models in assessing
ecosystem function and services as survey data become available.
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