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Abstract: The identification of flowering plants using DNA barcoding proposed in last decades has
slowly gained ground in Africa, where it has been successfully used to elucidate the systematics and
ecology of several plant groups, and to understand their evolutionary history. Existing inferences on
the effectiveness of DNA barcoding to identify African trees are mostly based on lowland forests,
whereas adjacent montane forests significantly differ from the latter floristically and structurally.
Here, we tested the efficiency of chloroplast DNA barcodes (rbcLa, matK, and trnH-psbA) to identify
Afromontane Forest tree species in a 20.28 ha permanent plot in Ngel Nyaki, Taraba state, Nigeria. We
collected, identified, and vouchered 274 individuals with diameter at breast height ≥ 1 cm belonging
to 101 morphospecies, 92 genera, and 48 families. rbcLa and matK used alone or in combination
performed better than in lowland forests, with the best species discrimination obtained with the
two-locus combination of matK + rbcLa. The intragenic spacer trnH-psbA was too variable to align
and could not be tested using the genetic distance method employed. Classic DNA barcode can
be a powerful tool to identify Afromontane tree species, mainly due to the non-prevalence in these
communities of species—rich genera (low species-to-genus ratio) that constitute the biggest challenge
of DNA barcoding of flowering plants.

Keywords: DNA barcoding; ForestGEO; montane forest; Ngel Nyaki; species identification

1. Introduction

Africa includes the second largest tropical forest block in the world, considered as one
of the most important pool of biological diversity [1]. Yet, African forests are threatened
by expanding human activities such as industrial logging, mining, agriculture, and road
networks [2,3], but are also highly susceptible to the impact of climate change [4]. Despite
the growing international concern about the future of these forests, the diversity, the ecology
and the evolutionary processes that have shaped African forests remain relatively poorly
understood, compared to the Amazon forest block [5]. In this regard, there is an urgent
need to increase our efforts in documenting and describing the diversity of these forests
as many of the species might go extinct before they are discovered. Therefore, large-scale
biodiversity inventories of African forests will be critical to develop sound conservation
strategies for these forests [6]. During the past decades, significant progress has been made
in the study of the biodiversity of African forests using classic floristic inventories and long-
term monitoring plots grouped into two main networks, the African Tropical Rainforest
Observation Network (AfriTRON, http://www.afritron.org/) (accessed on 10 February
2022)and the Africa program of the Forest Global Earth Observatory Network (ForestGEO,
https://forestgeo.si.edu/, accessed on 10 February 2022). In forest inventories, the species
are identified merely on the basis of morphological characters, and this is challenging even
for expert botanists. Often, up to 30% of the individuals in the plots remain unidentified
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for years [7] due to the absence during field surveys of flowers and fruits that are needed
to achieve accurate identifications [8].

Biological identification through “DNA barcode” was proposed, first in the animal
kingdom [9,10] and later on for land plants [11,12] as a molecular method that could
supplement morphological identifications. DNA barcodes are short and standardized
fragments of DNA that should be easy to amplify and to sequence, and that can rapidly
and reliably distinguish species from each other. DNA barcoding slowly gained ground
in Africa, with over 21,000 vascular plants and 3000 animal records in the Barcode of Life
Data System in 2019 [13,14], and has been used to elucidate the systematics and ecology of
several plant groups, e.g., [15–17]. Existing African DNA barcodes for plants have been
concentrated in forest ecosystems in Southern and West Africa [14,18] and more recently in
savanna ecosystems [13]. Furthermore, inferences on the effectiveness of DNA barcode to
identify African forest trees have been mostly based on lowlands. Whereas montane forests
significantly differ floristically and structurally from lowland forests, the effectiveness of
DNA barcoding in identifying tree species in these forests is still lacking.

We constructed a local DNA barcode database to aid the identification of tree species
and reconstruct their community phylogeny in a 20.28 ha plot located in montane forest in
Northeastern Nigeria. Here, we test the ability of this DNA barcode to identify the plot
species and genera.

2. Materials and Methods
2.1. Study Site and Sampling

The tissue samples for DNA extraction were collected from the 20.28 hectares
(260 × 780 m) Ngel Nyaki Forest Dynamics plot, where all trees with diameter at breast
height (dbh) > 1 cm had previously been measured, mapped tagged and morphologically
identified [19]. The plot (07◦04005′′ N, 11◦03024′′ E) is located within the Ngel Nyaki Forest
Reserve on the Mambilla Plateau, Taraba State, Nigeria, with elevation ranging from 1588
m to 1690 m, and is part of the Forest Global Earth Observatory (ForestGEO) network [20].
The mean annual rainfall is 1800 mm while the mean annual temperature is 19 ◦C. The
vegetation of the area is a mosaic of grassland and montane forest [21].

The morphological identifications of the trees were performed in the field by non-
professional taxonomists, but were partially checked by the first author. The resulting
checklist comprised 105 morphospecies including 74 (71%) identified to species level, 22
(21%) to genus, and 9 (9%) unidentified, even to family level. Of the 105 species (with
dbh > 1 cm) recorded in the Ngel Nyaki plot, we sampled 99 belonging to 90 genera and
47 families. Two additional woody species growing in the vicinity of the plot, Dracaena
cf. deisteliana Engl. (Asparagaceae) and Pittosporum viridiflorum Sims (Pittosporaceae), were
added to our sample, making a total of 101 species in 92 genera and 48 families. We col-
lected leaf tissue from 1 (for species that were represented by a single individual in the plot)
to 4 individuals per species. The samples were collected in the field and were immediately
dried in silica-gel. They consisted of 5–50 cm2 of leaf tissue. Voucher specimens accom-
panying the leaf tissue were also collected and are deposited at the National Museum of
Natural History in Washington.

2.2. DNA Extraction and Sequencing

All laboratory work was carried out at the Canadian Centre for DNA Barcoding
(CCDB) (https://ccdb.ca/, accessed on 10 February 2022) and following their protocols.
Total genomic DNA was extracted from silica dried leaf material using the CCDB proto-
col (https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.
pdf, accessed on 10 February 2022). DNA barcode regions rbcLa, matK and the trnH-
psbA intergenic spacer were amplified using CCDB standard PCR primers and proto-
cols (https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_Amplification-Plants.
pdf, accessed on 10 February 2022) with the primers available at https://ccdb.ca/site/wp-
content/uploads/2016/09/CCDB_PrimerSets-Plants.pdf (accessed on 10 February 2022)

https://ccdb.ca/
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.pdf
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_DNA_Extraction-Plants.pdf
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_Amplification-Plants.pdf
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_Amplification-Plants.pdf
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_PrimerSets-Plants.pdf
https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_PrimerSets-Plants.pdf
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Voucher details and GenBank accession numbers for all sequences are listed in BOLD
(http://www.boldsystems.org/) (accessed on 10 February 2022).

2.3. Testing the DNA Barcode Accuracy

Prior to evaluating the identification success of the two barcode regions, we used
the Basic Local Alignment Search Tool (BLAST) [22] to compare our sequences to those
available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 10 February
2022), with the aim of confirming our identifications and identifying our unknowns. After
matching our sequences in GenBank, the morphospecies names were updated only after
comparison of their voucher specimens to either the type specimens available online or
to other herbarium specimens and photographs in Tropicos (https://www.tropicos.org/,
accessed on 10 February 2022).

To test the barcode efficiency, we followed [18]. Our DNA barcoding refence database
(assumed to be exhaustive in terms of species) had 274 individuals and was used to assign
individual trees to species or genera. The test was performed on species represented by at
least two individuals in the database, so that we could have a query and a matching sample.
The coding genes matK and rbcLa were aligned and manually adjusted using ClustalW in
the Molecular Evolutionary Genetic Analysis software version 7.0.26 [23]. After the global
alignment, we computed pairwise genetic distances among all sequences in the dataset
using the Kimura’s 2-parameter model [24]. The analysis was also performed in Mega7.
In the resulting matrix, each sample (query) was assigned to a species or a genus of the
sample (matching) from which it is separated with the least genetic distance (excluding
itself). The identification was (1) correct when the query sample matched only the samples
of its species of genus; (2) multiple if the query sample matched several species or genera
including its correct one; and (3) wrong when the query sample matched species or genera
different from its own [18]. We were not able to align trnH-psbA because it was too variable
among the 48 plant families in the study. Hence this locus was not used in the test of DNA
barcode accuracy analyses.

3. Results
3.1. Sequencing Success

DNA sequencing success was tested on 274 individual trees, representing 101 species.
Sequencing success was lowest for matK and highest for rbcLa. Reliable contigs were
obtained for only 78.9% of all individuals sequenced for matK, 95.3% trnH-psbA, but 97.5%
for rbcLa, which corresponded to all the species represented in the database for rbcLa and
trnH-psbA, but only to 93.1% of the species for matK (Table 1). The percentages of species
represented by at least two individuals for matK, rbcLa and trnH-psbA in the database were
70.3%, 87.2% and 84.2% respectively.

Table 1. Sequencing success of montane forest trees from Ngel Nyaki for rbcLa, matK and trnH-psbA
barcode regions.

matK rbcLa trnH-psbA

Number of individuals tested 274 274 274
Sequencing success: N ind. (% ind.) 216 (78.9) 267 (97.5) 261 (95.3)
Sequencing success: N sp. (% sp.) 94 (93.1) 101 (100) 101 (100)
N sp. with sequences ≥ 2 samples 71 (70.3) 88 (87.2) 85 (84.2)

3.2. Taxonomic Update Using BLAST

The identification of 13 morphospecies was updated using the heuristic search in
GenBank. Of the nine morphospecies for which the family was unknown, seven were
identified to species level and two placed in different plant families. Furthermore, the
identification of four other morphospecies was updated. The first morphospecies placed
in the Argocoffeopsis Lebrun (Rubiaceae) Lebrun was updated to Psilanthus mannii Hook.
within the same family. A morphospecies thought to belong to the genus Beilschmiedia Nees

http://www.boldsystems.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.tropicos.org/
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(Lauraceae) was transferred to the family Sapotaceae. The identification of a morphospecies
thought to be Lannea barteri (Oliv.) Engl. (Anacardiaceae) was updated to Brucea antidysen-
terica J.F. Mill. (Simaroubaceae). Finally, the morphospecies Hannoa klaineana Pierre ex Engl.
(Simaroubaceae) was updated to Ekebergia capensis Sparrm.

3.3. Barcode Accuracy

The accuracy of two of the three barcode markers (matK and rbcLa) in identifying
montane forest trees is presented in Table 2. The analyses were performed on all available
samples for each marker. When used individually, highest success for the identification
of species was obtained with matK (98.3%). The two makers performed slightly better
when combined. At genus level, the same trend was maintained, but with even better
performances. Here, matK and the rbcLa + matK combination successfully identified all
the samples to the genus, while rbcLa alone was successful to identify 98.4% of samples to
genus (Table 2).

Table 2. Barcoding accuracy in identifying Ngel Nyaki Afromontane forest trees at species and
genus level.

Barcoding Accuracy Query Samples

Correct ID Multiple ID Wrong ID N. ind. N. sp. N. Gen.

Species
identification

rbcLa 93.8 6.15 0 244 92 92
matK 98.3 1.1 0.55 181 67 59

matK + rbcLa 98.9 0.5 0.54 186 72 63
Genus

identification
rbcLa 98.4 1.6 0 244 92 92
matK 100 0 0 181 67 59

matK + rbcLa 100 0 0 186 72 63

4. Discussion
4.1. Recoverability of DNA Barcode Used

The two DNA barcodes rbcLa and matK used in this study have long been recognized
having sufficient variation to discriminate among land plant species [11,25,26]. Among
the three barcodes, matK had the lowest rate of recovery (79%), consistent with prior
studies [18,27,28]. In contrast, rbcLa and trnH-psbA had higher rates of recovery (above
95%). However, it is worth pointing out that the rates of recovery were in general higher
than in prior studies, probably due to the efficiency of the Canadian Centre for DNA
Barcoding that has optimized protocols for higher rates of recovery. For example, recovery
rates around 70% have been reported for matK in several studies [8,27,29], while sequencing
and amplification success for rbcLa and trnH-psbA is often below 94% e.g., [8,27,30].

4.2. Tree Species Identification Using DNA Barcode in Ngel Nyaki Montane Forest

The morphological identification of the trees in the Ngel Nyaki plot was almost entirely
performed by non-professional taxonomists who however accurately identified to species
69% of all tree species occurring in the plot. Only four species were wrongly identified.
The DNA barcode was instrumental in updating the identification of 12% of the species in
the plot for which prior sequences were available in Genbank. Due to the lack of adequate
library in Genbank, 21% of the species in the plot for which good quality barcode sequences
were generated could still not be identified to species level. Hence, molecular techniques
such as DNA barcode may not replace traditional taxonomic techniques as suggested by
some studies [31], but can only supplement it.

This study showed the efficiency of the two barcode loci rbcLa and matK in accu-
rately assigning Afromontane forest tree species to a correct species or genera. When
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used alone, best results for species identification were obtained with matK (98%) com-
pared to rbcLa (94%). These values are slightly higher than those reported in most lowland
forests [8,18,27,30]. The combination of the two markers matK + rbcLa improved the bar-
coding success to 99%, a result consistent with those in most lowland forests. Barcoding
success was even better at genus level, rbcLa alone identifying 98% of all genera, while
matK and the combination matK + rbcLa accurately identified all the samples to genus.

The genetic distance method that we used did not allow us to test the accuracy of the
intergenic spacer trnH-psbA. This locus, easy to amplify and short, is known to be very
variable among angiosperms and thus is widely used in plant species identification [32].
In general, trnH-psbA locus is more variable than matK and rbcL and we assume its per-
formance in the identification of montane forest species would even be greater. matK and
rbcLa were variable enough that their combination to trnH-psbA was no more relevant.

4.3. The Efficiency of DNA Barcoding in the Context of the Afromontane Flora

DNA barcode is a powerful tool for identifying tree species to genus level. However
the identification to species level is not always reliable, especially in plant communities with
speciose genera [18]. For example, the identification of tree species (with dbh ≥ 1 cm) in a
50-ha plot in the highly diverse Korup National Park, Cameroon using three DNA barcode
markers showed a significant decrease in their performance with increasing number of
species per clade (genus) [18]. In fact, the five most speciose genera in the Korup plot
Cola Schott & Endl., Diospyros L., Psychotrya L., Rinorea Aubl. and Garcinia L. have 23,
14, 13, 13 and 10 species respectively [33]. Such closely related species are more likely to
hybridize, have incomplete lineage sorting and share haplotypes, all of which can lessen
the ability of barcode loci to discriminate among them. At the other end of the spectrum,
165 (33%) species in Korup are represented by a single species.

The Ngel Nyaki plot had a relatively low diversity, with only 105 species in 92 genera.
The most speciose genera here are Ficus L. and Psychotria L., each having three species. Five
other genera have two species each, while the remaining 85 species (81%) are represented
each by a single species. This species-to-genus (S/G) ratio is not specific to the Ngel Nyaki
montane forest. In fact, most Afromontane forests are characterized by a low diversity of
trees and low S/G ratio. For example, in Woodbush–De Hoek montane forest in South
Africa, 50 species of trees with dbh > 5 cm and dbh > 10 cm in 46 genera (S/G = 1.09)
were recorded within 1.5 ha circular plots [34]. Similarly, [35] in a study on trees with
dbh ≥ 5 cm in dry Afromontane forests of Awi Zone, northwestern Ethiopia, recorded
18 species in 18 genera, 21 species in 21 genera, 20 species in 20 genera, 16 species in
16 genera and 23 species in 23 genera in 0.6 ha of Bari, Apini, Dabkuli, Tsahare Kan, and
Kahtasa forests respectively.

We further explored the relationship between the S/G ratio and elevation, by compar-
ing the Ngel Nyaki data other African forest sites for trees with dbh ≥ 10 cm (Table A1).
The S/G ratio decreases with increasing elevation, with a correlation coefficient of −0.722
(Figure 1A). The Lambi 2 and Ngovayang mid-elevation plots in Cameroon had the highest
S/G ratio (1.55 and 1.51 respectively) while higher elevation plots Bwindi 1 and Bwindi 4
had the lowest. The Lambi the Ngovayang plots seem to be outliers in our dataset. In fact,
a stronger relationship with r = −0.80 is shown when these plots are removed. Higher S/G
ratio of 2.6 and 3 have been reported elsewhere in the Manu forest (Peru) and Yasuni forest
(Ecuador) respectively for trees with the same diameter cutoff [36]. The S/G ratio increases
when smaller diameter size classes are considered and the correlation with elevation is
stronger (r =−0.84, p-value = 0.007). A highest S/G ratio of 1.64 is observed for the lowland
Rabi plot and 1.15 for the Ngel Nyaki plot for all trees with dbh ≥ 1 cm were measured
(Figure 1B). In fact, the understory of most African forests are stocked with speciose genera
of small-statured trees that never attain large size diameter classes [37,38]. Several studies
have shown the decrease in tree species diversity with elevation, e.g., [39,40]. Our data also
shows a decrease of generic diversity with increasing elevation (r = −0.84). This means that
the low diversity in higher elevations is also due to the decrease in the number of genera,
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but coupled with the decrease in the number of species per genera. This result is consistent
with Jaccard’s observations in the Alps [41], who noted that “with increasing altitude, the
number of genera decreases less rapidly than the number of species”.
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Figure 1. Correlation between the species-to-genus (S/G) ratio and elevation, (A) for trees with
dbh > 10 cm in forty three 1-ha African forest plots, The correlation coefficient r = −0.722,
p-value = 0.00000004635; (B) for trees with dbh > 1 cm in seven large (10–50-a) census plots, cor-
relation coefficient r = −0.88, p-value = 0.007.

5. Conclusions

Our study highlighted how DNA barcoding can be efficient in identifying tree species
in an Afromontane Forest. As in lowland forests, identification success is higher at genus
than at species level. Identification success was higher than in lowland forest, due to the
non-prevalence of highly diverse genera in this habitat. The comparison of species-to-genus
among other sites with comparable data showed that Afromontane forests tend to have
a low S/G ratio for tree species, which is an advantage for the use of DNA barcode in
these forests.
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Appendix A

Table A1. Species-to-Genus ratio (S/G) among 43 African forest 1-ha plots for trees with dbh ≥ 10 cm.
* denote large plots (10–50 ha) of the Forest Global Earth Observatory (ForestGEO) network. The data
for each large plot was obtained by averaging the values in 1-ha subplots within the plot. S = number
of species, G = number of genera. TEAM = Tropical Ecology Assessment and Monitoring.

Site Country Elevation (m) S G S/G Source

Bwindi-1 Burundi 1474 42 39 1.08 TEAM Network
Bwindi-2 Burundi 1419 28 28 1.00 TEAM Network
Bwindi-3 Burundi 1893 44 41 1.07 TEAM Network
Bwindi-4 Burundi 2049 27 27 1.00 TEAM Network
Bwindi-5 Burundi 2101 30 27 1.11 TEAM Network
Bwindi-6 Burundi 2321 25 24 1.04 TEAM Network

Bidjouka-1 Cameroon 392 99 73 1.36 [42]
Bidjouka-2 Cameroon 605 105 73 1.44 [42]

Korup 50-ha * Cameroon 195 87.2 48.82 1.79 [33]
Lambi-1 Cameroon 396 106 83 1.28 [42]
Lambi-2 Cameroon 627 118 76 1.55 [42]

Ngovayang-1 Cameroon 650 121 80 1.51 [42]
Rumpi-hills-11 Cameroon 1450 32 31 1.03 [43]
Takamanda-10 Cameroon 210 108 78.5 1.38 [44]
Takamanda-11 Cameroon 210 113 80 1.41 [44]
Takamanda-12 Cameroon 150 105.5 79.5 1.33 [44]
Takamanda-13 Cameroon 150 118 87 1.36 [44]
Takamanda-14 Cameroon 120 87 69.5 1.25 [44]
Takamanda-15 Cameroon 120 91 71 1.28 [44]
Takamanda-6 Cameroon 320 103 77 1.34 [44]
Takamanda-7 Cameroon 400 97 74 1.31 [44]
Takamanda-8 Cameroon 780 64 50 1.28 [44]
Takamanda-9 Cameroon 1200 71 55 1.29 [44]

Dzanga-Sanga-1 Central African Republic 471 108 85 1.27 [45]
Dzanga-Sanga-2 Central African Republic 482 120 95 1.26 [45]
Dzanga-Sanga-3 Central African Republic 393 67 53 1.26 [45]
Dzanga-Sanga-4 Central African Republic 489 96 78 1.23 [45]
Dzanga-Sanga-5 Central African Republic 485 108 84 1.29 [45]
Edoro-1 (10-ha) * DR Congo 808 65.4 53.6 1.22 [46]
Edoro-2 (10-ha) * DR Congo 809 67.4 55.5 1.21 [46]
Lenda-1 (10-ha) * DR Congo 808 60.4 47.3 1.28 [46]
Lenda-2 (10-ha) * DR Congo 819 49.9 40.8 1.22 [46]

http://ctfs.si.edu/datarequest/
http://www.boldsystems.org/
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Table A1. Cont.

Site Country Elevation (m) S G S/G Source

Monts de Cristal-1 Gabon 400 89 72 1.24 [47]
Monts de Cristal-2 Gabon 300 89 69 1.29 [47]
Monts de Cristal-3 Gabon 300 99 74 1.34 [47]
Monts de Cristal-4 Gabon 200 88 71 1.24 [47]
Monts de Cristal-5 Gabon 250 108 88 1.23 [47]

Rabi 25-ha * Gabon 47 84.6 62.68 1.35 [38]
Waka-10 Gabon 569 106 74 1.43 [48]
Waka-6 Gabon 438 83 62 1.34 [48]
Waka-7 Gabon 407 100 77 1.30 [48]
Waka-8 Gabon 687 107 78 1.37 [48]

Ngel Nyaki (20.28 ha) * Nigeria 1639 41.1 39.5 1.04 [19]
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