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Abstract: We aimed to investigate the microbial diversity, mine lignocellulose-degrading enzymes/proteins,
and analyze the domain structures of the mined enzymes/proteins in humus samples collected from
the Cuc Phuong National Park, Vietnam. Using a high-throughput Illumina sequencer, 52 Gbs of mi-
crobial DNA were assembled in 2,611,883 contigs, from which 4,104,872 open reading frames (ORFs)
were identified. Among the total microbiome analyzed, bacteria occupied 99.69%; the five ubiquitous
bacterial phyla included Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Acidobacteria,
which accounted for 92.59%. Proteobacteria (75.68%), the most dominant, was 5.77 folds higher than
the second abundant phylum Bacteroidetes (13.11%). Considering the enzymes/proteins involved in
lignocellulose degradation, 22,226 ORFs were obtained from the annotation analysis using a KEGG
database. The estimated ratio of Proteobacteria/Bacteroidetes was approximately 1:1 for pretreat-
ment and hemicellulases groups and 2.4:1 for cellulases. Furthermore, analysis of domain structures
revealed their diversity in lignocellulose-degrading enzymes. CE and PL were two main families in
pretreatment; GH1 and GH3-FN3 were the highest domains in the cellulase group, whereas GH2
and GH43 represented the hemicellulase group. These results validate that natural tropical forest soil
could be considered as an important source to explore bacteria and novel enzymes/proteins for the
degradation of lignocellulose.

Keywords: Cuc Phuong humus; Illumina de novo sequencing; lignocellulose degradation enzymes;
DNA metagenome; tropical forest sample; white-rot fungi

1. Introduction

Lignocellulose, which is composed of celluloses, hemicelluloses, and lignin, is derived
from numerous sources that include agricultural crops and forest residues, along with
bioenergy crops and forest products [1]. Lignocellulose, an abundant, sustainable, and
renewable biomass, is used for the production of biofuels and other valuable products [2].
Biomass, an environmentally friendly entity, represents an inexpensive alternative to de-
pleted fossil fuel resources. Hence, it can decrease global climate change and contribute to
a sustainable and greener future [3]. Thus, the degradation of lignocellulose has gathered
considerable attention from scientists and governments worldwide [4–6]. The hydrolysis of
lignocellulose by chemical and physical methods effectively breaks down the rigid bonds.
Nevertheless, this usually generates secondary products that are possibly environmentally
hazardous, which inhibit consequent steps in the process [7,8]. Therefore, the approaches
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based on using enzymes/proteins for lignocellulose degradation, which provide several
advantages, such as low energy requirements and reduction in environmental pollution,
are currently being selected for greener technology that produces second-generation biofu-
els [9]. However, effective breakdown of lignocellulose to desired products with complex
reaction chains involving hydrolytic enzymes is rather challenging. Thus, exploring novel
enzymes and microorganisms that exhibit desired characteristics for the degradation of
plant biomass is currently an important issue. Among the microorganisms, bacteria are
promising candidates that upgrade the feasibility of lignocellulose conversion for novel
conversion strategies.

Soil is one of the most important sources for exploring new enzyme and microbiota
candidates for effective lignocellulose degradation. Furthermore, it is a potential and
complex ecosystem with diverse bacteria that play an important role in this environment.
Environmental conditions such as geographical location and natural selection pressure
also influence the biodiversity of living microbiota and their enzyme properties [10,11].
Hence, novel enzymes and bacteria suitably applied during harsh conditions such as pH,
temperature, and salinity in the lignocellulose conversion process, are being continuously
reported from soil analyses [12]. Certain studies have also demonstrated the diverse
features of ubiquitous microorganisms present in the microbial community of each soil type,
which suggests the adaptability of the microorganisms to a specific forest condition [12,13].
Cuc Phuong, located in Ninh Binh province, is the largest nature reserve in Vietnam. The
park is one of the principal biodiversity sites in Vietnam; however, its microbial diversity
remains unknown.

By comparing the culture method and metagenomics technology, studies have re-
vealed that more than 99% of microorganisms have been unculturable [14]. Based on
culture-independent high-throughput sequencing, we can potentially identify uncultivable
microbiota and investigate the microbial community and taxonomic diversity at a high
resolution. Consequently, a comprehensive determination of the microbial diversity in-
volved in biomass degradation can be fundamental in evaluating the potential sources of
novel enzymes and activities [15,16]. To date, various soil types have been analyzed to
identify microbial communities promoting lignocellulose degradation [12,17–21]. In this
study, we aimed to investigate the microbial diversity, mine lignocellulose-degrading en-
zymes/proteins, and analyze their domain structures in humus samples harvested from the
surroundings of white-rot fungi prevailing deadwood site in Cuc Phuong tropical forest.

2. Materials and Methods
2.1. Sampling and Extraction of Metagenomics DNA

Humus was sampled at sites (GPS at 20.27776; 105.71137, within 10 km radius) in Cuc
Phuong. Cuc Phuong National Park is located in Ninh Binh province, in the region of the
Red River Delta in Vietnam. Furthermore, Cuc Phuong Park is the largest nature reserve
and one of the primary biodiversity sites in Vietnam. The annual average temperature
in Cuc Phuong is 20.6 ◦C. The annual humidity and precipitation are 90% and 2138 mm,
respectively. Forty-five humus samples were collected from the degraded deadwood
points with the growth of white-rot fungi (Figure 1). Each sample was taken about 100 g
surrounding white-rot fungi. The pH values of all samples range between 6.9 and 7.3. After
collection, the humus samples were transferred into an ice box and then stored at 4 ◦C.

The humus samples were pooled and homogenized in PBS buffer (137 mM NaCl,
2.7 mM KCl, 1.4 mM KH2PO4, and 10 mM Na2HPO4, pH 7.4). Consequently, the samples
were centrifuged to remove the impurities, once at low-speed (500 rpm) for 10 min and then
twice at 600 rpm for 10 min. Thereafter, microorganisms in the samples were harvested
by centrifuging at 5000 rpm for 1 min. The obtained pellets were suspended in PBS buffer
(pH 7.4) supplemented with 20% glycerol and stored at −80 ◦C.
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Figure 1. Some pictures at the humus sample collection points in Cuc Phuong tropical forest.

Metagenomic DNA was extracted from bacterial samples prepared from 10 g humus.
Each sample was suspended in 20 mL lysis buffer, containing 100 mM Tris, 100 mM EDTA,
100 mM Na2HPO4, 1.5 M NaCl, and 1% CTAB, (pH 8) with 0.1 mg/mL protease K and
incubated at 37 ◦C for 30 min with gentle shaking. After incubation, the sample was
treated with 3 mL 20% SDS and continually incubated at 65 ◦C for 30 min. Subsequently,
the supernatant was collected by centrifuging the samples at 7000 rpm for 5 min. Then,
phenol/chloroform/isoamyl alcohol (25:24:1, v/v) mixture was added to purify the DNA
samples. The upper aqueous layer was harvested after centrifugation at 6500 rpm for
10 min at 4 ◦C. The DNA sample was precipitated using 6 mL isopropanol, followed by
centrifugation at 13,000 rpm for 10 min. The DNA pellet was washed with 70% ethanol and
resuspended in 300 µL of distilled water. The extracted DNA was verified using agarose gel
electrophoresis, and the DNA concentration and quality were measured using a Nanopho-
tometer P330 (Implen GmbH, Munich, Germany). Three preparations were combined
together, and the mixed metagenomics DNA had a concentration of 113.25 µg/µL with
A260/280 and A260/230 values of 1.925 and 2.235, respectively. In addition, the contamination
by the inhibitors of DNA polymerase in the sample was assessed using PCR by amplifying
16S rDNA. A total DNA sample of approximately 100 µg was dispatched to BGI-Hong
Kong Co. Ltd. for deep metagenome sequencing.

2.2. Metagenomic Sequencing

The metagenomic DNA from the humus samples was sequenced using Illumina HiSeq
2500 (Illumina, San Diego, CA, USA) to generate paired-end reads of 150 bps. The raw
sequence data were filtered by SOAPnuke to remove noise, which was described as follows:
reads containing 5% or more ambiguous base (N base); read containing adapter sequences
(default: 15 bases overlapped by reads and adapter); reads containing 50% or lower quality
(Q < 20) base. Subsequently, filtered reads were assembled de novo with both softwares
IDBA (version 1.1.0) [22] http://i.cs.hku.hk/_alse/hkubrg/projects/idba_ud/, accessed
on 3 August 2019 and MEGAHIT (version 1.0) softwares [23] https://github.com/voutcn/
megahit, accessed on 3 August 2019 with a series of different k-mer sizes in parallel. The
optimal k-mer was used to assemble the clean reads to contigs. Then, the clean reads
were mapped to the assembled contigs through Bowtie 2 [24] with parameters “-p8–very-
sensitive-local-k 100–score-min L,0,1.2” to get the coverage information for revising the
contigs. MetaGeneMark (version 2.10, default parameters) was used to predict genes
from assembled contigs [25]. The predicted genes were clustered using CD-HIT [26], with

http://i.cs.hku.hk/_alse/hkubrg/projects/idba_ud/
https://github.com/voutcn/megahit
https://github.com/voutcn/megahit
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a sequence identity threshold of 95% and an alignment coverage threshold of 90% [27].
The metagenomics sequences are available in the sequence read archive (SRA) under the
accession number PRJNA715592.

2.3. Taxonomic Assignment

Taxonomic assignment of genes was performed with Blastp by aligning them against
the NR database (accessed on 9 August 2019). Analysis of Nr BLAST output files was
performed using the program MEGAN (version 4.6) [26]. This software reads the results
of a BLAST comparison as input and attempts to place each read on a node in the NCBI
taxonomy using the LCA algorithm [26]. The NCBI taxonomy was displayed as a tree,
and the size of each node was scaled to indicate how many reads have been assigned to
the corresponding taxon. The relative abundance of each taxonomy level from the same
taxonomy was summed. The taxonomic level correlation was drawn using the Krona
complement tool in Excel.

2.4. Functional Annotation

All the predicted genes were blasted against public databases, including SwissProt,
KEGG (Kyoto Encyclopedia of Genes and Genomes) [28], EggNOG (Evolutionary ge-
nealogy of gene: Non-supervised Orthologous Groups, Version: 3.0) [29], and Nr (non-
redundant protein sequence database) with e-value lower than 10−5 [26], and retrieved
proteins with the highest sequence similarity with given genes along with their functional
protein annotations.

2.5. Mining Genes Encoding Lignocellulose-Degrading Enzymes

In this study, we focused on the investigation of data obtained from the KEGG database.
Compared to the other data, genes for lignocellulases were dominantly defined in KEGG.
Therefore, genes encoding lignocellulose-degrading enzymes/proteins were initially mined
according to KEGG’s functional annotation and specially assigned according to Enzyme
Commission number (EC) [28]. Based on annotated KEGG data, we obtained all the ORFs
encoding enzymes/proteins related to the pretreatment and hydrolysis of lignocellulose.
The code of the ORFs was linked with the total taxonomic profile of the humus to generate a
combined function of lignocellulose degradation and taxonomy from the Nr and SwissProt
database. In addition, the amino acid sequences of the lignocellulase were investigated
for the presence of domain structures using Pfam (http://pfam.xfam.org, accessed on 22
December 2020) and HMMER from dbCAN databases [30] (Figure 2).

Moreover, the metagenome data were annotated using the Pfam database contain-
ing multiple alignments and hidden Markov model-based profiles (profiles HMMs) of
complete protein domains [31]. Profile HMMs of available domains related to lignocellulose-
degrading enzymes (including pretreatment enzymes, such as lytic polysaccharide monooxy-
genase) from the Pfam database were collected. Using the collection of profile HMMs,
the homologous sequences were scanned against the metagenomic data sequences. The
scan was executed by HMMER software (version 3.1) with the criteria as follows: the
domain-based score value no less than 30, profile coverage greater than 0.5, and bias/score
ratio less than 0.1 (Figure 2).

http://pfam.xfam.org
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Figure 2. Workflow diagram for mining lignocellulose-degrading enzymes.

3. Results
3.1. Metagenome Sequencing of Cuc Phuong Tropical Forest Soil

The metagenomic DNA of bacteria in the humus collected from the Cuc Phuong
tropical forest sequenced using the Illumina HiSeq platform was applied to assess the
diversity of the microbial community and the potential proteins/enzymes involved in
biomass degradation. From approximately 100 µg of metagenomic DNA, we obtained
345,471,086 high-quality clean reads and approximately 52 Gbs clean base. The assembly of
clean data yielded 2,611,883 contigs with a total length of 2346 Mbs. The longest contig was
611,845 bps, and the N50 contig size and average contig were 1117 and 898 bps, respectively.
Based on the assembly data, MetaGeneMark identified 4,104,872 protein-coding genes
equivalent to 2074 Mbs. The N50, average, and the maximum gene lengths were 615, 505,
and 20,541 bps, respectively (Table 1).

Table 1. Summary of metagenomic data obtained from the humus of Cuc Phuong tropical forest
using Illumina HiSeq platform.

Category Metric

Total reads 345,471,086
Total base (bp) 51,820,662,900

Number of contigs 2,611,883
Contig N50 (bp) 1117

Average contig length (bp) 898
Maximum contig length (bp) 611,845

Gene number 4,104,872
Gene N50 (bp) 615

Average gene length (bp) 505
Maximum gene length (bp) 20,541
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3.2. Taxonomic Composition of Microbial Community in Cuc Phuong’s Soil

From the 51.82 Gbs obtained from the metagenomic DNA data of Cuc Phuong tropical
forest humus, which surrounded white-rot fungi that strongly degrade fallen forest trees,
4,104,872 genes were identified to encode proteins, among which 3,923,046 genes (equiva-
lent to 95.57%) were annotated in the Nr database. The genes were classified using MEGAN
(version 4.6) analysis, where 3,896,881 genes were assigned to bacteria, archaea, eukaryotes,
and viruses. Bacteria were dominant with 3,884,879 ORFs accounting for 99.69% of the total
identified ORFs, while the remaining belonged to archaea with 293 genes, eukaryotes with
1144 genes, and 10,565 genes representing the virus. The genes of the bacterial kingdom
were affiliated to 111 phyla, 83 classes, 170 orders, 406 families, 1971 genera, with only
738 classified as species (Table 2).

Table 2. Overall analysis of humus bacterial metagenome by Nr BLAST in NCBI taxonomy database
using the MEGAN (version 4.6).

Sources Gene Num Percentage (%) Phylum Class Order Family Genus Species

Bacteria 3,884,879 99.69 111 83 170 406 1971 738
Archaea 293 0.01 9 12 18 23 50 8

Eukaryota 1144 0.03 7 26 46 79 113 86
Viruses 10,565 0.27 0 0 2 14 101 84

Sum 3,896,881 100 131 118 237 523 2240 916

For deeper bacterial analysis, 93.29% of total genes were identified at the phylum level.
Notably, Proteobacteria was the most abundant bacterial phylum, with 3,106,400 identified
genes accounting for 75.68%, followed by Bacteroidetes at 13.11%. In addition, Actinobacte-
ria, Firmicutes, and Acidobacteria accounted for 1.6%, 1.4%, and 0.8%, respectively. Thus,
the five dominating phyla totally accounted for 92.59%, and the number of predicted genes
originating from Proteobacteria was 5.77 folds higher than that of Bacteroidetes. The high
abundance of these bacteria indicates that these phyla are important and play key roles in
the humus bacterial community.

Similarly, analysis at class level showed that 93.68% of gene number was identi-
fied, and the most dominant class was Gammaproteobacteria (61.70%), followed by Be-
taproteobacteria (11.35%) and Alphaproteobacteria (6.85%) that belonged to Proteobacte-
ria phylum. The next two classes included Sphingobacteria (6.39%) and Flavobacteriia
(5.45%), which belonged to Bacteroidetes phylum. The other classes had a low ratio, below
1%. Three dominant orders comprised of Pseudomonadales (29.16%), Enterobacterales
(22.26%), Burkholderiales (11.19%), followed by Sphingobacteriales (6.39%), Xanthomon-
adales (5.88%), Flavobacteriales (5.44%), Sphingomonadales (3.40%), Rhizobiales (2.66%),
and Alteromonadales (1.68%), with others below 1%. The three highest families included
Pseudomonadaceae (16.3%), Enterobacteriaceae (14.44%), and Moraxellaceae (11.02%). For
genus level, only 45.27% of total genes were classified, and the ratio of all genera was
lower than 10%. Species level was also investigated; however, the classification results
were insignificant, with only 0.55% of defined genes, which did not complement the largely
identified proportion (99.45%) (Figure 3, Table S1 in Supplementary Materials).



Diversity 2022, 14, 220 7 of 19

Figure 3. (A) Microbial community structure in humus samples surrounding white-rot fungi
degrading deadwood in the Cuc Phuong forest at kingdom, phylum, order, and genus levels;
(B) Proteobacteria composition at class levels; (C) Bacteroidetes composition at class levels.

3.3. Functional Profile of DNA Metagenome from Cuc Phuong’s Humus

In order to obtain additional information to assess the functional potential associated
with the microbial community, a set of metagenomic DNA from the humus samples was
applied in databases such as Nr BLAST, SwissProt, KEGG, and eggNOG. Among the
4,104,872 identified ORFs, 3,925,740 ORFs corresponded to 95.64% of the total genes and
were predicted to have functional annotation in at least one database (Table 3).
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Table 3. Summary of functional annotation results.

Total Nr Swissprot KEGG eggNOG Overall

ORFs 4,104,872 3,923,046 2,382,630 2,809,791 3,279,853 3,925,740
% 100% 95.57% 58.04% 68.45% 79.90% 95.64%

Data obtained from the KEGG database were further investigated, and the pathway
results were summarized into categories: cellular processes (cluster I), environmental
information processing (cluster II), genetic information processing (cluster III), human
diseases (cluster IV), metabolism (cluster V). Metabolism was the most dominant, which
related to the growth of the microbial community, representing approximately 70% of
the total defined ORFs in KEGG, where carbohydrate metabolism was observed to have
297,103 ORFs (Figure 4).

Figure 4. Summary of KEGG annotation. X-axis represents the number of genes that annotated each
pathway, and y-axis lists annotated pathways in the particular subclass.

3.4. Putative Lignocellulose-Degrading Protein Encoding Genes

Among the ORFs related to carbohydrate metabolism based on the KEGG database,
22,226 ORFs encoding enzymes/proteins involved in lignocellulose degradation were an-
notated. Furthermore, 907 ORFs found for pretreatment were divided into four subgroups,
which included pectin esterase, feruloyl esterase, laccase, and expansin, whereas ORFs
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represented members of the other groups such as lignin peroxidase, lytic polysaccharide
monooxygenase, and manganese peroxidase were absent. Pectin esterase was the most
abundant group, with 815 sequences accounting for approximately 90% of genes. For
enzymes belonging to cellulase, we mined 8301 sequences that involved five EC groups
arranged in the order of high to low abundance as follows: β-glucosidase, endoglucanase,
6-phospho-beta-glucosidase, licheninase, cellobiohydrolase, and cellobiose phosphorylase,
wherein β-glucosidase occupied more than 50%, which corresponded to 4272 defined
sequences. Cellobiose dehydrogenase was absent in this data. For the hemicellulase
group, 13,018 defined sequences were divided into 20 EC groups. Xyloglucan-active β-D-
galactosidase was the most prominent group with 3288 ORFs, followed by α-L-fucosidase
with 2279 ORFs, α-galactosidase with 1033 ORFs, α-L-arabinofuranosidase with 1016 ORFs,
and others below 1000 ORFs per group. In addition, other ECs for hemicellulase, including
acetyl xylan esterase, acetyl mannan esterase, α-D-xylosidase, α-L-fucosidase, were absent.
All enzymes annotated in KEGG for lignocellulose degradation are listed in Table 4.

Table 4. Summary of ORFs encoding lignocellulases mined from the humus metagenomics DNA
using KEGG database, Pfam, and HMMER (dbcan).

Cat * Enzyme Name ORF Number Number of Complete ORFs Containing

(EC . . . ) Total Com ** Dom *** Domain/Domain Types

P Pretreatment 907 216 198 198/19 types

P1 Pectinesterase
(EC 3.1.1.11) 815 199 181 61/CE8; 37/DUF4861; 29/CE2; 23/PL10;

15/Abhydrolase_3; 16/11 others

P4 Feruloylesterase
(EC 3.1.1.73) 75 12 12 9/DUF3237; 3/Tannase

P3 Laccase
(EC 1.10.3.2) 10 5 5 5/Cu3-Cu0-Cu2

P4 Expansin 7 0 0

C Cellulase 8301 1279 1058 1058/81 types

C1 β-glucosidase
(EC 3.2.1.21) 4272 503 475

220/GH3-FN3; 93/GH1; 29/FN3;
29/GH3; 20/GH43; 11/GH3-Exop_C;
10/DUF4886; 10/CE3; 53/19 others

C2 Endoglucanase
(EC 3.2.1.4) 2216 548 367

105/GH8; 72/GH5; 38/PeptidaseM42; 18
GH5-CBM6; 14/DUF285; 13/GH18;

10/CE2; 97/43 others

C3
6-phospho-beta-

glucosidase
(EC 3.2.1.86)

1718 213 210 152/GH1; 58/GH4

C4 Cellobiohydrolase
(EC 3.2.1.91) 73 15 6

1/Alginate_lyase; 1/Amidase 3;
1/CBM2; 1/CBP_BcsO; 1/GH128 +

Laminin G3; 1/Znribbon8

C5
Cellobiose

phosphorylase
(EC 2.4.1.20)

22 0 0

H Hemicellulase 13,018 2087 1828 1828/151 types

H1
xyloglucan-active
β-D-galactosidase

(EC 3.2.1.23)
3288 330 298

123/GH2; 28/GH42; 21/GH35;
20/DUF302; 18/GH43; 14/GH2 +

CBM57; 13/Metallophos; 61/29 others

H2 α-L-fucosidase
(EC 3.2.1.51) 2279 464 413

109/GH29; 81/GH95; 63/CE3;
46/Exo_endo_phos; 19/GH29 + CBM32;

16/CBM32; 13/GH33; 12/Big_2;
10/Abhydrolase_3; 9/GH117;

6/DUF1735 + CBM32; 29/19 others

H3 α-galactosidase
(EC 3.2.1.22) 1033 163 134

65/GH36; 32/GH27; 16/GH4; 5/GH36 +
GH27; 3/CBM51; 3/GH27 + CBM35;

2/Alginate_lyase; 8/8 others
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Table 4. Cont.

Cat * Enzyme Name ORF Number Number of Complete ORFs Containing

(EC . . . ) Total Com ** Dom *** Domain/Domain Types

H4
α-L-

arabinofuranosidase
(EC 3.2.1.55)

1016 169 161
59/CE3; 47/GH51; 46/GH43; 4/GH43 +

CBM32; 3/GH43 + GH121; 1/GH54;
1/Methyltransf-23

H5
endo-β-1,4

xylanase (EC
3.2.1.8)

885 230 175
65/Abhydrolase_3; 36/Peptidase_S9;
33/GH10; 15/CE15; 9/CBM6; 4/CE4;

13/9 others

H6
alpha-D-

xylosidexylohydrolase
(EC 3.2.1.177)

762 62 55
33/GH31; 9/GH31 + DUF5110;

6/Gal_mutarotas_2 + GH31; 2/DUF4968
+ GH31 + DUF5110; 5/5 others

H7
xylan

1,4-beta-xylosidase
(EC 3.2.1.37)

659 146 134 69/HTH_18; 45/GH43; 18/GH39;
2/AraC_binding + HTH_18

H8 Beta-mannosidase
(EC 3.2.1.25) 611 46 37 22/GH2; 10/GH2 + Ig; 4/Ig; 1/GH158

H9

oligosaccharide
reducing-end
xylanase (EC

3.2.1.156)

552 100 73 31/GH43; 23/CHU; 4/GH8; 4/SprB;
3/CE4; 2/CBM9; 6/6 others

H10 β-mannanase
(EC 3.2.1.78) 368 87 81

31/GH26; 17/GH5; 8/DUF1996;
7/GH44; 3/GH35; 3/CHU; 3/GH5 +

CBM35; 9/9 others

H11 Endopolygalacturonaselyase
(EC 4.2.2.2) 341 60 52

37/PL1; 3/PL1 + CBM77; 3/PL10; 3/PL2;
3/PL3; 2/CBM35 + PL1; 1/PL1 +

LamininG3

H12
beta-

fructofuranosidase
(EC 3.2.1.26)

255 38 36 31/GH32; 2/Big_2; 1/CBM38 + GH32;
1/GH137; 1/PAN_4

H13
beta-D-

glucuronidase (EC
3.2.1.31)

227 33 28 20/GH2; 6/GH141; 2/GH158

H14 Exopolygalacturonase
(EC 3.2.1.67) 223 74 69 67/GH28; 2/NAD_binding_10

H15 Licheninase
(EC 3.2.1.73) 175 52 52 48/GH16; 2/GH158 + GH16; 1/GH16 +

CBM16; 1/GH16 + CBM6

H16
alpha-

glucuronidase (EC
3.2.1.139)

161 17 16 16/GH67

H17 Exopolygalacturonaselyase
(EC 4.2.2.9) 142 9 9 9/PL9

H18 Endopolygalacturonase
(EC 3.2.1.15) 38 6 4 4/GH28

H19
endo-

transglycosylase/hydrolase
(EC 2.4.1.207)

2 1 1 1/GH16

H20 Acetylxylanesterase
(EC 3.1.1.72) 1 0 0

Cat *: catalog; Com **: complete ORFs; Dom ***: complete ORFs contain domain.

Among the 22,226 ORFs, which represented 0.54% of all ORFs involved in lignocel-
lulose degradation, a substantial proportion of genes was assigned to a taxon by NCBI
taxonomic classification, and only 107 (accounting for 0.49%) were not taxonomically clas-
sified. Among these, 22,092 classified ORFs (accounting for 99.39%) belonged to bacteria.
Additionally, 28 phyla were identified in the lignocellulase data, which were dominated by
Proteobacteria (11,288 ORFs, accounting for 50.79%), followed by Bacteroidetes (8164 ORFs,
36.73%), along with Firmicutes (3.43%), Actinobacteria (3.30%), Acidobacteria (1.99%),
Verucomicrobia (0.53%), Cyanobacteria (0.11%), Planctomycetes (0.11%), and a total of
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20 other phyla (0.22%) (Figure 5A, Table S2). The ratio of Bacteroidetes/Proteobacteria
(0.72:1) was considerably higher than the ratio of the total bacterial structure in the hu-
mus (0.17:1). At the order level, Enterobacterales was identified as the most prominent
order, accounting for 20.06%, followed by Flavobacteriales (15.14%) and Sphingobacteriales
(11.62%).

Figure 5. (A) Analysis of community structure of the humus bacteria harboring genes for lignocel-
lulose degradation at phylum and order level, (B) lignocellulose pretreatment, (C) cellulase, and
(D) hemicellulase. The number indicates the percentage and the number of genes.

For further analysis, in the pretreatment group, we observed that Bacteroidetes was
the most abundant (427 ORFs, occupying 47.08%), slightly higher than Proteobacteia with
45.31%; whereas, for the hemicellulase group, Proteobacteria (44.20%) was slightly higher
than Bacteroidetes (43.52%). For cellulase, the ratio of Proteobacteria and Bacteroidetes
differed significantly, reaching 2.4 folds corresponding to Proteobacteria (61.72%) and
Bacteroidetes (24.96%) individually. The Proteobacteria/Bacteroidetes ratio was 2.4, clearly
indicating its predominance in pretreatment, and hemicellulose hydrolysis capacity re-
vealed a Bacteroidetes/Proteobacteria ratio of approximately 1:1. Thus, Bacteroidetes
appear to play a critical role in lignocellulose degradation.

A comparison of order taxonomy showed a notable difference from the total micro-
biota in the humus. Flavobacteriales, Sphingobacteriales, Enterobacterales with 29.88%,
19.63%, 17.42%, respectively, were three dominant orders in pretreatment; Enterobacterales
(27.90%) and Flavobacteriales (11.02%) were two abundant orders in cellulase; whereas
for hemicellulase, Flavobacteriales, Enterobacterales, and Sphingobacteriales were the
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three dominant orders accounting for 16.72%, 15.26%, 14.65%, respectively. In the total
humus microbiota, Sphingobacteriales (6.39%,) Xanthomonadales (5.88%), and Flavobacte-
riales (5.44%) represented the second abundant order cataloged below 10%; whereas, the
most dominant orders were Pseudomonadales with 29.16%, followed by Enterobacterales
(22.26%) and Burkholderiales (11.19%). In contrast, Pseudomonadales only accounted for
3.75%, 4.04%, and 0.45% representing the pretreatment, cellulase, and hemicelulase, respec-
tively (Figure 5, Table S2). Thus, Pseudomonadales was the typical order in the humus
sample but not for the lignocellulase in the humus. Enterobacterales dominated both the hu-
mus sample and lignocellulose-degrading enzyme/protein from the humus. Moreover, the
order Flavobacteriales predominated all types of lignocellulase. Thus, Flavobacteriales and
Enterobacterales orders belonging to Bacteroideles and Proteobacteria phyla, respectively,
play an important role in lignocellulose degradation in the humus.

In order to gain further insight into the mechanism of lignocellulose degradation by
the communities, we specifically observed the distribution of domains of the predicted
lignocellulases using the Pfam and HMMER databases. Among the 22,226 ORFs encoding
lignocellulases annotated in KEGG, only 3582 ORFs (16.12%) were complete, in which
3084 ORFs (equivalent to 86.1% of the completed ORFs) were assigned domains. For the
pretreatment enzyme/protein group, 198 domain-containing complete ORFs were divided
into 19 domain types. Carbohydrate Esterases (CE) and Polysaccharide Lyases (PL) were
the main families that yielded approximately 62%; other domains such as abhydrolase,
tannase, copper oxidase were also discovered. Family CE8 was the most predominant
domain, accounting for 32% in pretreatment (Figure 6A, Table S3).

Similarly, the completed 1058 ORFs containing domains belonging to the cellulase
group were defined into 81 domain types. Major domains were GH families that accounted
for more than 80%, representing GH1 and GH3-FN3 with 245 ORFs and 220 ORFs, respec-
tively, followed by GH8, GH5, and GH4. Furthermore, other groups such as peptidase
M42, FN3, GH3, GH43 were also identified in the data. Comparing the enzymes annotated
by KEGG and domains, GH3 was the predominant domain in enzyme β-glucosidase. In
particular, GH3 collocated with the FN3 module, which assists in enzyme conformation
and activity, was the most predominant domain with 220 ORFs in the enzyme group. In
addition, GH8 was attributed to the endoglucanase group, followed by GH5 at the second
level. In particular, the 6-phospho-beta-glucosidase group had only two types of domains
present, which included GH1 and GH4. Moreover, combining domain and taxonomy
showed that the GH1, GH8, and GH4 domains prevailed in Proteobacteria with 77%, 91%,
and 95%, respectively. In contrast, GH3-FN3 and GH5 were equally divided in both Pro-
teobacteria and Bacteroideles. Overall, in the taxonomy for domain-containing complete
enzymes involving cellulose degradation, Proteobacteria dominated Bacteroideles and
other phyla (Figure 6B, Table S4).

Additionally, our analysis showed that 151 domain types of 1828 completed ORFs
were adopted from hemicellulase data, indicating the diversity of hemicellulase domains.
In practically all domains, GH families were allocated diversely, which outperformed
GH2 featured for xyloglucan-active β-D-galactosidase, followed by GH43 present in cer-
tain enzymes such as α-L-arabinofuranosidase, xylan 1,4-beta-xylosidase, oligosaccharide
reducing-end xylanase, with the equivalent ratio in Bacteroidetes and Proteobacteria phyla;
whereas CE3, abhydrolase, and GH28 were predominant in Proteobacteria phyla, and other
abundant domains, such as GH29, GH95, were mainly present in Bacteroidetes (Figure 6C,
Table S5).

Alternatively, using profile HMMs of lytic polysaccharide monooxygenase (LPMO)
and multiple-copper oxidase (MCO) collected from Pfam to search and annotate the pre-
dicted ORFs in the metagenome data, we found 69 hits and 901 hits that belonged to LPMOs
and MCOs, respectively. All LPMO hits contained the LPMO10 domain, whereas the MCO
hits consisted of at least one or more of the four copper oxidase. Similarly, 224 ORFs were
annotated as catalase/peroxidase, which enclosed the catalase domain, and 53 ORFs were
defined as feruloyl esterase. Approximately half of the annotated hits were complete ORFs.
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Notably, 37 MCO hits, which were annotated by profile HMMs, could not be annotated
with NCBI, KEGG, SwissProt, eggNOG databases (Table 5).

Figure 6. (A) Bacterial phyla possess domain-containing complete ORFs encoding protein/enzyme
involved in lignocellulose pretreatment, (B) cellulose, and (C) hemicellulase. CE: carbohydrate
esterase; PL: polysaccharide lyases; GDLS: motid Gly-Asp-Ser-Leu sequence; CBM: carbohydrate
binding model; GH: glycoside hydrolase family; DUF: domain of unknown function; HTH: helix-
turn-helix.
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Table 5. Summary of ORFs encoding pretreatment enzymes mined from the humus metagenomics
DNA using profile HMMs.

No Enzyme Name (EC . . . ) Total Complete % Complete Domain

1 Catalase/Peroxidase
(EC 1.11.1.21) 224 142 63% Catalase

2 Feruloylesterase
(EC 3.1.1.73) 53 35 66% Tannase

3 Multi-copper oxidase 901 483 54%

Cu-oxidase,
Cu_oxidase_2,
Cu_oxidase_3,
Cu_oxidase_4

4
Lytic polysaccharide

monooxygenase
(EC 1.14.99.54)

69 33 48% LPMO_10

4. Discussion

In most soils, common phyla that are usually abundant are Proteobacteria, Bac-
teroidetes, Acidobacteria, Actinobacteria, and Firmicutes [13,32]. The ubiquitously domi-
nant phyla were significantly found in the biomass study of Arundo donax, Eucalyptus
amaldulensis, and Populus nigra using high-throughput sequencing of the 16S rRNA
gene [11]. Using metagenomics analysis, two soil samples near phosphate rock chemical
plants in Shuangsheng revealed that the most dominant bacteria were Proteobacteria at
38.56% and 57.85% [33]. Other taxa, including Acidobacteria, Verrucomicrobia, Cyanobac-
teria, and Planctomycetes were also present in the samples. Furthermore, other findings
revealed that the phyla Acidobacteria and Proteobacteria have a higher relative abundance
in soil environments, such as forest soil [18,21], crop soil [19], and lettuce soil [20]. In
litter and deadwood samples, soils usually contain abundant copiotrophic bacteria from
phyla Proteobacteria and Bacteroidetes. The bacterial communities exhibit successional
stages along the decay process in litter and wood [13]. Consistent with our study, the
five phyla, Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Acidobacteria,
were predominant, which accounted for 92.59% of total phyla. It is noted that in our
study Proteobacteria was the most dominant phylum accounting for 75.68%, especially the
most abundant of Gammaproteobacteria class (61.70%) belonging to this phylum in the
metagenome from humus samples of Cuc Phuong tropical forest. It has been known that in
soil samples, pH is one of the major factors affecting the composition and diversity of the
bacterial community [34–36]. Each group of bacteria usually grows at a narrow optimal pH
range. Some studies showed that the abundance of Proteobacteria subgroups positively
relates to neutral pH, and some Acidobacteria subphylums grow at acid pH range, whereas
the effect of pH on Bacteroides abundance is not clear [34,37]. Perhaps Bacteroides growth
relates to other factors such as nutrient composition than pH. In our humus samples, the
range of pH was 6.9–7.3. Therefore, it is possible to be suitable for the most abundant of
Proteobacteria subgroups, typically Gammaproteobacteria.

Certain studies also showed that Bacteroidetes usually represent about 10% of the
total microbiota in soils [38]. Additionally, bacteria belonging to the phylum Bacteroidetes
are known to contain several genes encoding the enzymes for polysaccharide degrada-
tion [39,40]. A study of high-Arctic peat soils of Svalbard showed that most genes assigned
to lignocellulose degraders belonged to phyla Bacteroidetes, Actinobacteria, and Verrucomi-
crobia, representing approximately 70% of these genes [41]. In our results, Proteobacteria
was present in the soil microbiota, but Bacteroidetes appear to play a vital role in lignocel-
lulose degradation. The majority of identified enzymes/proteins involved in lignocellulose
degradation were assigned to Proteobacteria and Bacteroidetes. The estimated ratio of
Proteobacteria/Bacteroidetes harboring genes coding lignocellulose enzymes was 1:1 in
pretreatment and hemicellulase groups and 2.4:1 in cellulose. In particular, the result
showed that Flavobacteriales of phylum Bacteroidetes were one of the most dominant
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orders harboring putative lignocellulose enzymes. Thus, both phyla contain members rec-
ognized for their role in the degradation, which were discovered in Cuc Phuong National
Park humus that surrounded the sites prominent with white-rot fungi degrading deadwood
were similar in microbial construction as observed in other soil investigations [11,42,43].
Other findings have described the lignocellulose degradation capabilities of bacterial strains
belonging to Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes [44–48]. Recently,
the role of bacteria of phylum Bacteroidetes in polymeric carbon degradation in soils has
been investigated using the KEGG database [17]. However, the analyzed results are noted
to be highly dependent on the analytical method and the selected databases.

For enzyme classification and domain analysis, we identified several important en-
zymes involved in the degradation of three major components of lignocellulose, which
include cellulose, hemicellulose, and lignin. For lignin degradation, CE and PL (815 of the
2,808,791 ORFs annotated by KEGG, accounting for 0.03%) were predominant domains,
which were consistent with our previous data [49]. Additionally, we mined 10 genes en-
coding laccases, including 5 complete genes that encode proteins containing 3 domains of
Cu3-Cu-Cu2 in the metagenomics data from the humus samples. Laccase is an important
enzyme of the multicoperoxidase group involved in lignin degradation. Laccases are
mainly found in fungi and plants, but few reports described bacterial laccases. Further-
more, studies showed that laccases are predominant in soil environments [12,18,50,51].
In previous investigations, this enzyme was not identified in our metagenomics data ob-
tained from microbial termite’s gut, goat’s rumen [49,52]. The presence of laccase in the
humus is probably due to deep sequencing and sufficient oxygen level available for the
soil microbiota. However, the number of ORFs coding for enzymes/proteins involved
in lignocellulose pretreatment in this study was lower than that of the other studies. For
example, a study investigated bacterial genes coding for lignocellulases in soil samples
collected from a tropical forest in the Luquillo Experimental Forest, Puerto Rico, by se-
quencing the metagenomic DNA using Roche 454 GS FLX Titanium technology (Branford,
CT). Among 68,911 functional annotated genes, 3133 CE (accounted 4.48%), 413 lignin
oxidases (0.59%), 282 PL (0.41%) and 240 lignin-degrading auxiliary oxidases (0.35%) were
identified [53]. The low abundance of the lignolytic enzymes in our data may be attributed
to the characteristics of the sample collected from the sites of white-rot fungi degrading
deadwood. The composition of the bacterial community in deadwood can be considerably
influenced by fungal communities [51]. In nature, white-rot fungi are the most efficient,
completely degrading lignin into CO2 and H2O [54]. This ability of fungi is due to the secre-
tion of extracellular enzymes, [55] including lignin peroxidase, manganese peroxidase, oxy
oxidoreductase/laccase, and other accessory enzymes [56] when growing under limited
nutrients (C:N ratio), especially in wood and soil [57].

Once degraded, cellulases and hemicellulases can be attached to the loosened lignocel-
lulose. The overview of lignocellulases in this study is similar to the abundance patterns
across the rain forest soil [53] and compost [58]. In soil, fungi normally degrade polymers
into organic compounds of low molecular mass, which is preferentially used by bacte-
ria [59,60]. In our data, GH1, GH8, and GH4 representing β-glucosidase, endoglucanase,
and 6-phospho-β-glucosidase, respectively, were the most frequent typical enzyme families
derived from the phylum Proteobacteria. In contrast, in other metagenomic data, GH5
affiliated with endoglucanase was dominant and belonged to phylum Bacteroidetes [49].
Notably, the enzymes were not collocated with other activity domains or non-catalytic
accessory domains. These domains were perhaps featured for cellulose-degrading enzymes
from soil’s metagenome with the predominance of Proteobacteria and contained only one
catalytic domain. Remarkably, the domain analysis showed that approximately 90% of
the GH3 domain in β-glucosidase was associated with an accessory module FN3, and the
construct was the most abundantly associated domain type, and the GH3-FN3 architecture
was observed in both Protoeobacteria and Bacteroideles. Furthermore, the FN3 module,
a non-catalytic domain, is known to decompress cellulose surface [61] and assists in en-
zyme conformation and activity [62–64]. This result was also consistent with previous
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findings that β-glucosidase contains FN3 but not CBM [65,66]. Our previous investigation
mined GH3 from goat rumen, in which the GH3 domain associated with the FN3 domain
accounted for 90.9% [63].

This is the first study investigating the bacterial community and the diversity of
lignocellulases from bacteria in humus samples surrounding white-rot fungi degrading
deadwood in tropical forest Cuc Phuong, Vietnam. Interestingly, the bacterial community
structure and abundance pattern of cellulases and hemicellulases in the humus were similar
to the samples from the soil in the rainforest. Due to the enzymes secreted by white-rot
fungi for lignin conversion, lignolytic enzymes in the humus were low in abundance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14030220/s1, Table S1: Microbial community structure in humus
samples surrounding white-rot fungi degrading deadwood in the Cuc Phuong forest at kingdom,
phylum, order, and genus levels; Table S2: Analysis of community structure of the humus bacteria
harboring genes for lignocellulose degradation at phylum and order level; Table S3: Bacterial phyla
possess domain-containing complete ORFs encoding protein/enzyme involved in lignocellulose
pretreatment; Table S4: Bacterial phyla possess domain-containing complete ORFs encoding cellulases;
Table S5: Bacterial phyla possess domain-containing complete ORFs encoding hemicellulose.
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