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Abstract: DNA barcoding has transformed the fields of ecology, evolution, and conservation by
providing a rapid and effective tool for species identification. The growth of DNA barcodes as a
resource for biologists has followed advances in computational and sequencing technology that have
enabled high-throughput barcoding applications. The global DNA barcode database is expanding to
represent the diversity of species on Earth thanks to efforts by international consortia and expanding
biological collections. Today, DNA barcoding is instrumental in advancing our understanding of how
species evolve, how they interact, and how we can slow down their extirpation and extinction. This
review focuses on current applications of DNA barcode sequences to address fundamental lines of
research, as well as new and expanding applications of which DNA barcoding will play a central role.
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1. Introduction

The fields of ecology, evolution, and conservation are being transformed by novel
resources and techniques in the biological sciences. One of these, DNA barcoding, has now
realized its potential for the research community. Since the concept of DNA barcodes was
first introduced in 2003 [1], tens of millions of barcode sequences have been made publicly
available in reference databases for comparative research applications across the Tree of Life
(Table 1). The growth of DNA barcode data in public repositories has been driven by several
factors, including advances in sequencing technology, novel database management and
other computational software, and the expansion of national and international consortia
that support DNA barcode sequencing. Recent reviews have highlighted the growth of
DNA barcode applications for phylogenetics and taxonomy (e.g., [2]). Other overviews
suggest that DNA barcoding is a resilient field that will continue to grow as sequence
databases are enriched, throughput expands, and automation provides an ever-expanding
user-community with increased accessibility to DNA barcodes, as reported by [3]. This
review highlights the advances and applications in DNA barcode sequencing that have
been leveraged for novel research in ecology, evolution, and conservation.

1.1. Accurate and Reliable Identification of Species in Taxonomy, Ecology, Evolution,
and Conservation

Hypothesis testing is at the heart of the biological sciences and is the standard for how
we understand the complexity of the natural world. For most biodiversity research, the
reliability and repeatability of hypothesis testing is dependent on accurate identifications
of the species under investigation. Faulty identifications can result in faulty hypotheses.
A fundamental challenge for any biologist, therefore, is to determine in a reliable and re-
peatable fashion the correct identification of any given biological sample. “DNA barcodes,”
i.e., standardized short sequences of DNA between 400 and 800 base pairs long, which in
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theory can be easily isolated and characterized for all species on the planet, were originally
conceived to facilitate this task [1]. By combining the strengths of molecular biology, se-
quencing technology, and bioinformatics, DNA barcodes offer a quick and accurate means
to recognize previously known, described, and named species and to retrieve information
about them.

Table 1. Diversity and number of barcode sequences available in the Barcode of Life Data System
(BOLD) database, taxon labels follow the BOLD format.

Taxon Barcode Sequences Available 1

Animals 11,607,692
Acanthocephala 2302
Acoelomorpha 20

Annelida 112,010
Arthropoda 11,486,730
Brachiopoda 326

Bryozoa 4529
Chaetognatha 1775

Chordata 877,866
Cnidaria 32,680

Ctenophora 649
Echinodermata 326

Entoprocta 76
Gastrotricha 1351

Gnathostomulida 24
Hemichordata 263
Kinorhyncha 720

Mollusca 258,885
Nematoda 36,513

Nematomorpha 408
Nemertea 6443

Onychophora 1394
Phoronida 172
Placozoa 20

Platyhelminthes 41,262
Porifera 9668

Priapulida 151
Rhombozoa 48

Rotifera 13,758
Sipuncula 1367
Tardigrada 3175

Xenacoelomorpha 18
Fungi 178,231

Ascomycota 99,779
Basidiomycota 71,120

Chytridiomycota 293
Glomeromycota 3529

Myxomycota 235
Zygomycota 3275

Plants 572,154
Bryophyta 22,675

Chlorophyta 18,286
Lycopodiophyta 1338
Magnoliophyta 454,329

Pinophyta 7661
Pteridophyta 11,671
Rhodophyta 56,194

Protists 10,463
Chlorarachniophyta 67

Ciliophora 819
Heterokontophyta 7238
Pyrrophycophyta 2339

Total 12,368,540
1 Data accessed from https://www.boldsystems.org/index.php/TaxBrowser_Home, accessed on 26 January 2022.

For plants, DNA barcoding has truly become a universal tool for hypothesis testing
by expanding the ability to identify a species at all stages of its life history (i.e., fruits,
seeds, seedlings, mature individuals both fertile and sterile) from damaged or preserved
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specimens, as well as environmental samples with multiple species. Accordingly, DNA
barcodes have been applied to address fundamental questions in ecology, evolution, and
conservation biology, such as: how are species assembled in communities; what is the
extent and specificity of multispecies interactions in well-studied and previously poorly
known environments; and where are the most evolutionarily rich habitats for priority
conservation and natural area protection in this age of habitat degradation [4,5]. With
regard to the applied users of taxonomy, DNA barcodes also serve as a means to identify
regulated species, invasive species, and endangered species.

1.2. Generating, Applying, and Sharing DNA Barcodes
1.2.1. Sequencing Technology

Advances in sequencing technology have radically transformed the potential for DNA
barcoding over the last decade by significantly reducing costs and time [6]. The current
state-of-the-art sequencing platforms can rapidly sequence tens to hundreds of millions
of short-length DNA fragments (50–300 base pairs with Illumina) or tens to hundreds
of thousands of long DNA fragments (10,000–30,000 base pairs on PacBio® and Oxford
Nanopore). The scale of targeted sequencing projects has expanded such that a single
researcher can generate barcode sequences from hundreds or thousands of extracted DNA
samples in a matter of hours [7–9]. The expanding scale of sequencing presents a great
opportunity for the barcoding community, as it allows for rapid generation of a universal
DNA barcode library across the Tree of Life. This is critical, as high-throughput sequencing
leads to a better curated database of barcode sequences from known species, but also a
greater representation of sequences from unidentified species (e.g., dark taxa, [10]). The
universal library of DNA barcodes from known species is being populated at an increasing
pace, but the global scientific community still lacks reference barcode data for a majority of
species across all major lineages (Figure 1).
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Figure 1. Numbers of species and DNA barcodes across the Tree of Life. The number of species in
each of the four major groups of organisms on Earth (blue bars) according to the Catalog of Life are
given along with the number of published barcode sequences in BOLD (green bars). Inset shows the
major green plant clades (blue bars) with the number of barcode sequences in BOLD (green bars)
adjacent to the number of accepted species (according to [11]). The estimated percentage of all species
with DNA barcode sequences for that group is provided above the bars in this plot.
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As the sequencing technology landscape continues to expand (also see Section 3 be-
low), so does the traditional view of DNA barcodes. Longer sequence reads have led some
researchers to consider longer barcode sequences with potentially greater discriminatory
power for taxonomic identification. A number of recent studies have presented “super-
barcodes” [12,13] or “ultra-barcodes” [14,15] as approaches that leverage whole organelle
genomes (e.g., the chloroplast) or a combination of organellar and ribosomal DNA to
provide significantly longer sequence data for barcoding. The super- or ultra-barcoding
approach has been most commonly used for plants, which present a number of challenges
to traditional DNA barcoding. Another alternative for traditional DNA barcoding leverages
high-throughput sequencing technology to “skim” the genome (e.g., genome skimming,
low-coverage sequence reads from a whole genome) as a universal barcode [16]. This
approach circumvents the need for PCR, which can be problematic for preserved specimens
with degraded DNA and also provides a method for less ambiguous reference databases
for taxonomic identification [17]. Regardless of where the standard for DNA barcode
technology is headed, barcode sequence databases will benefit from a growing number of
sequences generated for known species.

1.2.2. Novel Computational Resources and Software

The Barcode of Life Data System (BOLD, https://www.boldsystems.org/, accessed on
26 January 2022 [18]) has been the core bioinformatics resource dedicated to hosting DNA
barcode sequence data since it was launched in 2007. In addition, many computational
resources and software have been developed to accommodate the expanding role of DNA
barcodes. Some of these packages (e.g., MDOP [19]) help researchers to organize DNA
barcoding data before uploading to databases, such as BOLD and NCBI’s Genbank, and
still others are designed to assess the quality of data that have already been made publicly
available (e.g., BAGS [20] and MACER [21]). The quality of DNA barcode data can be
impacted by a number of factors, including poor sequence annotation, a lack of physical
specimen vouchers, poor sequence quality, and incorrect consensus sequence building.
The last of these factors is especially problematic for DNA barcoding methods based on
high-throughput sequence reads. Fortunately, several recent software packages have been
developed to address challenges with consensus sequence building, such as PIPEBAR,
OverlapPER [22] and NGSpeciesID [23].

Taxonomic assignment is key for downstream applications of DNA barcode sequences
and the accuracies of approaches, which assign sequences from unknown taxa to a rec-
ognized barcode sequence, are critical [24]. Despite the development of several tools to
accurately assign sequences to taxa represented in barcode sequence databases, compar-
ison across software has demonstrated that it remains challenging to accurately assign
sequences to taxa at or below the level of genus [25]. Taxonomic assignment methods are
being developed and refined rapidly, with several options published in just the last four
years. Among these are the QIIME2 feature classifier [26], IDTAXA [27], MeTaxa2 [28],
and Basta [29]. Although the methodology to perform taxonomic assessment is quickly
evolving, older methods are accurate, still perform well, and continue to be used, such as
Kraken2 [30], Protax [31], and the longstanding BLAST tool [32]. Beyond these methods,
other options are optimized for clade-based metabarcoding reference databases (e.g., Fungi:
funbarRF [33]) or have been developed as part of custom pipelines that have more specific
user needs (e.g., the Anacapa Toolkit [34]). Ultimately, the ability of any computational
method to accurately match a sequence from an unknown species is dependent upon
well-curated, annotated, and comprehensive reference sequence databases. Focus should
remain on populating DNA barcode reference databases with high-quality sequence data
from accurately identified and vouchered collections.

1.2.3. National and International Sequencing Consortia

The effort to contribute DNA barcode sequence data is coordinated worldwide through
both national and international organizations. Coordination of international barcoding

https://www.boldsystems.org/
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activities began in 2004 with the Consortium for the Barcode of Life, followed by the
International Barcode of Life Project (iBOL, https://ibol.org/, accessed on 26 January 2022)
in 2008. National efforts have also been launched in Austria (ABOL), Finland (FinBOL),
Germany (GBOL), the Netherlands (NBOL), Norway (NorBOL), and Switzerland (Swiss-
BOL) to name a few. Most recently, BIOSCAN [35], an international project organized by
iBOL, was initiated and includes 1000 researchers in over 30 countries with the objective of
generating DNA barcodes to discover species, to understand species interactions, and to
monitor species in a global biological surveillance system. Once achieved, the collective
goals of these organizations will result in a DNA barcode library for nearly all species
on Earth.

In the nearly two decades since DNA barcodes were first proposed, other ambitious
and sweeping networks have emerged that also reflect the fundamental goal of the DNA bar-
coding community: to leverage organismal DNA to understand life on Earth. One of these,
the Global Genome Biodiversity Network (GGBN, https://www.ggbn.org/ggbn_portal/,
accessed on 26 January 2022 [36]) represents a network of well-curated tissue collec-
tions that seeks to develop standards, share collection information, and facilitate bio-
diversity genomics research. More recently, the Earth BioGenome Project (EBP; https:
//www.earthbiogenome.org/, accessed on 26 January 2022) was launched [37] as a “moon-
shot” [38] for biology that aims to sequence whole genomes of all eukaryotic species on
Earth in ten years. Although not specifically aimed at DNA barcode loci, EBP will indirectly
provide a wealth of sequence data for the major DNA barcode loci of plants, animals, and
fungi. DNA barcoding, which was originally considered to be at one end of the sequence
spectrum, is now converging with entire genomes [39]. These global efforts, which have
been described as “networks of networks,” build connections among more localized, often
national endeavors.

The organization of DNA barcoding projects has often followed geopolitical bound-
aries and the most common denominator for large sequence programs reflects local, re-
gional, or national funding structures. Some examples of these at a regional and national lev-
els include the African Centre for DNA Barcoding (https://www.acdb.co.za/, accessed on
26 January 2022 [40]), the Canadian Centre for DNA Barcoding (https://ccdb.ca/, accessed
on 26 January 2022), and the China Plant BOL (Barcode of Life) Group [41]. In a similar way,
the United Kingdom’s Darwin Tree of Life Project (https://www.darwintreeoflife.org/, ac-
cessed on 26 January 2022 [42]) takes a geopolitical approach toward their goal to sequence
the whole genomes of all eukaryotic species in Britain and Ireland. These focused, localized
research networks contribute to international goals that help support the shared priority of
advancing a global understanding of biodiversity and facilitate the use of DNA barcodes
and other genetic tools for broader ecological, evolutionary, and conservation purposes.

1.2.4. Building the Plant DNA Barcode Library

With more than half a million plant DNA barcode sequences available today in the
Barcode of Life Data Systems (BOLD, Figure 1), continuing to populate the global library is
a major effort of botanists. In addition to the national and multinational projects described
above, building the plant DNA barcode library can be enhanced by taking advantage
of a number of diverse efforts, such as forest monitoring plots, individual lineage-based
taxonomic studies, and regional floristic efforts. Forest monitoring plots, such as the
Smithsonian’s Forest Global Earth Observatories (ForestGEO) and the National Science
Foundation’s Long Term Ecological Research (LTER) sites, are rich resources because they
have well-verified identifications, vouchered collections, and individually tagged trees
that can be revisited by botanists if necessary [43–46]. Even if no specific monitoring
plots have been established, many studies have generated DNA barcode libraries for
specific habitats [47], plant communities [48], or regional taxa [49–51] and are thereby
expanding the global plant genetic library. Individual taxonomists are also generating
DNA barcodes for specific groups of plants as either standard markers (e.g., [52–55]) or as
an offshoot of their basic molecular phylogenetic investigations aimed at understanding

https://ibol.org/
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evolutionary relationships. Preserved museum specimens can also be used to generate
DNA barcodes [56]. It is significant that one recent study has encouraged a large-scale effort
to sequence DNA barcodes from all types of specimens [57]. All of these DNA sequences
add to the library of standard DNA barcode markers even if they do not carry the official
GenBank DNA barcode designation.

Other efforts to generate DNA barcodes for entire regional floras are in some cases
complete or just getting underway. One of the most impressive is the library that has been
built for identifying the vascular plants of Canada [58], which includes sequence records
(rbcL, matK, and ITS2) for 96% of the 5108 species known from that country. Another
success story for plant DNA barcodes is the China Plant Barcode of Life [41]. This sixteen-
year project has now generated and made available for use 120,000 DNA barcodes for
16,000 species, representing a significant sampling of the entire flora of China. Other
examples are the recently completed DNA barcode library for the plants of the UK [59],
and work that has started on the flora of the Arabian peninsula [60].

1.3. The Purpose and Structure of This Review

Today, more than ever, DNA barcodes are being used to advance our understanding
of how species evolve, how they interact, and how we can slow down their extirpation
and extinction (e.g., [61–63]). As sequencing technologies have improved and sequencing
costs have declined, the use of DNA barcoding is skyrocketing and some of the most
exciting prospects for using this new taxonomic tool are being realized. A number of
comprehensive reviews of the application of plant DNA barcodes to the fields of ecology,
evolution, and conservation have been provided in the past [5,64–68]. This review and the
Special Issue of Diversity of which it is a part focus on current areas of research as well as
new applications of DNA barcodes that are the direct result of the accumulation of barcode
reference sequences, including past trials, experiments, and applications of this twenty-first
century biological tool (Figure 2).

1 
 

 

Figure 2. A graphical representation of DNA barcoding today. DNA barcode applications in ecology
(left), evolution (top), and conservation (right) are supported by a foundation of collections, metadata,
and informatics (bottom). These applications are facilitated by increasingly large DNA barcode
reference databases (center circle) that are reciprocally built from and contribute to the major biological
disciplines. National and international initiatives that support the growth of DNA barcode reference
databases are core resources (green circle).
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2. Current Applications
2.1. Improving Taxonomy and Species Identification
2.1.1. Defining Species Boundaries

Taxonomists have been using morphological features for the identification of both plants
and animals since before the time of Carl von Linné. Yet, even after centuries of taxonomic
work, perhaps only 20 percent of the species on Earth have been formally named [69]. Much
work remains to be done. DNA barcoding provides a relatively new and significant tool to aid
in the determination of species boundaries and discovery of new taxa. Entomologists have
been pioneers in incorporating DNA barcode technologies for species discovery in the tropics,
where the majority of biodiversity is found (e.g., [70–73]). Although the discriminatory power
of barcode markers for plants is less than for insects, botanists have also used DNA barcodes
as a taxonomic resource. Early studies, which have mostly focused on trees in tropical forest
monitoring plots (e.g., [62,74,75]), demonstrated the difficulties of using DNA barcodes
in plants (also see [76] for a recent study on African trees). However, the same studies
also pointed out the advantages of being able to accurately identify sterile and juvenile
specimens that lack morphological features required for identification. Costion et al. [77]
applied a three-locus DNA barcode to estimate tree species diversity in a taxonomically
poorly known tropical rain forest plot in Queensland, Australia, and concluded that DNA
barcodes were a significant aid in rapid biodiversity assessment and determination of
cryptic tree populations. A similar study in a central African rain forest plot recognized the
high discriminatory power of barcode markers at the genus-level (95–100%), but somewhat
lower species-level success (71–88%) in identification, especially in species-rich clades [78]
or those with high rates of molecular evolution.

One of the major issues faced by plant taxonomists and ecologists attempting to
use DNA barcodes in diverse forests, especially in the tropics, is that many species are
new to science, therefore lack Latin binomials, and/or are members of poorly circum-
scribed species complexes that are difficult to identify even with traditional morphological
data. Inventories and assessments of plant diversity in these habitats can be greatly en-
hanced by building DNA barcode libraries of these taxa [79]. Standardizing the DNA
barcode markers and bioinformatics tools being used in different forest inventory projects
(e.g., RAINFOR, http://www.rainfor.org/, accessed on 26 January 2022; the Amazon Tree
Diversity Network [80], CForBio, http://www.cfbiodiv.org/, accessed on 26 January 2022;
and ForestGEO [43]) will provide more confidence in identifications and maybe even allow
rapid discovery and description of unknown taxa in these species-rich forests [79].

In addition to discovering new species, the introduction of integrative taxonomy has
encouraged closer collaboration among biologists with different backgrounds, and in turn
has promoted the use of DNA barcoding as a new tool in a broad taxonomic toolkit [81]. For
very poorly documented regions or “understudied and hyperdiverse” taxa, DNA barcoding
can be a key part of integrative workflows for species description and identification [82].

2.1.2. Regional Biodiversity Assessments

DNA barcode studies both benefit from and serve a key role in support of local and
regional biodiversity assessments, including floristics. In many biodiverse regions, where
species diversity is poorly known, collections-based exploration and inventory studies are
vital for alpha taxonomy and conservation. Modern approaches to field expeditions employ
a variety of strategies to collect and document species, which often include the collection
of various data to inform biodiversity studies. These data incorporate traditional natural
history specimens, photographs, ecological notes, and, more recently, vouchers intended for
genetic and/or genomics research [83]. The collection of genetic vouchers and sequencing
of DNA barcodes in standard species inventories help to build the global barcode reference
database [84] as mentioned above, and often result in surprising discoveries of cryptic
diversity (e.g., [85–87]).

http://www.rainfor.org/
http://www.cfbiodiv.org/
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2.2. Quantify Species Diversity
2.2.1. Species Richness and Phylogenetic Diversity

Fundamental to biodiversity research is the quantification of organismal diversity.
Different approaches to this task may provide different interpretations by ecologists, evolu-
tionary biologists, and conservation biologists regarding the role that biodiversity plays
in ecosystem function, niche allocation, and species preservation. Phylogenetic diversity
was proposed as a metric that quantifies diversity by summing the branch lengths of a
given phylogenetic tree [88,89] and is arguably a more descriptive measure of biodiver-
sity than alternative indices such as simple species richness and abundance [90]. DNA
barcoding provides an efficient and rapid resource for generating phylogenies to measure
phylogenetic diversity, particularly when combined with metabarcoding [91].

It should be noted however that despite the utility of DNA barcoding approaches in
diversity assessment, limitations exist. Winter et al. [92] described some of the limitations
of phylogenetic diversity insofar as the metric is applied to conservation applications. And
although phylogenetic diversity has been lauded as an indicator of species interactions and
ecosystem functions [93–95], caution has been urged against using this measure alone to
conserve functional trait diversity in ecosystems. The growth of DNA barcode databases
and new sequencing methods are facilitating the ability to analyze and understand phy-
logenetic diversity, but if these data are to be used as predictors for conservation and
estimates of ecosystem function, they need to be carefully evaluated in combination with
detailed trait databases. Among the earliest uses of DNA barcoding to quantify biodiversity
were investigations of community assembly and function in long-term forest monitoring
plots in Panama.

2.2.2. BCI as an Exemplar Tropical Field Site for DNA Barcoding

More than a decade ago the first community phylogeny based on DNA barcode
sequence data was published for the trees in a forest dynamics plot on Barro Colorado
Island (BCI) in Panama [62]. This publication set off a storm of new investigations that
were able to add a well-supported evolutionary perspective to understanding species
diversity and assembly in plant communities (e.g., [96–100]). The DNA barcode phylogeny
generated for the approximately 300 species of trees on BCI also served as a template
for a number of investigations of functional traits. The evolutionary context of such
characteristics as soil associations [101], leaf toughness [102], wood nitrogen concentration
and life-history strategies [103], foliar spectral traits [104], and anti-herbivore defense
traits [105] was found to vary in each of these functional traits across the tree species in the
BCI plot. Although some have concluded that phylogenetic indictors are not always tied to
ecological determinants of community assembly [106], both phylogenetic- and trait-based
approaches have greatly enhanced the understanding of community structure and function
on BCI.

Belowground interactions among species have also been investigated at BCI using
the DNA barcode library for trees. Jones et al. [107] mapped the belowground distribution
of all trees and lianas greater than one centimeter in diameter using their genetic DNA
barcode signature. Comparing underground species distributions with aboveground
distributions showed that species interactions and spatial overlap was greater belowground
than expected based on aboveground stem densities. Although this study raised several
questions about methodology and analysis, it concluded that the potential for using DNA
barcodes in this type of investigation was high.

The DNA barcode library for trees on BCI has now been expanded to include many
of the shrubs and lianas as well as some epiphytes that occur in the forest on the island.
Efforts to build DNA barcode libraries and apply DNA barcode methodologies to other
groups of organisms (e.g., insects [108]) are underway. This rich genetic resource will
greatly enhance future studies of ecological interactions and evolutionary signal in this
tropical forest community in Panama.
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2.3. Determining Community Structure and Species Interactions
2.3.1. Community Evolution and Assembly

DNA barcoding has played a significant role in expanding collaboration between sys-
tematists, who focus on species identification and evolutionary relationships, and ecologists,
who investigate species interactions and patterns of associations [109]. As noted above for
work conducted on Barro Colorado Island in Panama, plant DNA barcoding has been a
boon to community ecologists seeking to understand the factors, such as species diversity
pools and functional traits, that control the assembly of species into ecological communi-
ties [100,106]. Estimating a third component that may determine species assembly, namely
evolutionary history, has always been hampered by the lack of well-resolved phylogenetic
hypotheses on species relationships in communities. Determining if species in a community
are more closely related than by chance (phylogenetic clustering), more distantly related
than by chance (phylogenetic overdispersion), or randomly distributed across the plant
tree of life is now readily ascertained by building a DNA barcode-based phylogenetic tree.
The assumption follows that species in a community that are phylogenetically clustered
are more likely to have similar ecological niches (i.e., phylogenetic niche conservation) and
have been assembled via abiotic filtering. The contrasting assumption is that phylogenetic
overdispersion in a community is the result of biotic interactions among sympatric species.
Based on these assumptions the impact of evolutionary history on community structure
has been investigated using DNA barcodes across stages of forest succession [99], among
habitats within a forest type [62,110,111], among forests across habitat gradients [112], and
among communities across an entire country [113,114] and across the globe [45,115]. The
generation of such community phylogenies has great promise for further testing the basic
assumptions and rules governing species assemblies in plant communities (see [45]).

2.3.2. Herbivory and Food Webs

The accurate and repeatable identifications of species is imperative if we are to fully
understand the ecology and evolution of interactions among partners in natural and human-
altered environments. This requirement is especially true for specialized interactions,
including mutualisms and antagonisms. The application of DNA barcodes as species-level
markers has revolutionized our ability to track species interactions and the community
networks they form, in boreal, temperate, and tropical habitats.

Food web interactions have been greatly clarified with the application of DNA bar-
codes. Smith et al. [116] using the CO1 DNA barcode marker were able to verify the food
web structure of the spruce budworm and its numerous parasitoids to understand the pop-
ulation dynamics of this major pest of trees in boreal forests. The utility of DNA barcodes
to identify the diversity of host plants for herbivorous beetles have been demonstrated
in both neotropical [62,117] and Asian tropical forests [118]. These early studies used a
limited number of molecular markers and were only able to identity the hosts at the generic
or familial level.

The most comprehensive analyses between herbivorous beetles and their host plants
have been conducted by García-Robledo and colleagues [72,73,119]. The host-specific rela-
tionships between rolled-leaf beetles in the genera Cephaloleia and Chelobasis (Chrysomeli-
dae) and plants in the order Zingiberales have been well-studied by ecologists [120], but
the application of DNA barcodes to both the beetles and the hosts have provided a much
more detailed and quantitative measure of these interactions [74]. One of the advantages of
using an easily extracted DNA barcode is that the beetles can be identified at any of their
life stages and not only as adults as in most previous investigations using morphological
features [119]. Once the basic network of food web interactions is established using DNA
barcodes, comparisons can be made across habitats, elevations, and temperature gradients.
Most recently Palmer et al. [121] have extended this methodology to the interactions among
katydids and their host plants in a wet forest habitat in Panama. They found that, in general,
these insects consumed a broad range of flowering plants and were rarely specialists on
only a few species. It has been shown in numerous cases (e.g., Hebert et al. [70]) that
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DNA barcodes can detect the presence of cryptic species, especially in insects. This power
of DNA barcoding has greatly improved the understanding of species boundaries in the
rolled-leaf beetles, allowing for more precise mapping of the insect–host networks. The
detection of these cryptic species clearly demonstrated that the elevational distributions
and thermal tolerances of the beetles was much narrower than previously thought, which
will have an impact on the food web networks as climate change differentially impacts
both host and herbivore migrations [73].

DNA barcodes have also altered our view of why tropical biomes are so diverse. It has
long been held that specialized ecological interactions, which are common in tropical forests,
will lead to reproductive isolation and speciation, and hence greater biotic diversity in the
tropics. One such specialization is that between tropical flowers and the nectar-robbing
floral mites that are caried from plant to plant on the bills of hummingbird pollinators [122].
This specialization allows floral mites to easily find mates and reproduce, because many
conspecifics accumulate in the flowers of only a few species of plants. This “mating
rendezvous hypothesis” [123] accounted for the host specialization in these mites. However,
using DNA barcode markers to identify the mites, rather than morphological identification,
has now shown that most floral mites are generalists and not specialists [124]. The mating
rendezvous hypothesis is no longer supported, at least for mite diversification.

This detailed understanding of herbivore–host interactions using DNA barcodes has
also been applied to large mammalian herbivores. In a semiarid African savannah, Kartzinel
et al. [125] determined the extent that sympatric mammalian browsers and grazers could
partition their diets. After building a library of plant DNA barcodes for the local flora,
they quantified the diet breadth, composition, and overlap for seven co-occurring mammal
species, ranging in size from dik-diks to elephants using DNA metabarcoding. Earlier
conclusions on competition and coexistence in these habitats based on low-resolution
analyses were shown to be misleading, according to the more high-resolution taxonomic
data provided by the metabarcoding results. This work in Africa has now been extended
to demonstrate that the abundance and diversity of food plants is negatively associated
with their mammalian herbivores, apparently to avoid consumption [126]. The same type
of DNA barcoding protocol has also been adapted to tracking and identifying the vectors
of bird-dispersed fruits and seeds in the field [127] in order to build a quantifiable network
of frugivores and seed dispersal interactions.

2.3.3. Symbiotic Relationships and Plant-Pollinator Interactions

Symbioses, perhaps the most characteristic of “species interactions,” entail very close
relationships between two or more species living together, and DNA barcodes have facili-
tated researchers studying such close interactions [128]. In some groups (e.g., fungi, [129]),
DNA barcoding has revolutionized the field, especially where symbiotic partners are very
closely associated and interactions often exist at a cellular level (e.g., in lichens [130]). The
use of DNA barcodes to understand symbioses is common in all major clades, including
arthropods [131], vertebrates [132], green plants [133], and fungi [134]. An especially pow-
erful tool for symbiosis-based research is metabarcoding [135], which allows for pooled
sequencing from closely associated, symbiotic organisms that are otherwise difficult to
isolate. The application of DNA barcodes to more closely track and untangle symbiotic
relationships is still in its infancy (see below Section 3.1).

The interactions between plants and pollinators is a symbiotic mutualism that is
critical for the survival of both partners. An understanding of the dynamics of these
interactions is a priority for plant and insect ecologists to conserve biodiversity and to
protect the agricultural crop supply chain. DNA barcodes have been explored for more
than two decades as a means to identify plants from the insects that have visited them
as pollinators [136]. Given the nature of pollination dynamics, samples removed either
from plants or their pollinators can include a mixed community of pollen and, therefore,
metabarcoding approaches provide a unique tool to identify the diversity contained in
these mixed samples [137,138].
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Clare et al. [139] were among the first to apply metabarcoding to study plant–pollinator
interactions, extending the concepts earlier proposed by Valentini et al. [68] and Soininen
et al. [140]. A key threshold for advancing these methods is a comprehensive DNA barcode
sequence reference database. For example, the first national DNA barcode sequence reference
database of Wales [141] has provided a benchmark for DNA metabarcoding studies of plant–
pollinator interactions and this has recently grown into a comprehensive database for all of the
United Kingdom [59]. Together, these databases have proven powerful for reconstructing bee
foraging behavior [142–144]. These and other studies [145–147] have built a strong foundation
for using DNA metabarcoding to study plant–pollinator interactions.

2.4. Protecting Species
2.4.1. Forensics and Monitoring Traffic in Endangered Plants

It is abundantly clear to all biologists that biodiversity is under severe threat across the
globe due to natural resource overutilization and exploitation, major habitat degradation,
and climate change caused by humans. Biodiversity conservation is imperative. DNA
barcoding, as a tool primarily for species identification, can be used in three general ways to
further biodiversity conservation: (1) to accurately monitor and thereby protect endangered
species subject to illegal commercial trade (i.e., point-of-origin tracing [148,149]), (2) to track
biological invasions, and (3) to provide data that will assist in the estimation of phylogenetic
diversity for setting conservation priorities [150].

Although DNA barcode-based discrimination at the species-level is not possible in
all groups of organisms, DNA barcodes have been utilized for forensic identification
of algae [151], plants [152,153], invertebrates [154], and vertebrates [155]. A significant
driving force in developing DNA barcode technology for plants has been the need for an
accurate and inexpensive tool for the identification of illegal timber products, especially
those listed in the Convention on International Trade of Endangered Species (CITES). For
example, in tests of the commercially important mahogany family (Meliaceae), most of
the standard DNA barcode markers fell short of expectations for discriminating species,
although the nuclear ribosomal internal transcribed spacer (ITS) was able to identify some
species in this family [156]. A higher level of discrimination using standard markers was
demonstrated among commercially important and threatened species of trees collected at
timber processing plants in the tropical dry forests of India [157]. This same success was
demonstrated in timber species found in Araucaria rain forests of the southern Atlantic
coast of Brazil [158], which contains many threatened species of trees, especially in the
family Lauraceae. In Madagascar, a recognized biodiversity hotspot, Hassold et al. [159]
used DNA barcodes in an effort to monitor illegal timber trade, especially in species of
rosewood (Dalbergia in the Fabaceae). They demonstrated the limitations of the standard
genetic markers in identifying closely related species of this genus, although some success
was achieved. In addition to timber trees, DNA barcode libraries have been developed
for other taxonomic groups of threatened and endangered plant taxa listed in CITES,
e.g., orchids [160]. Currently no more effective tool than DNA barcoding exists for accurate
identification of products sold in public markets [161–163] or as illegally harvested species
intended for trade intercepted at ports [164,165]. As global DNA barcode reference libraries
grow, so too does the capacity to enforce conservation laws and to monitor illegal trade in
endangered plants.

Traditional medicines, teas, and herbal supplements are another important component
of the commercial need for accurate plant species identifications by regulators and quality
control specialists. It is estimated that medicinal plants account for billions of US dollars
in annual revenues in the United States alone [166]. From the initial use of plant DNA
barcodes, applications to monitor this market have been in development [167]. However,
many of these trials to use DNA barcodes to identify commercial medicines and herbal
supplements have shown limited success in discriminating among species. Some of the
major obstacles have been the lack of comprehensive DNA barcode libraries required
to make accurate comparisons among species of herbal teas and supplements, and the
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absence of standardized taxonomy and common names listed in the herbal catalogs and
pharmacopeias (e.g., Stoeckle et al. [168]; de Boer et al. [169]). Building the required DNA
barcode libraries (see below) and unifying the taxonomy in the literature on traditional
medicines are challenges for the future.

2.4.2. Tracking Biological Invasions

The field of conservation biology has also benefited from the accuracy of DNA barcod-
ing methods to trace biological invasions. It has been estimated that the control of invasive
species costs more than $27 billion annually in the United States alone [170]. Fast detection
can significantly reduce the cost of controlling biological invasions, and DNA barcodes
and metabarcoding in particular have been demonstrated to provide the earliest inva-
sive species detection methods available [171]. For example, one of the most widespread
threats to marine ecosystems is the invasive zebra mussel, Dreissena polymorpha, and recent
studies [172], using metabarcoding (or environmental DNA), have proven this method
to be cost effective for early detection of this species in marine environments. Studies
that quantify regional biodiversity using DNA barcodes have also proven effective for
identifying biological invasions [173], where higher than expected phylogenetic diversity
may result from the occurrence of non-native or invasive species.

In some groups of plants, invasive and weedy species are remarkably difficult to
visually distinguish from non-invasive, endemic species, and several studies suggest DNA
barcoding will facilitate proper identification and management by non-specialists. For ex-
ample, current DNA barcodes in many plant taxa are unable to distinguish taxa at or below
the genus-level, but new paradigms in barcode sequencing provide greater distinction of
closely related species. Wang et al. [174] have advocated the use of super- or ultra-barcodes
(e.g., whole chloroplast genomes) to monitor and detect flaxleaf fleabane, Conyza bonariensis,
because, unlike traditional plant DNA barcodes, these super-barcodes are able to distin-
guish among closely related species in this diverse and difficult to identify genus.

2.4.3. Conservation Assessment

The taxonomic impediment [175] is also a significant problem in assessing species
diversity and making accurate species determinations for conservation monitoring. This
case is especially true in tropical biomes, where biodiversity is poorly known and a greater
number of species lack verified scientific names. Species identification by non-taxonomists
can be extremely difficult, especially when using non-fertile specimens often only labeled
as “morphospecies” [176]. In such cases, DNA barcoding offers a solution for more uniform
and accurate identifications, recognizing that some logistical hurdles may still impede the
widespread use of DNA barcodes in this fashion [177].

In the relatively poorly known tropical forests of northern Queensland, Australia, it
has been demonstrated that plant DNA barcodes can play a key role in estimating species
richness and thereby determining conservation priorities [77]. Similarly, in the fragmented
rain forest habitats in South Eastern Queensland, Shapcott et al. [61,169] generated plant
DNA barcodes for 86% of the flora (770 species in 111 families) and calculated phylogenetic
diversity (PD; see Owen [178]) measures for each of the 18 subregions in the area. For these
forests, which have lately received renewed conservation attention and are taxonomically
rich at the generic-level and less so at the species-level, species richness may not be the
most appropriate measure for setting conservation priorities. The phylogenetic diversity
estimates calculated from the DNA barcode data were used to prioritize subregions for
conservation action and it was concluded that the local floristic patterns were consistent
with both ancient ecological refugia and recent lineage range expansions [179].

Even though the Earth may be undergoing its sixth major extinction with extinction
rates over one thousand times that of “normal” periods [69], observing an extinction event
is rare. For plants the extinction of only 571 species over the last several hundred years
has been carefully documented [180]. On the island of Palau in Micronesia, plant DNA
barcodes were used to verify that a narrow range endemic tree described in the 1980s
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known from only two mature individuals was Timonius salsedoi Fosberg and Sachet in
the family Rubiaceae [181]. Subsequently, after a typhoon hit the area, a survey of the
island revealed that both trees had perished. Although previously assessed as Critically
Endangered by IUCN criteria, it is suspected that this species is now extinct [181].

DNA barcodes have significant potential as a tool for understanding and enhancing
conservation efforts. Using standardized and comparable genetic information for species
across broad geographic regions can have a substantial impact on basic biodiversity research
(e.g., Mi et al. [112]; Erickson et al. [45]; Pei et al. [98]), as well as conservation monitoring
and priority assessments in threatened habitats, in local communities, and across large
geographic regions (e.g., Shapcott et al. [61]).

3. Looking Forward: The Expanding Technological Spectrum of DNA Barcodes
3.1. Metabarcoding

DNA metabarcoding [135] has emerged as a powerful technique to rapidly characterize
species composition, species interactions, and—when combined with trait databases—functional
aspects of biological diversity in communities. This method leverages high-throughput
sequencing technology to sequence and/or extract DNA barcodes from pooled community
or environmental samples. These samples represent DNA isolated from multiple species
or other taxa that have been collected in bulk and targeted sequencing is performed on
libraries enriched with (typically) DNA barcode amplicons [182]. Metabarcoding is an emer-
gent field that leverages expansive DNA barcode sequence databases and the increasingly
high-throughput capacity of DNA sequencing technology.

This technique allows ecologists to explore species interactions through a new lens and
is illuminating species distribution and occurrence from ecosystems and habitats that have
remained all but invisible. Metabarcoding is able to provide high-resolution inventories
from the hidden worlds of below-ground microbial diversity [183], freshwater [184] and
marine [185] benthic communities, and the movement and dispersal of airborne fungi [186]
and plants [187]; however, this method is dependent upon well-curated reference collections
and databases [188].

Beyond enhanced characterization of species communities, metabarcoding has been used
to explore species interactions in a variety of contexts. Some of the earliest applications of
DNA metabarcoding involved the analysis of vertebrate diets [189] and this method remains
a powerful tool for understanding herbivory and predation (see [125,190–192]). More recently,
metabarcoding has been used to reconstruct plant–pollinator networks [146,147] and identify
economically important taxa [155] or those relevant to human health [193,194].

DNA metabarcoding was developed using short-read high-throughput sequencing
platforms and while these are still the norm, they pose some limitations for the technique [8],
especially for longer DNA barcode loci (e.g., matK for plants). As the technological stan-
dard moves toward long-read sequencing approaches, new sequencing platforms and
software [195] are being developed. Some recent programs (e.g., Sahlin et al. [23]) have
already been used to successfully extract DNA barcode sequences from mixed samples in
previously published long-read data.

3.2. Super- and Ultrabarcoding

Much of the expanding role of barcodes in the past decade has been driven by the
rapid growth of high-throughput sequencing technology. As opposed to traditional DNA
barcodes, which target individual loci or a set of short loci with universal primers, “super-
barcodes” and “ultra-barcodes” have been proposed as alternatives that compare infor-
mation from entire organellar genomes and/or other long regions [12,13]. For plants,
whole chloroplast sequencing has been common for over a decade [196]. Super- and ultra-
barcoding provide some unique advantages over traditional barcoding. For example, in
some large clades (e.g., the green plant tree of life), traditional DNA barcode loci are not
present in all taxa [197] and universal PCR primers often don’t exist for some taxa in a
given clade (see [8]). In these cases, ultra-barcoding provides a simple solution to chal-



Diversity 2022, 14, 213 14 of 23

lenges with traditional DNA barcodes, in which the entire chloroplast genome can serve as
one single, long barcode locus or in combination with other loci (e.g., nuclear ribosomal
DNA, [14]). Moreover, some traditional DNA barcode loci (e.g., matK, ca. 1000 bp) are
simply too long for amplicon-based approaches using short-read sequencing platforms.
Lastly, chloroplast genomes are abundant and typically easy to sequence even from re-
calcitrant (i.e., old and/or preserved) tissues and it’s increasingly common to assemble
whole organellar genomes from off-target reads even in targeted/capture-based sequencing
applications [198].

As sequence databases grow, the concept of super- or ultra-barcodes is certain to
follow. Rather than viewing alternative barcoding strategies as either/or choices, novel
DNA barcoding strategies are complementary to locus-based markers, and each contributes
to a growing, cumulative database of well-curated data for molecular species identification.

3.3. Macrogenetics

Computational science, international collaboration, and data accessibility are facilitat-
ing massive, integrative research across the biological sciences. Driven by the era of “big
data” and increasingly interoperable datasets, new and emerging fields of research are mak-
ing it possible to pursue “big questions” like never before. These expanding opportunities
have led to the emergence of new fields of study and one of these, “macrogenetics” [199],
has been facilitated by the growth of publicly available genetic and genomic datasets. The
concept for this field is intended to echo that of “macroecology” and emphasizes the integra-
tion of large-scale datasets in genetics with other large, interoperable databases [200], such
as the Global Biodiversity Information Facility (GBIF, [201]), WorldClim [202], DRYAD [203],
the International Nucleotide Sequence Database Collaboration (INSDC [204]), and BOLD.
DNA barcodes provide a vital source of information that can facilitate the emerging field of
macrogenetics and indeed, the development of BOLD is credited as one of the key advances
that underlies macrogenetics.

As a new and emerging field, macrogenetics is presented as the intersection of several
biological foundations, united by large-scale genetic resources and including rich ecological
data, collections science and museomics, biogeography, phylogeography, and evolutionary
biology [200]. The promise of this new field is to synthesize big data across biological
disciplines using genetic data to facilitate priorities for ecology, evolution, and conservation
at global scale. Undoubtedly, the expanding role of DNA barcodes will play a central role
in the development of macrogenetics. It is an exciting time to study ecology, evolution,
and conservation.

4. Conclusions

In nearly two decades since DNA barcodes were first proposed, a remarkable increase
has taken place in the representation, use, and integration of DNA barcodes across the
biological sciences. Although sequence variation in traditional DNA barcodes is often insuf-
ficient for species-level discrimination in many large clades, the advances in computational
and sequencing technology are changing the concept of DNA barcodes, from just a few
loci to large, genome-scale sequences from organelles or genome-skim data. As technology
expands and genome sequence representation increases across the Tree of Life, we envision
a future in which the concept of DNA barcodes extends to a much larger interpretation of
genome space. DNA barcoding continues to evolve with methodological and technological
advances in conjunction with the increasing accessibility to high-throughput sequencing
and the growing database of whole genome sequences fostered through international
consortia, such as the Earth BioGenome Project [37,38]. A diversity of genetic tools is espe-
cially needed in clades, such as green plants, with highly complex genomes that require
significant resources to assemble [205]. Until there is a corresponding breakthrough in
computational capacity for the comparative analysis of large and highly complex genomes,
DNA barcode sequences will play a vital role for species identification in community
ecology, evolutionary biology, and conservation. DNA barcodes are a powerful resource
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and the databases that maintain them continue to grow as they complement and bene-
fit from the rapidly expanding frontiers of computational science and high-throughput
sequencing technology.
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