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Abstract: The morphology and molecular phylogeny of a new haptorid ciliate, Fuscheriides baugilensis
sp. nov., discovered in a temporary pond in South Korea, were investigated. The new species is
characterized by its small body size (30–55 × 15–20 µm in vivo), oblong to rod-shaped extrusomes in
the oral bulge and cytoplasm, 14–16 somatic kineties, two dorsal brush rows, and single subapical
ciliary condensation. The phylogenetic analyses based on the 18S rRNA gene sequences show
that the family Fuscheriidae is paraphyletic and the species belong to the genera Fuscheriides and
Pseudofuscheria cluster together in the same subclade, while Fuscheria is in a different subclade,
suggesting that the subapical ciliary condensation characterizing the two former genera has a higher
taxonomic value than the shape of extrusomes for genera separation.

Keywords: Acropisthiina; Fuscheriidae; Pseudofuscheria; SSU rDNA; taxonomy

1. Introduction

The haptorid family Fuscheriidae Foissner et al., 2002 is comprised of predatory
ciliates feeding on other protists, such as ciliates and flagellates and inhabiting freshwater
and terrestrial habitats [1,2]. The fuscheriid ciliates belong to the suborder Acropisthiina
Foissner and Foissner, 1988 [3], that is, their nematodesmal bundles originate from both
the circumoral dikinetids and the oralized anterior somatic monokinetids and consist
of three families, namely Acropisthiidae Foissner and Foissner, 1988, Fuscheriidae, and
Pleuroplitidae Foissner, 1996. However, the family Fuscheriidae is similar to the family
Pleuroplitidae in that they have meridional and not curved anteriorly somatic kineties and
differ mainly in the absence vs. presence of a subapical, extracytostomal extrusome bundle
on the ventral side. On the other hand, both families can be separated from the family
Acropisthiidae [3] in that the latter has a spathidiid general organization with somatic
kineties that are more or less curved anteriorly. The family Fuscheriidae comprises ten
genera based on three main features: the number of dorsal brush rows; the shape of the
extrusomes; and the presence/absence of the subapical ciliary condensation [1,2,4–7].

During the last decade, the SSU rRNA gene sequences of only two Fuscheria species,
an unidentified Fuscheria sp., an unidentified Fuscheriides sp., and Pseudofuscheria terricola
were added to the GenBank database [8–11]. The lack of molecular data from most of
the fuscheriid genera makes it difficult to test the phylogenetic significance of the three
main generic characters used to differentiate between these simply organized taxa. In the
present study, we investigate the morphology of a new species discovered in a temporary
puddle, South Korea. This species agrees very well with the diagnostic features of the genus
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Fuscheriides provided by Gabilondo and Foissner [2], that is, with oblong to rod-shaped
extrusomes, two dorsal brush rows, and a subapical ciliary condensation. Furthermore,
the 18S rRNA gene sequence was analyzed to determine the phylogenetic position of the
new species.

2. Materials and Methods
2.1. Sample Collection and Identification

Fuscheriides baugilensis sp. nov. was isolated from a water sample collected from a
temporary puddle on a footpath (Baugil) behind the Gangneung-Wonju National University,
Gangneung-si, South Korea in June 2020. The sample was transported to the laboratory, and
a raw culture was established in a Petri dish at room temperature with the sterilized rice
grains as a food source. Living cells were examined under a stereomicroscope (Olympus
SZ61, Tokyo, Japan) and light microscope (Olympus BX53) with a differential interference
contrast at magnifications of 50–1000×. The infraciliature was revealed by protargol and
silver carbonate impregnation methods. The protargol powder was synthesized using the
method of Kim and Jung [12]. The cells were fixed using concentrated Bouin’s solution [13],
and the protargol impregnation technique is based on ‘procedure A’ of Foissner [14].
General terminology follows Foissner and Berger [6], Gabilondo and Foissner [2], and
Oertel et al. [7].

2.2. DNA Extraction, PCR Amplification and Sequencing

Five cells of Fuscheriides baugilensis sp. nov. were isolated from the raw culture using
microcapillary under the stereomicroscope and were checked under the light microscope.
The cells were transferred to the habitat water filtered by a 0.2 µm syringe filter (Minisart®

CA Syringe Filters; Sartorius, Aubagne, France) at least five times to remove other eu-
karyotes. Each cell was then transferred to a 1.5 mL tube with a minimum amount of
water using a microcapillary. Genomic DNA was extracted using a RED-Extract-N-Amp
Tissue PCR Kit (Sigma, St. Louis, MO, USA). The PCR conditions were as follows: initial
denaturation at 94 ◦C for 1 min 30 s, followed by 40 cycles of denaturation at 98 ◦C for
10 s, annealing at 58.5 ◦C for 30 s, and extension at 72 ◦C for 3 min, and a final extension
step at 72 ◦C for 7 min. A slightly modified version of the primer New Euk A [15,16]
and the primer LSU rev4 [17] were used to cover nearly the entire 18S rRNA gene. A
MEGAquickspin Total Fragment DNA Purification Kit (iNtRON Biotechnology, Korea) was
used to purify of the PCR products. DNA sequencing was performed using the New Euk
A and LSU rev4 primers, three internal primers (18SF790v2: 5′-AAA TTA KAG TGT TYM
ARG CAG-3′, 18SR300: 5′-CAT GGT AGT CCA ATA CAC TAC-3′, and 18SF1470: 5′-TCT
GTG ATG CCC TTA GAT GTC-3′), and an ABI 3700 sequencer (Applied Biosystems, Foster
City, CA, USA). Sequence fragments were assembled using Geneious Prime 2019.2.3 [18].

2.3. Phylogenetic Analysis

The SSU rRNA gene sequences of Fuscheriides baugilensis sp. nov. was used in the phylo-
genetic analyses with 77 ciliates retrieved from the NCBI database, including three metopids
as outgroup taxa: Clevelandella panesthiae (KC139719), Metopus palaeformis (AY007450), and
Nyctotherus ovalis (AJ222678). The sequences were aligned using ClustalW [19] and both
ends were manually trimmed in BioEdit 7.0.9.0 [20]. The length of the final alignment was
1609 bp. The best-fit model of substitution for phylogenetic analysis, TVM + I (0.4710)
+ G (0.3460) based on the Akaike information criterion (AIC), was selected using jMod-
elTest 2.1.10 [21,22]. IQ-Tree 1.6.12 [23] was used to render maximum likelihood (ML)
trees, with 1000 bootstrap replicates. MrBayes 3.2.7 [24] was used for Bayesian inferences
(BI) analyses with Markov chain Monte Carlo (MCMC) for 3,000,000 generations with a
sampling frequency of every 100 generations and the first 25% of trees were discarded
as burn-in. Phylogenetic trees were visualized using the software package FigTree v1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/). Pairwise distances were calculated in Mega
6.06 [25], using the p-distance method.

http://tree.bio.ed.ac.uk/software/figtree/
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3. Results
3.1. Systematics

Subclass Haptoria Corliss, 1974
Order Haptorida Corliss, 1974
Suborder Acropisthiina Foissner and Foissner, 1988
Family Fuscheriidae Foissner et al., 2002
Genus Fuscheriides Foissner and Gabilondo in Gabilondo and Foissner, 2009
Fuscheriides baugilensis sp. nov.
Figures 1A–H and 2A–I.
ZooBank registration number: urn:lsid:zoobank.org:act:6B0150FA-FF41-43C3-8598-

F4609141323D.
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Figure 1. Fuscheriides baugilensis sp. nov. from life (A–C) and after protargol impregnation
(D–H). (A). A representative specimen showing the body shape, the rod-shaped extrusomes and
the ellipsoidal macronucleus. (B). Extrusomes in vivo. (C). Outline of slenderly ellipsoid, starved
specimen. (D,E,G,H). Ventral (D), dorsal (E,H), and right lateral (G) view of the holotype (D,E,H)
and a paratype (G) specimen, showing the somatic ciliary rows, the dikinetidal circumoral kinety,
the two dorsal brush rows, and the subapical condensation (arrowheads). (F). The nematodesmata
originate from the circumoral dikinetids and the anterior somatic kinetids. CK, circumoral kinety;
B1–2, dorsal brush rows; MA, macronucleus; MI, micronuclei; N, nematodesmata; OB, oral bulge.
Scale bars: 20 µm.
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Figure 2. Fuscheriides baugilensis sp. nov. from life (A–C) and after protargol (D–H) and silver
carbonate impregnation (I). (A,B). Lateral views of well-fed (A) and starved specimen (B), showing
the body outline, the ellipsoid macronucleus, the food vacuoles containing green algae and flagellates,
the oral and cytoplasm extrusomes, and the contractile vacuole. (C). Optical section showing the
rod-shaped extrusomes (arrowheads). (D,E). Ventral and dorsal view of the holotype specimen,
showing the somatic ciliature, the nuclear apparatus, and the subapical condensation (arrows) in
the right body side. (F,G). Right side (F) and ventral (G) view, showing the subapical condensation
(arrow) and the anteriorly curved to left side kineties (arrowheads). (H). Optical section showing
the nematodesmata originating from the circumoral kinety and anterior somatic kinetids and form
an obconical oral basket. (I). Developing extrusomes (arrowheads). B1–2, dorsal brush rows; CV,
contractile vacuole; CK, circumoral kinety; E, extrusomes; FV, food vacuoles; MA, macronucleus; MI,
micronuclei; N, nematodesmata; OB, oral bulge. Scale bars: 20 µm (A,B,D,E,I) and 10 µm (C,F–H).

3.2. Species Diagnosis

The body size was 30–55 × 15–20 µm in vivo and 21–36 × 11–17 µm after protargol
impregnation. The body length:width ratio was approximately 1.8–2.8:1. The body shape
was ovate to oblong and slightly curved. There was macronuclear nodule ellipsoidal in or
anterior to the mid-body. The micronucleus globular was attached to the macronucleus.
Extrusomes were oblong to rod-shaped, 3–5 × 0.3 µm. 14–16 ciliary rows. Two isostichad
dorsal brush rows were present. Single subapical ciliary condensation right of the dorsal
brush was composed of 5–8 densely arranged kinetids and was 1.8–3.9 µm long. Nema-
todesmata originated from circumoral dikinetids and oralized somatic monokinetids and
extended in the anterior quarter of the body, forming an obconical oral basket.

3.3. Type Locality

Temporary puddle (after rainfall) on a footpath (Baugil) behind the Gangneung-Wonju
National University, Gangneung, Korea (N 37◦46′30.0′′ E 128◦51′46.8′′).
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3.4. Type Material

The slide containing the holotype (NNIBRPR21232) and one paratype slide (NNI-
BRPR21233) with protargol-impregnated specimens were deposited at the Nakdonggang
National Institute of Biological Resources (NNIBR), Sangju, Korea.

3.5. Etymology

The species was named after the footpath name in which it was discovered, i.e., the
famous Baugil path in Gangwon-do province.

3.6. Description

The cell size was approximately 30–55 × 15–20 µm in vivo, and 21–36 × 11–17 µm
after protargol impregnation (Table 1). The body was ovate to oblong, widened in the
mid-body and anteriorly curved ventrally and slightly to left side; slightly narrowed and
truncated anteriorly, and widely rounded posteriorly (Figures 1A,C and 2A,B). The cortex
was flexible and furrowed along somatic ciliary rows, and non-contractile and cortical
granules were lacking (Figures 1A and 2A,B). The macronucleus was ellipsoidal in vivo
and globular to slenderly ellipsoidal after protargol impregnation, in or near the mid-
body, 6–12 × 4–7 µm in size after protargol impregnation. The micronucleus globular,
attached to the macronucleus, was 1.1–2.7 × 1.1–2.3 µm after protargol impregnation
(Figures 1A,D and 2A–E, Table 1). Contractile vacuole was located in the posterior body
end, was about 5 µm in diameter, and had about three excretory pores (Figures 1A and 2B).
Extrusomes were oblong to rod-shaped, 3–5 × 0.3 µm in vivo, formed a bundle in the
oral bulge and scattered in the cytoplasm. Developing extrusomes were 3–5 µm long
and became thicker, sometimes acicular and curved after silver carbonate impregnation
(Figures 1A,B and 2B,C,I). Cytoplasm hyaline, packed with lipid droplets 1–3 µm in di-
ameter and many food vacuoles of up to 8 µm across were filled with green algae and
flagellates (Figures 1A and 2A–C). The species swims fast by rotating about main body axis
and never rests.

Cilia were about 8 µm long in vivo; 14–16 meridional monokinetidal somatic ciliary
rows, and the spacing of kinetids gradually increased to the mid-body and then gradually
decreased again posteriorly; mid-ventral kinety with 16–23 monokinetids
(Figures 1A,D,E,G,H and 2D–G, Table 1). Two to four ventral kineties (right to subapical
ciliary condensation) anteriorly slightly curved leftward (Figure 2F,G). Two rows differenti-
ated anteriorly to the isostichad (dorsal brush row length difference <20%) dorsal brush;
brush row 1 composed of 7–10 dikinetids, about 5.9 µm long; and brush row 2 composed
of 5–6 dikinetids, about 5.0 µm long; space between dikinetids gradually increase posteri-
orly, brush bristles rod-shaped and 2–3 µm long in vivo (Figures 1E,G,H and 2E, Table 1).
Subapical ciliary condensation was composed of 5–8 monokinetids, about 2.8 µm long, in
the third kinety right of brush row 2, and were separated from circumoral dikinetids by
two somatic kinetids (Figures 1D,G and 2D,F, Table 1).

The oral bulge was discoidal, indistinct in vivo and recognizable after protargol im-
pregnation, about 1.2 µm high (Figures 2A,D–H and 2E–H). Circumoral kinety at the base of
the oral bulge was composed of 14–16 transversely arranged dikinetids
(Figures 1D–H and 2D–G). Nematodesmata were recognizable after protargol impregna-
tion, originating from circumoral dikinetids and the anterior basal bodies of somatic kineties,
and forming an indistinct, obconical oral basket about 9 µm long (Figures 1F and 2H,
Table 1).
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Table 1. Morphometric data on Fuscheriides baugilensis sp. nov.

Characteristics a Mean M SD SE CV Min Max n

Body, length 29.0 28.9 3.6 0.8 12.4 21.3 36.2 22
Body, width 13.1 13.1 1.5 0.3 11.6 10.5 16.8 22

Body length:width, ratio 2.2 2.2 0.3 0.1 13.1 1.8 2.8 22
Oral bulge, height 1.2 1.2 0.2 0.0 13.9 0.9 1.5 14
Oral bulge, width 3.5 3.4 0.5 0.1 13.1 2.5 4.5 23

Body width:oral bulge width, ratio 3.6 3.6 0.3 0.1 8.8 2.9 4.2 14
Circumoral kinety to macronucleus, distance 8.5 7.9 2.9 0.6 34.7 4.9 17.0 21

Macronucleus, length 8.3 8.0 1.5 0.3 18.5 6.0 11.6 22
Macronucleus, width 5.4 5.3 0.7 0.2 13.2 4.3 6. 9 22

Macronucleus length:width, ratio 1. 6 1.5 0.4 0.1 23.7 1.1 2.7 22
Macronucleus, number 1.0 1.0 0.0 0.0 0.0 1.0 1.0 23
Micronucleus, length 2.0 1.9 0.4 0.1 21.6 1.1 2.8 18
Micromucleus, width 1.6 1.5 0.4 0.1 22.0 1.1 2.3 18

Micronucleus, number 1.0 1.0 0.0 0.0 0.0 1.0 1.0 18
Somatic kineties, number 15.2 16.0 1.0 0.2 6.6 14.0 16.0 23

Circumoral dikinetids, number 15.2 16.0 1.0 0.2 6.6 14.0 16.0 23
Kinetids in mid-ventral kinety, number 18.2 18.0 2.2 0.5 11.9 16.0 23.0 17

Dorsal brush row 1, length 5.9 6.0 0.7 0.2 11.7 4.4 6.6 11
Dorsal brush row 1 dikinetid, number 8.3 8.0 0.9 0.3 10.9 7.0 10.0 11

Dorsal brush row 2, length 4.9 4.9 0.8 0.2 15.8 4.0 6.2 11
Dorsal brush row 2 dikinetid, number 5.5 5.0 0.5 0.2 9.6 5.0 6.0 11

Dorsal brush rows, number 2.0 2.0 0.0 0.0 0.0 2.0 2.0 11
Subapical condensation, length 2.8 2.6 0.6 0.1 19.9 1.8 3.9 21

Kinetids in subapical condensation, number 6.4 7.0 0.9 0.2 13.5 5.0 8.0 21
Kinetids anterior to subapical condensation, number 2.0 2.0 0.0 0.0 0.0 2.0 2.0 21

Nematodesmata, length 9.2 9.0 1.2 0.3 13.3 7.7 11.5 14
a Data based on protargol-impregnated specimens. All measurements in µm. CV—coefficient of variation in %,
M—median, Max—maximum, Mean—arithmetic mean, Min—minimum, n—number of specimens investigated,
SD—standard deviation, SE—standard error of arithmetic mean.

3.7. Phylogenetic Analysis of Fuscheriides baugilensis sp. nov.

The SSU rDNA sequence of Fuscheriides baugilensis sp. nov. is 1488 base pairs long,
has a GC content of 39%, and is available under GenBank accession number OM291840.
Phylogenetic trees using ML and BI analyses show rather similar topologies, thus only the
ML tree is presented with both the bootstraps (ML) and the posterior probabilities (BI) are
included (Figure 3). According to the new phylogenetic tree, the family Fuscheriidae is
paraphyletic and consists of two fully supported subclades. The first subclade consists of
four sequences: F. baugilensis sp. nov. and Pseudofuscheria terricola, which cluster together
with high supporting values (98 ML, 0.99 BI) and exhibit a similarity of 99.2% (12 nucleotides
difference). Both sequences cluster with an unidentified Fuscheria population (Fuscheria
sp.; JF263448) with low support (67 ML, 0.68 BI). Together, these three sequences form a
sister clade to an unidentified Fuscheriides population (Fuscheriides sp.; MG264144) with
full support. The second subclade consists of Fuscheria nodosa, Fuscheria uluruensis and an
unidentified Enchelyodon population.
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4. Discussion
4.1. Morphological Comparison of Fuscheriides baugilensis sp. nov. with Similar Species

Up to date, ten genera have been assigned to the family Fuscheriidae based on the
number of dorsal brush rows, the shape and location of the extrusomes, and the pres-
ence/absence of the subapical ciliary condensation as follows: Aciculoplites Foissner and
Gabilondo in Gabilondo and Foissner, 2009 [2] (with two brush rows and acicular ex-
trusomes); Actinorhabdos Foissner, 1984 [26] (with two brush rows and graver-shaped
extrusomes); Apocoriplites Oertel et al., 2008 [7] (with two brush rows and without ex-
trusomes); Coriplites Foissner, 1988 [5] (with three brush rows and without extrusomes);
Diplites Foissner, 1998 [27] (with two brush rows and ellipsoidal or clavate oral extru-
somes and rod-shaped somatic extrusomes); Dioplitophrya Foissner et al., 2002 [1] (with
three brush rows and pin-shaped and clavate extrusomes in oral bulge and cytoplasm);
Fuscheria Foissner, 1983 [28], type genus (with two brush rows and pin-shaped extrusomes);
Fuscheriides Foissner and Gabilondo in Gabilondo and Foissner, 2009 [2] (with two brush
rows, oblong extrusomes, and a subapical ciliary condensation); Pseudofuscheria Foissner
and Berger, 2021 [6] (with two brush rows, pin-shaped extrusomes, and subapical ciliary
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condensations); and Renoplites Foissner, 2016 [29] (with two brush rows and reniform
extrusomes) [1,2,5–7,26–31].

Fuscheriides and Pseudofuscheria are the only fuscheriid genera with subapical ciliary
condensation. The two genera are similar in having only two dorsal brush rows and can
only be distinguished based on the extrusomes shape. Fuscheriides baugilensis sp. nov.
differs from the type species and sole congener, F. tibetensis Foissner and Gabilondo in
Gabilondo and Foissner, 2009, by the number of somatic ciliary rows (14–16 vs. invariably 7),
the length of the extrusomes (3–5 vs. 2 µm), and the shape of the macronucleus (ellipsoidal
vs. reniform) (Table 2). Pseudofuscheria terricola (Berger et al. 1983) Foissner and Berger,
2021 [6] is the most similar species to F. baugilensis sp. nov. Both species have a similar
shape and number of somatic ciliary rows (12–19 vs. 14–16). However, the two species can
be easily separated by the shape of the extrusomes (nail-shaped vs. oblong to rod-shaped).
Moreover, Pseudofuscheria terricola is larger than F. baugilensis sp. nov. (80–100 µm vs.
30–55 µm in vivo), has one or two (vs. invariably one) subapical condensations and
possesses a higher number of kinetids in ventral kinety (12–45 vs. 16–23) [1,2,6,30].

Table 2. Comparison of Fuscheriides baugilensis sp. nov. with closely related species.

Characteristics
Fuscheriides

baugilensis sp.
nov.

Fuscheriides
tibetensis

Pseudofuscheria
terricola P. magna Fuscheria

nodosa nodosa

Fuscheria
nodosa

salisburgensis

Fuscheria
uluruensis

Body, length
(µm) 21–43 33–62 44–78 85–145 35–46 82–137 65–87

Body, width
(µm) 10–18 5–17 12–28 33–95 18–26 45–97 45–62

Macronucleus,
numbers 1 1 1 1 1 1 8–28

Macronucleus,
shape Ellipsoidal Reniform Horseshoe-

shaped

Oblong,
curved oblong,
or horseshoe

Horseshoe-
shaped Strand-shaped Elongate

ellipsoidal

Somatic
kineties,
number

14–16 7 12–19 25–34 24–28 42–45 42–50

Kinetids in
ventral kinety,

number
16–23 11–27 12–45 40–80 20–35 31–66 41–88

Brush rows,
numbers 2 2 2 2 2 2 (rarely 3) 2

Subapical
condensation Present Present Present Present Absent Absent Absent

Subapical
condensation
rows, number

1 1 1 or 2 2 - - -

Kinetids in
front of

condensation,
number

2 3 4 5–6 - - -

Extrusomes,
shape

Oblong to
rod-shaped Oblong Nail-shaped Nail-shaped Nail-shaped Nail-shaped Nail-

shaped

Extrusomes,
size (µm) ~4 × 0.3 ~2 × 0.3 ~4–7 ~10 ~10 ~9–15

Habitat,
country

Temporary pond
after rainfall, Korea

Salty
vegetation soil
(10‰), South

Tibet

Soil, Austria Floodplain soil,
Australia

Pond,
Australia Soil, Austria Soil,

Austria

Reference Present study [2] [30] [6] [31] [2] [2]
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4.2. Phylogenetic Analyses

The new phylogenetic tree agrees with previous studies in that the family Fuscheriidae
is paraphyletic [32–35]. However, the family is still underrepresented in the phylogenetic
tree and there are only a few species belonging to three out of ten genera with the available
molecular data. The available fuscheriid sequences form a clade made of two subclades with
full support. Fuscheriides baugilensis sp. nov. nests in a subclade containing Pseudofuscheria
terricola and two other unidentified species likely belong to the genera Fuscheriides and
Pseudofuscheria. The close relationship of Fuscheriides and Pseudofuscheria is supported
by the presence of the subapical ciliary condensation, which is used as the sole generic
feature that differentiates Fuscheria from Pseudofuscheria [6]. The other subclade contains
Fuscheria nodosa, F. uluruensis, and unidentified Enchelyodon species without morphological
data and thus misidentification cannot be excluded. Interestingly, both Fuscheria and
Pseudofuscheria have nail-shaped extrusomes but they nest in different subclades, suggesting
that the shape of the extrusomes has a lower taxonomic value than suggested by previous
studies [1,2,6,7,29,30], i.e., only a species-specific character as in other litostomatean families,
for instance, Spathidiidae and Trachelophyllidae [1,29,36,37]. Based on this assumption,
the fuscheriid species should be assigned into only three groups (genera): (1) species with
two brush rows; (2) species with three brush rows; and (3) species with two brush rows
and ciliary condensations. However, more molecular data are needed on the other genera
to test the value of each generic character.
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