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Abstract: Asian cultivated rice (Oryza sativa L.), domesticated from Asian wild rice, is a staple food
crop for populations around the world. Asian cultivated rice has undergone physiological changes in
the process of its evolution from Asian wild rice, and the closely related rhizosphere microorganisms
may have changed in the process of plant domestication. However, the rhizosphere microorganisms
of different Asian wild rice species and their related indica and japonica cultivated rice have not yet
been illustrated clearly. This study aimed to illustrate the microbial community structures in the
rhizosphere of Asian wild rice (common wild rice, nivara wild rice, medicinal wild rice, and spotted
wild rice) and Asian cultivated rice (indica and japonica accessions) through the high-throughput
sequencing of 16S rDNA, ITS amplifiers and metagenomic data. The results showed that there were
significant differences between wild and cultivated rice in their rhizosphere microbial community
structures. In view of the indica and japonica rice, the bacterial and fungal community structures
of indica rice with the nivara wild rice and medicinal wild rice were more similar than the japonica
rice species. The indica and japonica rice had the lowest proportion of Actinobacteria than the wild
rice species, and indica rice has the highest relative abundance of Nitrospira. As for the microbial
functions, methane metabolism and pyruvate metabolism were found to be the common pathway
enriched in the rhizosphere of common and nivara wild rice in comparison with the indica and
japonica rice; in addition, though it was found that the relative abundances of the pathogenic fungi
in the rhizosphere soil of indica and japonica rice were significantly lower than that of the wild rice,
the relative abundances of Magnaporthales and Ustilaginales were significantly higher in indica and
japonica rice than that of the wild rice. This study is expected to provide a theoretical basis for the
development and utilization of rhizosphere microbial resources for wild and cultivated rice.

Keywords: wild rice; microbial community; rhizosphere microorganism

1. Introduction

Rice, which supports more than 50% of the world’s population, is one of the most
important food crops [1–3]. Scholars have divided the 23 species of Oryza into 10 different
genomic types. These Oryza species include six kinds of diploids and four kinds of
allotetraploids [4]. Among them, common wild rice (Oryza rufipogon) and nivara wild
rice (O. nivara), species that are widely distributed in the tropics and subtropics of Asia,
are considered to be the ancestors of Asian cultivated rice [5]. Medicinal wild rice (O.
officinalis) is the largest species group in Oryza, which belongs to the CC genome species.
This type of rice has both diploids and allotetraploids and is found in Asia and Africa.

Diversity 2022, 14, 67. https://doi.org/10.3390/d14020067 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d14020067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0003-1792-6005
https://doi.org/10.3390/d14020067
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d14020067?type=check_update&version=1


Diversity 2022, 14, 67 2 of 16

Moreover, medicinal wild rice can be utilized in breeding programs for the improvement
of cultivated rice. Spotted wild rice (O. punctata) is the only type of diploid wild rice
belonging to the BB genome species. O. punctata is a type of medicinal wild rice and
prefers a high temperature. This variety of rice is mainly distributed in Africa and has
many excellent agronomic characteristics [6–8]. The evolution of Asian wild rice occurred
through the following three main steps: first, the perennial and annual ecotypes of wild
rice and Asian cultivated rice (O. sativa) became differentiated; after that, cultivated rice
varieties differentiated into indica and japonica types [9]. Indica rice is mainly distributed
in the tropics, while japonica rice is mainly distributed in temperate regions, with narrow
leaves, a dense green color, short and thick grains, few tillers (while remaining relatively
cold tolerant), and good edible quality compared to indica rice [10]. Wild rice contains
many excellent genes providing disease resistance, insect resistance, stress resistance, high
yield, and high quality in long-term natural selection, which is an important germplasm
process for improving the variety of cultivated rice [2,11,12]. Many studies have shown the
genomic differences between wild rice and cultivated rice. Researchers also analyzed the
differences in the genetics, mitochondria, and chloroplasts between wild and cultivated
rice [13]. The inter-spacer length polymorphism of the ribosomal DNA (rDNA) gene was
also investigated, which revealed the origin and evolution of cultivated rice and the genetic
and molecular evolution mechanism of the rDNA gene spacer in rice [14]. Studies also
showed that the rhizomicrobiomes play important roles in plant growth, evolution and
adapting to the environment [15,16]. The plants’ genotypes and traits are closely related
with their rhizosphere microbiomes [17]. It is suggested that the beneficial rhizobacteria
were present in the wild plant as well as the beneficial traits presented [12,18–22], and the
rhizobacteria may regulate the plant growth and metabolism directly or indirectly [12,20].
It was proved that the mutual relationship between wild plant and arbuscular mycorrhizal
fungi (AMF) was closer than the domesticated plant [22]. However, few studies showed
the effects of rice domestication on rhizosphere microorganisms. Shi et al. (2019) found
that the relationship between fungi and bacteria in cultivated crops was stronger than that
in wild relatives [23]. Their research also showed that wild varieties had higher beneficial
symbiote content and lower pathogen content than cultivated varieties [23]. Many studies
have found that microorganisms such as endophytic AMF and rhizobium, which interact
closely with their host plants, also play important roles in the evolution of their host plant
species [24–27]. Study also proved that the domestication of Phaseolus vulgaris changed
the abundance of the Actinobacteria and Bacteroidetes in the plant rhizosphere [19]. Some
of these beneficial microbes can also improve the stress resistance of plants by interacting
with host plants, especially in wild species [24–28].

Furthermore, the deposition and secretion of roots can affect the composition of
microbial communities in the rhizosphere; inversely, microbial activities will affect the
growth and health of the host plants [15,20]. Different host plant genotypes can also
lead to differences in microbial communities [17], and the rhizomicrobiomes can help
plant in resisting abiotic or biotic stresses [15]. The effects of domestication and breeding
on plant physiology and development will change the microhabitats where root-related
microorganisms live [29]. In the transition from wild species to modern varieties, some
ideal microorganisms, such as rhizosphere growth-promoting bacteria, which are beneficial
to plant stress resistance, may be lost, and this change may affect the microbial population
related to rice roots.

Using the high-throughput sequencing technique, the purpose of this study was
to determine the differences between the rhizosphere microflora of Asian wild rice and
cultivated rice. We hypothesized that (1) there are differences between the rhizosphere
microbial communities in different species of Asian wild rice and cultivated rice and that
these differences reflect the directional selection of crops to microorganisms, and that
(2) wild rice has stronger selectivity than cultivated rice to functional microorganisms.
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2. Materials and Methods
2.1. Research Materials

We used four wild rice varieties, nivara wild rice (Oryza nivara), medicinal wild rice
(O. officinalis), common wild rice (O. rufipogon), spotted wild rice (O. punctata), and two
varieties of cultivated rice Meitezhen indica rice (O. sativa subsp. indica) and Daohuaxiang
japonica rice (O. saliva subsp. japonica) in the experiment. The seeds were provided by the
Northeast Institute of Geography and Agriculture, Chinese Academy of Sciences.

2.2. Pot Experiments

A pot experiment was set up in the greenhouse of the research institution of the
corresponding author (125◦23′44” E and 43◦59′58” N, Jilin Province, China). Black soil,
perlite, and ruby were used as substrates with a volume ratio of 2 to 1. The black soil was
planted with nivara wild rice, medicinal wild rice, common wild rice, spotted wild rice,
Meitzhen indica rice, and Daohuaxiang japonica rice, respectively. There was no significant
difference in the soil physical and chemical indexes for pot cultivation, and there were
4 repeats in each group. The seeds were soaked in 70% alcohol for 5 min and then washed
with distilled water 3 times. Then, the seeds were soaked in 1% sodium hypochlorite for
10 min. After that, the seeds were rinsed thoroughly using deionized water and separated
in a Petri dish containing wet filter paper for germinating at 25 ◦C in dark for 3 days.
Lastly, the germinated seeds were then transplanted into pots under appropriate growth
conditions. Each pot contained 3 seedlings.

2.3. Extraction of Soil DNA and High-Throughput Sequencing

The plants were extracted from the pots at the flowering stage. Then, the rhizosphere
soil of the plants was obtained by shaking off the soil near the rhizosphere and peeling off
the soil attached to the roots with brushes and small brushes. Next, the soil was placed on
clean filter paper. The DNA of rhizosphere microorganisms was extracted from 0.5 g soil in
each sample using a FastDNA Spin Kit (MPBioLaboratory, Carlsad, CA, USA) and then
dissolved in sterilized distilled water. The DNA concentration was qualitatively and quanti-
tatively detected using a NanoDrop2000 device (Thermo-Science, Waltham, MA, USA). For
bacteria, the V3–V4 region of the 16S rRNA gene was selected for detection (the sequences
of the paired primers are 341F with the sequence 5′-ACTCCTACGGGAGGCAGCA-3′ and
785R with the sequence 5′-GGACTACHVGGGTWTCTAAT-3′). For fungi, the ITS1 region
was selected (paired primer sequences were ITS1F 5′-CTTGGTCATTAGAGGAAGTAA-3′

and ITS2R 5′-GCTGCGTTCTTCATCGATGC-3′). The PCR-amplified fragments were then
used to construct the library and sequenced on the HiSeq platform (lllumina, San Diego,
CA, USA). The original sequencing data were qualified, and the bar codes and primers were
removed using the QIIME software (http://qiime.org/, accessed on 19 November 2018).
The sequences of the clean data were classified by the ribosomal database project (RDP)
classifier (https://sourceforge.net/jects/rdp-classfier/, accessed on 19 November 2018)
(confidence estimation > 50). USEARCH (http://www.drive5.com/usearch/, accessed on
19 November 2018) was used to classify the operational taxon units (OTUs) after removing
a single read based on similarity of 97%.

2.4. Comparisons of Bacterial Functions of the Wild and Cultivated Rice

To analyze the bacterial functions of the rhizosphere in indica, japonica, common
wild rice and nivara wild rice, we cited the metagenomic data from Tian et al., 2022 [30].
Additionally, the data was stored in NCBI with the accession number SRP279403. The
functional comparisons of the rhizosphere bacteria of wild and cultivated rice were as
follows: nivara wild rice vs. indica rice (On vs. Osi), nivara wild rice vs. japonica rice (On
vs. Osj), common wild rice vs. indica rice (Or vs. Osi), and common wild rice vs. japonica
rice (Or vs. Osj).

http://qiime.org/
https://sourceforge.net/jects/rdp-classfier/
http://www.drive5.com/usearch/
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2.5. Data Analysis

Considering the UniFrac distance, the vegan and ape packages in the R software
(version 4.0.3) were used to analyze the principal-coordinate analysis (PCoA) by comparing
the phylogenetic relationships based on unique OTUs. Then, we used the R software
to carry out permutational multivariate ANOVA (PERMANOVA). Linear discriminant
analysis of effect size (LEfSe) based on the linear discriminant analysis (LDA) threshold 3.0
was used for the difference of the taxa in the samples as the website (http://huttenhower.
sph.harvard.edu/galaxy/, accessed on 19 October 2021). The alpha diversity indexes
(Simpson, Chao1, and Shannon) of the richness and diversity of bacterial and fungal
communities were calculated via QIIME (http://qiime.org/, accessed on 19 November
2018), and the fungal function after annotation was predicted using FUNGuild (website:
http://www.stbates.org/cuds/app.php, accessed on 19 October 2021). To explore the
differences in microorganisms between different rice varieties, the levels of bacteria and
fungi were quantified using the R software, and the significant differences between each
group were compared via IBM SPSS statistics 26.0 based on single-factor analysis of variance
(ANOVA).

3. Result
3.1. Raw Sequencing Data and Alpha Diversity

High throughput sequencing for the bacterial 16S rRNA gene initially obtained about
1,060,196 original paired readings, and the remaining 927,289 readings were selected by
QIIME1.9.1 (http://Qiime.org/, accessed on 19 November 2018) (Table 1). For fungal
ITS amplification sequencing, a clean read of 1,107,813 was obtained from the filtered
original sequence data (Table 1). Here, although the bacterial dilution curve still shows an
upward trend, the curve is nearly flat; thus, the curve can be estimated to reach saturation
(Figure 1A). In the fungal dilution curve, the curves of all samples basically reached a
steady state, indicating that the sequence achieved saturation for all OTUs (Figure 1B).
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Figure 1. The sparse curve of bacterial (A) and fungal (B) communities in the rhizospheres of the On,
Or, Osi, Osj, Oo, and Op groups; each group had 4 repeats (1, 2, 3, 4) (n = 4). On, nivara wild rice; Or,
common wild rice; Osi, Meitezhen indica rice; Osj, Daohuaxiang japonica rice; Oo, medicinal wild
rice; Op, spotted wild rice; OTU, operational taxon unit.
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http://www.stbates.org/cuds/app.php
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Table 1. Read sequences of fungal and bacterial samples in the On, Or, Osi, Osj, Oo, and Op group.
On, nivara wild rice; Or, common wild rice; Osi, Meitezhen indica rice; Osj, Daohuaxiang japonica
rice; Oo, medicinal wild rice; Op, spotted wild rice.

Samples
Bacteria Fungi

Total Pairs Effective
Sequence Total Pairs Effective

Sequence

On1 47,078 41,718 47,736 44,747

On2 46,827 40,650 45,598 42,631

On3 37,344 32,962 48,189 45,176

On4 49,175 43,211 54,120 50,900

Or1 43,116 37,640 50,289 44,101

Or2 47,389 41,088 47,363 41,522

Or3 45,176 39,390 57,885 47,781

Or4 48,773 42,202 56,168 46,591

Osj1 47,653 41,712 66,763 58,758

Osj2 37,465 32,991 44,529 38,201

Osj3 46,018 40,403 49,566 43,166

Osj4 46,225 40,697 47,791 40,359

Osi1 36,945 32,505 51,872 47,630

Osi2 43,333 37,960 50,669 47,290

Osi3 40,803 35,910 48,981 45,768

Osi4 44,980 39,069 52,320 48,626

Oo1 40,731 35,351 47,132 44,726

Oo2 41,129 35,603 32,949 31,559

Oo3 43,686 37,862 53,116 51,073

Oo4 56,612 49,441 49,650 47,883

Op1 46,582 40,780 53,820 50,371

Op2 39,531 34,746 54,628 51,017

Op3 39,299 34,608 54,400 50,603

Op4 44,326 38,790 51,304 47,334

Total 1,060,196 927,289 1,216,838 1,107,813

The results of the bacterial alpha diversity analysis showed that the difference in
the Chao1 index among the groups was significant, and the value of Oo was the highest
(Figure 2). Based on a comparison of the Shannon index, we found that the bacterial
Shannon indexes in the Or, Osj and Osi groups were higher than those in the On, Oo
and Op groups (Figure 2A). Additionally, the Simpson index was significantly higher
in Osj and Osi groups than that in Or, On, Oo and Op (Figure 2A). The Ace index is
often used to evaluate the richness and evenness of species composition in samples; no
significant differences were observed among Osj, Or, Osi, Oo, and Op groups (Figure 2A).
The community abundance of fungi was found to be much smaller than that of bacteria
(Figure 2A,B). In terms of fungal alpha diversity, the Shannon and Simpson indexes were
significant lower in Or than other groups, while there was no significant difference among
On, Osj, Osi, Oo, and Op groups (Figure 2B); while the Chao1 index presented a trend of
(Oo, Osj) > (On, Osi, Op) > Or (Figure 2B), the ACE index of the Oo group was much higher
than that of the other groups (Figure 2B).
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Figure 2. Alpha diversity analysis of the bacterial (A) and fungal (B) communities in the rhizospheres
of the On, Or, Osi, Osj, Oo, and Op groups. There were 4 repeats (1, 2, 3, 4) in each group (n = 4). On,
nivara wild rice; Or, common wild rice; Osi, Meitezhen indica rice; Osj, Daohuaxiang japonica rice;
Oo, medicinal wild rice; Op, spotted wild rice. The significant differences among samples at p < 0.05
were represented with different letters above the error bars.

3.2. Study on the Beta Diversity of Microorganisms in the Plants’ Rhizospheres

The results for the PCoA analysis of the community structures of bacteria and fungi
showed that the four repeats of the On, Or, Osi, Osj, Oo, and Op groups clustered together
in their respective groups (Figure 3A,B), indicating that samples of the same group were
similar in their bacterial and fungal community structures. According to the results of
the PCoA and PERMANOVA analyses, there were significant differences in β diversity
among the groups, indicating that the rhizosphere communities of bacteria and fungi
were significantly different in different groups (Figure 3C,D). Results showed that the
rhizosphere bacterial community structures of On, Or, and Oo were similar (Figure 3A),
while the rhizosphere fungal community structure of On, and Oo were similar (Figure 3B).
However, compared to Osj, the bacterial and fungal community structures of Osi were
more similar with On and Oo than that of Osj (Figure 3). This result suggests that indica
rice retained more similar rhizomicrobial communities compared to japonica and medicinal
wild rice in its domestication process, while the rhizomicrobial communities of indica rice
changed significantly through the domestication process.
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Figure 3. PCoA analysis of bacterial (A) and fungal (B) communities in the rhizospheres of the On,
Or, Osi, Osj, Oo, and Op groups, and PERMANOVA of the Bray–Curtis distance between bacterial
(C) and fungal (D) communities in the rhizospheres of the On, Or, Osi, Osj, Oo, and Op groups. PCoA
(principal coordinate analysis) was based on the weighted UniFrac distance between the bacteria
and fungi, with 4 repeats in each group (1, 2, 3, 4). On, nivara wild rice; Or, common wild rice; Osi,
Meitezhen indica rice; Osj, Daohuaxiang japonica rice; Oo, medicinal wild rice; Op, spotted wild rice.

3.3. Differences between Bacteria and Fungi at the Phylum Level

Acidobacteria, Chloroflexi, Proteobacteria, and Actinobacteria account for a large
proportion of bacteria (Figure 4A), and Firmicutes, Cyanobacteria, Bacteroidetes, Plancto-
mycetes, Nitrospirae, and Gemmatimonadetes are the second most common (Figure 4A).
In terms of fungi, Ascomycota was the most abundant in each group, with a total pro-
portion of 72.77%, followed by Basidiomycota, Chytridiomycota, Glomeromycota, and
Zygomycota (Figure 4B). The results also showed that the distribution of bacteria and fungi
differed in the rhizospheres of the six different rice varieties. Specifically, the abundance
of Cyanobacteria in the On group (1.12%) was significantly higher than that in the other
groups (Oo 0.49%) and was present in a very low proportion in the Osj, Oo, and Op groups
(0.01%). Moreover, Firmicutes bacteria preferred to colonize in the rhizosphere of the Op
group (2.07%) (Figure 4C). Unlike the dominant position of Actinobacteria in the On, Or,
Osi, Osj, and Oo groups, the largest proportion of Op was Proteobacteria (37.24%), which
was significantly higher than the proportion of the other groups (23.10–27.36%) (Figure 4C).
Based on a comparison of the 10 main types of bacterial phyla, Osj and Oo, the similarity
of the bacteriophyte level was found to be high, and there may be a genetic relationship
between them. The fungal abundance of the Osi group was significantly different than that
of the other groups. Relatively speaking, Ascomycota was the dominant phylum in the
Osj group, accounting for 93.95% of the detectable abundance in this group (Figure 4D),
and had no significant difference compared to the On, Or, Oo, and Op groups (Figure 4D).
It was observed that the abundance of Basidiomycota in the Osj group was much lower
than that of the other rice varieties. Moreover, the difference in the microbial community
between Osi and Osj also reflects the great difference between japonica rice and indica
rice. The relative abundance of Rozellomycota was higher in the On group than in the
other groups, and the Oo and Op groups had greater similarities at the level of fungal
phyla. For example, Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, and
Rozellomycota had similar abundance. The On and Or groups both presented similarly
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high Chytridiomycota abundance, but there was no significant difference among other
fungal phyla (Figure 4D). It can thus be inferred that there may be homology between
Oo and Op groups, and between On and Or groups. The differences of the bacterial and
fungal relative abundances in the samples were analyzed based Lefse analysis. For bacteria,
result showed that the taxa in phylum level Chloroflexi, Cyanobacteria and Bacteroidetes,
class level Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Solibacteres, order
level Anaerolineales, Myxococcales, Solibacterales, Rhizobiales and Sphingobacteriales,
family level Anaerolineaceae, and genus level Bryobacter were in higher relative abun-
dance in Osj than in other groups; phylum level Nitrospirae, class level Nitrospira, order
level Nitrospirales, family level Nitrospiraceae, order level Chloroflexales, and genus level
Roseiflexus were in higher relative abundance in Osi than in other groups; phylum level
Acidobacteria, order level Micromonosporales, and family level Micromonosporaceae
were in higher relative abundances in Or than in other groups; phylum level Firmicutes,
class level Gammaproteobacteria, Betaproteobacteria, and Cytophagia, order level Pseu-
domonadales, Rhodocyclales, Xanthomonadales and Cytophagales, family level Coma-
monadaceae, Pseudomonadaceae and Rhodocyclaceae, and genus level Pseudomonas, and
Burkholderiales were in higher relative abundances in Op than in other groups; phylum
level Actinobacteria, Gemmatimonadetes; class level Thermoleophilia, and Gemmatimon-
adetes, order level Gaiellales, Solirubrobacterales, Rhodocyclales, and Gemmatimonadales,
and family level Rhodocyclaceae were in higher relative abundances in Oo than in other
groups; phylum level Actinobacteria, class level Thermomicrobia, Rubrobacteria, order
level Rubrobacterales, Frankiales and Micromonosporales, family level Micromonospo-
raceae and Geodermatophilaceae, and genus level Rubrobacter and Blastococcus were in
higher relative abundances in On than in other groups (Figure 5A).
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The significant differences among samples at p < 0.05 were represented with different letters above
the error bars.
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For fungi, result showed that class level Lecanoromycetes, family level Sporormiaceae,
and genus level Podospora and Dendroclathra were in higher relative abundances in Osj
than in other groups; class level Dothideomycetes, Leotiomycetes, and Saccharomycetes,
order level Pleosporales, Chaetosphaeriales, Saccharomycetales, and Helotiales, family level
Chaetomiaceae, Myxotrichaceae, and Amanitaceae, and genus level Amanita were in higher
relative abundances in Osi than in other groups; phylum level Chytridiomycota, class level
Chytridiomycetes and Sordariomycetes, order level Sordariales and Olpidiales, family level
Lasiosphaeriaceae and Olpidiaceae, and genus level Zopfiella, and Rhizopus were in higher
relative abundances in Or than in other groups; phylum level Basidiomycota, class level
Agaricomycetes, order level Hypocreales, Auriculariales, and Sebacinales, family level
Glomerellaceae, and genus level Colletotrichum, Phoma, Ilyonectria, and Staphylotrichum
were in higher relative abundances in Op than in other groups; order level Agaricales,
Cantharellales, Russulales, and Mortierellales, family level Nectriaceae, Psathyrellaceae,
Mortierellaceae, Bondarzewiaceae, and Chaetomiaceae, and genus level Talaromyces,
Mortierella, Gloiodon, and Pseudogymnoascus were in higher relative abundances in Oo
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than in other groups; phylum level Rozellomycota, class level Eurotiomycetes, order level
Eurotiales, Xylariales, and Lecanorales, family level Trichocomaceae, Ophiocordycipitaceae,
and Corynesporascaceae, and genus level Penicillium, Monographella, Purpureocillium,
Myrothecium, and Corynespora were in higher relative abundances in On than in other
groups (Figure 5B).

3.4. Functional Analysis of Rhizosphere Bacteria of the Wild and Cultivated Rice

To analyze the bacterial functions of the rhizosphere in indica, japonica, common
wild rice and nivara wild rice, we cited the metagenomic data from Tian et al., 2022 [30].
Additionally, the data was stored in NCBI with the accession number SRP279403. The
functional comparisons of the rhizosphere bacteria of wild and cultivated rice were as
follows: nivara wild rice vs. indica rice, nivara wild rice vs. japonica rice, common
wild rice vs. indica rice, and common wild rice vs. japonica rice. The predicted genes
based on metagenomics data were annotated in KEGG. KEGG enrichments of the different
represented genes (Figure 6) showed that the pathways methane metabolism, pyruvate
metabolism, glycolysis/gluconeogenesis, purine metabolism, etc. are enriched in nivara
wild rice rhizobacteria versus indica rice rhizobacteria (Figure 6A); methane metabolism,
carbon fixation pathways in prokaryotes, phenylalanine, tyrosine and tryptophan biosyn-
thesis, glycolysis/gluconeogenesis, etc. are enriched in common wild rice rhizobacteria
versus japonica rice rhizobacteria (Or vs. Osj) (Figure 6B); pyruvate metabolism, methane
metabolism, glycolysis/gluconeogenesis, purine metabolism, etc. are enriched in nivara
wild rice rhizobacteria versus japonica rice rhizobacteria (On vs. Osj) (Figure 6C); methane
metabolism, ABC transporters, pyruvate metabolism, etc. are enriched in common wild
rice rhizobacteria versus indica rice rhizobacteria (Or vs. Osi) (Figure 6D). Furthermore,
methane metabolism and pyruvate metabolism were found to be the common pathway
among the comparison of wild rice rhizobacteria and their cultivated rice rhizobacteria
(Figure 6).

The prediction results of fungal function in the On, Or, Osi, Osj, Oo, and Op groups
showed no significant difference in fungal OTU abundance between each group. The
proportions of pathotroph fungi in the Or and On groups were the highest (Figure 7) than
other plants. Saprotroph fungi were more abundant in the Op group and higher than the
totals of pathotroph, saprotroph, and symbiotroph fungi in the other five Op groups; and
the relative abundance of symbiotroph fungi was higher in Osj group that that of other
groups. In general, though it was found that the relative abundances of the pathogenic
fungi in the rhizosphere soil of indica and japonica rice were significantly lower than
that of the wild rice, the relative abundances of Magnaporthales and Ustilaginales were
significantly higher in indica and japonica rice than that of the wild rice.
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Figure 6. KEGG enrichment analysis of wild rice versus cultivated rice based on up-regulated genes
of rhizosphere microbiomes. Nivara wild rice versus indica (On vs. Osi) (A), common wild rice
versus japonica (Or vs. Osj) (B), nivara wild rice versus japonica (On vs. Osj) (C), common wild rice
versus indica (Or vs. Osi) (D). There were 4 repeats in each group (n = 4). On, nivara wild rice; Or,
common wild rice; Osi, Meitezhen indica rice; Osj, Daohuaxiang japonica rice.
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abundance of Magnaporthales and Ustilaginales (B) in the On, Or, Osi, Osj, Oo, and Op groups. On,
nivara wild rice; Or, common wild rice; Osi, Meitezhen indica rice; Osj, Daohuaxiang japonica rice;
Oo, medicinal wild rice; Op, spotted wild rice. The significant differences among samples at p < 0.05
were represented with different letters above the error bars.

4. Discussion
4.1. Diversity of Bacteria and Fungi between Different Rice Varieties

It is well known that wild rice has accumulated rich genetic diversity and possesses
higher saline–alkali tolerance, drought tolerance, and disease resistance than cultivated
rice [31]. Studying the characteristics of wild rice is beneficial to the improvement of
cultivated rice. There are currently many reports on the differences between wild and
cultivated rice genes [13]. Researchers have analyzed the differences between the mitochon-
dria and chloroplasts in wild and cultivated rice and explained the differences in genetic
differentiation between wild rice and cultivated rice [13]. Along with the domestication
of the rice, the selection and mutual relationship of the plant and rhizomicrobiomes also
evolved together [19]. Additionally, the microorganisms are the most basic form of life on
Earth. In the growth and development of plants, microorganisms will accompany them
through the whole life cycle, including plant metabolism and nutrient absorption, which
require the help of microorganisms [15,16,28]. Plant–microbial interactions play a vital
role in maintaining plant and soil productivity under stress [32]. The different growth
environments and varieties of rice not only lead to different selectivity to microorganisms
but also determine the differences of microorganisms in the rhizosphere of rice [33–36]. In
this study, we compared the rhizosphere microbial communities of different rice varieties
and found significant differences between wild and cultivated rice in the alpha diversity
and composition of rhizosphere bacteria and fungi. Shenton et al. (2016) showed that
root-related bacterial communities have small but significant differences depending on
the plant genotypes [37]. The authors found that the differences in bacteria related to
different plant genotypes were only weakly related to the phylogenetic distance between
wild species and cultivated varieties of Oryza. This indicates that the root traits selected
during domestication may have a significant impact on the composition of rhizosphere
microflora. Shi et al. (2019) showed that the relationship between fungi and bacteria in
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cultivated crops is stronger than that in wild relatives [23]. The research also showed that
wild varieties have higher beneficial symbiote content and lower pathogen content than
cultivated varieties. The effect of crop domestication on the fungal community was greater
than that on the bacterial community and improved the microbial relationship in the rhizo-
sphere of cultivated crops. It can be reasonably assumed that the rhizosphere microflora of
wild crops is more effective than their cultivated relatives in promoting the growth and
survival of host plants under biotic and abiotic stress. However, in this study, we showed
that the rhizosphere bacterial community structures of nivara wild rice, common wild rice,
medicinal wild rice, and indica rice were similar (Figure 3A), while the rhizosphere fungal
community structure of nivara wild rice, medicinal wild rice, and indica rice were similar
(Figure 3B). In general, the bacterial and fungal community structures of nivara wild rice,
medicinal wild rice, and indica rice were found to be more similar than those of other wild
rice species and japonica rice (Figure 3). This result suggests that japonica rice retained
more similar rhizomicrobial communities compared to nivara and medicinal wild rice in
its domestication process, while the rhizomicrobial communities of indica rice changed
significantly through the domestication process.

4.2. Potential Functions of Bacteria and Fungi in Cultivated and Wild Rice

The results showed that Actinobacteria and Proteobacteria accounted for a large
proportion in each group, which was also observed in Aslam’s experiment [38]. In addition
to rice, Actinobacteria also occupies a major position in soybeans [39]. In this study,
Ascomycota, Basidiomycota, and Chytridiomycota were shown to be the dominant fungi in
both wild and cultivated rice groups, and Ascomycota accounted for the largest proportion
in each group (Figure 4A). Although the relative abundance was low, Zygomycota could
still be detected in each group (Figure 4B). Comparing the microbial differences in each
group indicates that the microbial communities of medicinal wild rice and nivara wild rice
were similar (Figure 4A,B). It is speculated that these differences are due to the close genetic
relationship between the two samples [7].

In this study, it was found that Actinobacteria accounted for the largest proportion of
bacteria in six kinds of rice (Figure 4A). This study showed that Actinobacteria is a common
microbial community in terrestrial and marine environments [40]. Most endophytic Acti-
nobacteria showed the potential to promote plant growth, including antibacterial activity
against test bacteria and plant pathogenic fungi, the dissolution of phosphates, and the
production of biological stimulants (ammonia, indole-3-acetic acid, and iron carriers) and
biocatalysts (amylase, cellulase, chitinase, lipase, and protease) [41]. In our study, indica
and japonica rice had the lowest proportion of Actinobacteria than the wild rice species. It
can thus be inferred that japonica and indica rice, in its natural evolution, have decreased
the abundance of the beneficial Actinobacteria possessed by wild varieties. It may indicate
that the domestication has decreased the abundance of Actinobacteria. However, Pérez-
Jaramillo et al. (2017) showed that the domestication of Phaseolus vulgaris decreased the
abundance of Actinobacteria. The inconsistency of the result may be due to the plant genus
not being the same as the selection for the rhizomicrobiomes along with the domestication.
The relative abundance of Frankiales, an order that can fix nitrogen from the air [42], was in
highest relative abundance in nivara wild rice. This result may suggest that the diazotrophs
with beneficial bacteria may help nivara wild rice in nitrogen utilization. However, indica
rice has the highest relative abundance of Nitrospira, the genus that can help plant utilize
nitrogen more effectively [43]. This result may help to illustrate that why indica plant
can use nitrogen more effectively that japonica [44]. Furthermore, methane metabolism
and pyruvate metabolism were found to be the common pathway enriched among the
comparisons of wild rice rhizobacteria and their cultivated rice rhizobacteria (Figure 6),
which indicated that the methane metabolism in the rhizobacteria of the common and
nivara wild rice were more active than that of indica and japonica. Additionally, this result
can certify the result of Tian et al. (2022) [30].
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Similarly, the largest group of fungi, Ascomycota, maintained the highest proportion
in japonica rice. Experiments showed that Ascomycota would be enriched continuously
with long-term rice planting. Because of the high proportion of humic fungi in Ascomycota,
these fungi may be more beneficial to the improvement of soil fertility [45]. They were also
more beneficial to plant growth, which further indicates that wild rice has retained good
genetic quality under ongoing natural and human-directed domestication. Furthermore,
it showed that the pathogenic fungi were more enriched in nivara and common wild rice
than other Oryza species. However, by comparing the most important pathogenic fungi,
it showed that Magnaporthales and Ustilaginales were more enriched in the rhizosphere
of japonica and indica rice. This result indicated that cultivated rice has enriched their
pathogenic fungi Magnaporthales and Ustilaginales when they were growing in the soil,
which may cause rice disease in the field.

5. Conclusions

In this study, we found that the rhizosphere microbial community structures of the
Asian wild rice species and their related indica and japonica cultivated rice were different.
The bacterial and fungal community structures of indica rice were more similar with
the nivara wild rice than japonica rice does, which indicated that the indica rice has a
closer relationship with nivara wild rice in the domestication. The relative abundances of
Actinobacteria in the rhizosphere of indica and japonica rice were significantly lower than
that of the wild rice species. Furthermore, the relative abundance of Magnaporthales and
Ustilaginales were significantly higher in indica and japonica rice than that of the wild rice.
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