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Abstract: The contribution discusses macrophyte communities in natural and man-made water-
bodies located on the active floodplain along the Drava river (Slovenia). We presumed that these
different types of wetlands host a great number of macrophyte species, but this diversity may be
affected by the presence of alien invasive species Elodea canadensis and E. nuttallii. Presence, relative
abundance, and growth forms of plant species along with selected environmental parameters were
monitored. Correlation analyses and direct gradient analyses were performed to reveal the possible
relations between the structure of macrophyte community and environmental parameters. Number
of macrophytes in surveyed water bodies varied from 1 to 23. Besides numerous native species we
also recorded Elodea canadensis and E. nuttallii, which were present in 19 out of 32 sample sites, with
E. nuttallii prevailing. The less invasive E. canadensis was absent from ponds and oxbow lakes but
relatively abundant in side-channels, while E. nuttallii was present in all types but dominant in ponds.
The most abundant native species were Myriophyllum spicatum and M. verticillatum, Ceratophyllum
demersum and Potamogeton natans. Correlation analyses showed no negative effect of the invasive
alien Elodea species to the species richness and diversity of native flora. Positive correlation between
the abundance of E. nuttallii and temperature of the water was obtained.
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1. Introduction

Rivers are complex ecosystems that change in time and space due to ecological and
hydro-morphological processes [1]. River flow determines processes that affect the shape
and distribution of habitats, and thus associated biotic communities [2]. The diversity of
river channel and floodplain wetlands support the diversity of biotic communities. These
habitats enable the establishment and dispersal of organisms, which ultimately affects
biodiversity patterns [3], especially in macrophytes that have relatively low dispersal
ability [4].

The global increase in energy and water demand of the human population resulted in
alterations of river channels that affected the function of rivers and adjacent floodplains,
as well as wetlands along these rivers such as oxbow lakes, side channels, backwaters,
ponds etc. [5]. Williams et al. [6] emphasized that such small waterbodies can contribute
significantly to regional biodiversity, including macrophyte communities [7], and are
important for the conservation and management of the local biodiversity [8–10]. Oxbow
lakes may be especially rich since they represent a transition between lotic and lentic
ecosystems [11]. Sustainable catchment management should be based on the knowledge of
the biodiversity in different water bodies within these catchments [12] and its vulnerability.
Such water bodies have a great potential for the conservation of biological diversity and are
recognised for their importance for ecosystem services [13], even though they have received
relatively little attention. This situation is different along the Danube river, where these
water bodies were studied by many researchers (e.g., Otahelová et al. [14]; Schmidt-Mumm
and Janauer [15]; Vukov et al. [16]; Gyosheva et al. [17]). The increase in the proportion of
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urban and agricultural land-use within the catchment areas of mentioned habitats results in
a decrease in species richness, thus, for efficient conservation of their biodiversity, actions
at a local and regional spatial scale are required [18].

Macrophytes are an important element of the aquatic ecosystem since they are the
basis for energy flow and nutrient cycling, and they affect sedimentation processes [19,20].
Macrophyte stands are habitats, refugia and a source of organic material for a range of
other organisms [21,22]. Brysiewicz et al. [23] also discovered that species occurrences
and abundances of fish fauna in small waterbodies were associated with the amount of
macrophytes growing in them. High macrophyte abundance may significantly alter the
chemical and biological structure of the ecosystem [24], while degradation of macrophyte
communities may cause a reduction in diversity of organisms dwelling in these macrophyte
stands [25]. By nutrient uptake from water and sediment, macrophytes ameliorate water
quality and affect the quality water and sediment [20,21]. The affinity for specific water
and sediment properties in different species make them valuable indicators of water and
sediment quality [26–29].

Small sized water bodies are often subjected to extreme water level fluctuations, which
are more pronounced in hydrologically isolated systems, where accelerated succession
often occurs [30]. These water level fluctuations may also cause the dieback of some plant
species, and consequently a release of nutrients [31], and a decrease in biodiversity. They
effect aquatic vegetation, the trophic state of the ecosystem, and consequently affect the
diversity and abundance of macroinvertebrates within the macrophyte stands [32]. An-
other threat to local biodiversity, especially diversity of freshwater biota, is the spread of
alien invasive species that is often reported as one of the major factors for its decline [33].
Vukov et al. [16] report that Elodea canadensis and E. nuttallii have been rapidly spreading
along the whole Danube, which was documented in [34]. However, the negative influ-
ence of these species is not always significant and there may also be some positive effects
on target ecosystems [35,36], like new habitat formation for aquatic fauna or cyanobac-
terial blooms prevention, especially in lentic waterbodies. The extent of the effect of a
certain invasive species for the functioning of target ecosystems largely depends on its
abundance [37].

In this paper, we studied macrophyte communities in natural and man-made shallow
waterbodies located on the active floodplain along the Drava river in Slovenia, within the
section with generally preserved morphological conditions but with modified hydrology,
to estimate their potential for the conservation value for macrophyte biodiversity. Since
these habitats represent different types of wetlands, we hypothesised that they harbour a
great number of macrophyte species and so mitigate their loss in other sections of the river,
which are affected by numerous hydropower-plants and their impoundments. We also
hypothesised that species diversity may be affected by the presence of invasive alien species
of the genus Elodea. Deeper understanding of such water bodies will facilitate effective
conservation and management of floodplains and support their ecosystem services.

2. Materials and Methods
2.1. Study Area

Studied wetlands are found within the active floodplain of the Drava river in northeast
Slovenia, between the town Maribor and the state border with Croatia (Figure 1). The
river Drava is among the biggest tributaries of the Danube river and gathers water from
Italy, Austria, Slovenia, Croatia and Hungary. The hydrological regime of the surveyed
section of the river has been modified, since a great proportion of the water from the river
Drava is diverted into artificial channels that supply the water for Hydropower-plants.
The advantage of this fact is that there have been no major changes in the morphological
conditions of the old river channel and adjacent floodplain, where the studied wetlands
occur. As the reference habitats, four reaches in the main channel of the Drava river were
also surveyed. Beyond the edges of the floodplain, the land use is characterized by intensive
agriculture with cultivated and uncultivated land mosaic.
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2.2. Macrophyte Data Set

Surveys were carried out in the years 2015–2016. Since we surveyed different types of
the waterbodies the approaches were combined [22]—in ponds, the entire length (<100 m)
was examined, whereas in oxbows, side-channels and the river we examined at least
100 m long sections. We recorded emergent, floating-leaved and submerged vascular
plants, bryophytes and charophytes. The presence and abundance of macrophytes were
evaluated from the boat or from the bank and collected with a stick with hooks. Macrophyte
species abundance was estimated as a relative plant biomass using a five-degree scale,
namely 1—very rare, 2—rare, 3—commonly present, 4—frequent, and 5—predominant, as
proposed by Kohler and Janauer [38]. These values were transformed by the function x3, as
suggested by Schneider and Melzer [27]. The plants that were sampled in the phenological
phase, which prevented identification to the species level, were only recorded on the genus
level (e.g., Carex, Callitriche). Species names followed the nomenclature of Euro+Med
Plantbase [39].

We classified the macrophytes into the following growth forms: natant (leaves or whole
plants floating at the water surface); submerged (assimilation areas submerged in water
column); amphiphytes (having the ability to produce terrestrial and aquatic growth forms,
or aquatic and aerial leaves); and helophytes (anchored in the water-saturated sediment,
with plant assimilation areas permanently in the air). For the purpose of correlation
analyses and comparisons of average abundances, the ordinal values of the Kohler-scale
were transformed into quantitative values (“quantities”) [40]. We equalized the transformed
values as percentage cover-abundance values according to [41].
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2.3. Environmental Parameters

The assessment of environmental conditions was performed in the sites as the survey
of macrophytes. We also assessed parameters like land-use type beyond the riparian zone,
characteristics of the riparian zone (width, completeness, and vegetation type), and mor-
phology (bank structure) [42]. Each parameter includes four categories comprising quality
gradient, coded numerically from 1 to 4:1 presented good, close to natural condition, while
quality gradient values from 2 to 4 indicate worsening of environmental conditions. Results
of the assessment of the land-use and the width of riparian zone are presented in Table 1.
Apart from the mentioned environmental parameters, we also recorded the basic physical
and chemical parameters (temperature of the water, pH, conductivity, concentration of
dissolved O2, saturation with O2) with the multimeter (Eutech PCD-650, Singapore).

Table 1. Characteristics of the catchment area of specific waterbodies. Width of the riparian zone,
where woody or herbaceous wetland vegetation is thriving and prevailing land-use behind the
riparian zone is presented.

Location Width of Riparian Zone Land-Use behind the Riparian Zone Type

1 1–5 m arable land, grassland, houses river
2 1–5 m arable land, grassland, houses pond
3 1–5 m arable land, grassland, houses channel
4 1–5 m arable land, grassland, houses channel
5 1–5 m arable land, grassland, houses oxbow
6 <1 m mainly arable land or urban area pond
7 1–5 m mainly arable land or urban area channel
8 <1 m arable land, grassland, houses river
9 <1 m mainly arable land or urban area pond

10 1–5 m mainly arable land or urban area oxbow
11 <1 m mainly arable land or urban area pond
12 5–30 m grassland, forest and/or wetland, some arable land pond
13 5–30 m grassland, forest and/or wetland, some arable land channel
14 1–5 m mainly arable land or urban area channel
15 <1 m arable land, grassland, houses channel
16 1–5 m arable land, grassland, houses channel
17 <1 m arable land, grassland, houses oxbow
18 <1 m mainly arable land or urban area channel
19 5–30 m arable land, grassland, houses pond
20 <1 m mainly arable land or urban area oxbow
21 1–5 m arable land, grassland, houses channel
22 1–5 m arable land, grassland, houses channel
23 <1 m arable land, grassland, houses oxbow
24 1–5 m arable land, grassland, houses river
25 <1 m arable land, grassland, houses channel
26 <1 m mainly arable land or urban area channel
27 <1 m mainly arable land or urban area channel
28 5–30 m arable land, grassland, houses river
29 1–5 m arable land, grassland, houses pond
30 1–5 m arable land, grassland, houses pond
31 1–5 m grassland, forest and/or wetland, some arable land channel
32 1–5 m mainly arable land or urban area oxbow

2.4. Statistical Analyses

Correlation analyses between species and parameters was calculated with PAST,
version 2.17c [43]. Kendall tau correlation coefficients were calculated.

Detrended correspondence analysis (DCA) was performed in the first step of gradient
analyses. This analysis also informed us whether the gradients in the matrix of plant species
are linear or unimodal, and which direct gradient analysis to use in further analyses. When
we performed DCA with the matrix of functional types/growth forms, the eigenvalue
for the first axis was lower than 0.4 (0.08) and we selected Redundancy analysis (RDA),
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as suggested by ter Braak and Verdonschot [44]. These results provided the information
about the relationships between environmental factors and the structure of macrophyte
community and their growth forms, respectively.

We used forward selection of the variables (499 permutations were performed) to
rank the relative importance of explanatory variables. Only the variables with significance
p < 0.05 were considered in further analyses. All analyses were performed with CANOCO
for Windows 4.5 program package [45].

3. Results

The entire list of macrophytes comprised of 73 plant taxa, while the number of macro-
phytes in specific waterbodies varied from 1 to 23 (Figure 2). Beside numerous native
species, waterbodies also host two invasive alien species of Elodea, namely Elodea canadensis
and E. nuttallii, present in 19 out of 32 sample sites (Figure 3), with E. nuttallii prevailing.
The most abundant native species were Myriophyllum spicatum and M. verticillatum, Cer-
atophyllum demersum and Potamogeton natans, which were also present in various locations
(Figure 4). Natant species Nuphar luteum was present at one site only.
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E. nuttallii was the most abundant among all hydrophyte species, with more than
25% of the total abundance, followed by M. verticillatum, C. demersum, E. canadensis and
M. spicatum (Figure 5).
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trisulca, Ran cir—Ranunculus circinatus, Bra rut—Brachythecium rutabulum, Nym alb—Nymphaea alba,
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The DCA analysis shows the similarity of surveyed sites in terms of the structure
of macrophyte communities in the peak vegetation period. The closer sites are on the
ordination plot, the more similar are the macrophyte communities. It is evident that the
type of aquatic ecosystem does not dictate the macrophyte community structure (Figure 6).
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Figure 6. Detrended correspondence analysis ordination diagram showing the similarity of the
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right triangle—sample sites in the main channel of the river Drava.

Redundancy analysis revealed that the presence and abundance of Elodea affected
the presence of native groups of macrophytes (Figure 7). When testing both species of
Elodea separately, E. nuttallii explained 9% and E. canadensis 3%. However, when we tested
sum of abundances of both species, this parameter explained 14% of macrophytes species
parameters variability. Vectors representing the number and abundance of plant groups are
in the opposite direction to Elodea vector. The distribution of the locations along this vector
shows that the locations 10 and 17 are the most abundant with Elodea, as is also evident
from Figure 3.
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ecological groups of macrophytes and relative abundance of their growth forms and Elodea species
abundance. Abundance of submerged plants is represented by two parameters, including and
excluding Elodea (-Elodea). Different symbols indicate different water bodies (white circles—ponds,
light grey squares—oxbows, small dark grey right triangles—side channels, black right triangle—sites
in the main channel of the river Drava.

Correlation analyses revealed no significant negative effect of the alien Elodea species
to the native flora of the studied water bodies (Table 2). We calculated positive correlation
between the abundance of E. nuttallii and temperature of the water, and the share of arable
land in the catchment areas of the studied wetlands.

The abundance of E. nuttallii was negatively correlated with the sum of abundances of
floating-leaved macrophytes (Nymphaea alba and Spirodela polyrhiza).

Average values for specific types of the studied waterbodies are listed in Table 3.
E. canadensis was absent in lentic ecosystems but relatively abundant in side-channels,
while E. nuttallii was present in all types but was dominant in ponds, where its average
cover-abundance value was 48%. Despite this fact the species richness and diversity of
native flora was not lower, but even higher in ponds than in larger oxbow lakes.
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Table 2. Correlation coefficients (Kendall tau) between the abundance of Elodea canadensis, E. nut-
tallii and the sum of both species with diversity indices of native flora as well as with selected
environmental parameters. Only significant (p < 0.05) correlations are shown. (* p = 0.05).

Variable E. canadensis E. nuttallii E. canadensis and nuttallii

Number of native taxa n.s. n.s. n.s.
Total abundance of plants n.s. 0.2679 0.2669
Shannon–Wiener diversity index n.s. n.s. n.s.
Concentration of O2 [mg/L] n.s. 0.2679 n.s.
Temperature of the water [◦C] n.s. 0.2614 * n.s.
Cover of floating-leaved macrophytes n.s. −0.2782 n.s.
Land-use in the catchment n.s. 0.2988 0.2805
Abundance of Nymphaea alba n.s. −0.2617 −0.3079
Abundance of Spirodela polyrhiza n.s. −0.2886 n.s.

Table 3. Average abundances (in %) of IAS Elodea canadensis and E. nuttallii in four types of waterbod-
ies and average values of species-richness and diversity of native flora.

Oxbows Ponds Side-Channels River

E. canadensis 0 0 15.7 0.75
E. nuttallii 14.5 48 12.2 4.5

Nr. of native taxa 8 10.5 11.4 9.5
S–W diversity index 1.7 1.9 2 1.9

4. Discussion

Small waterbodies are often intact and unpolluted, and as such they present a refuge
for species which have disappeared from larger, more disturbed, water bodies [13]. In
the case of the Drava river, the sections upstream the studied area are degraded and
converted into the chain of reservoirs for HPPs. The surveyed ecosystems occur within the
active floodplain, which remained relatively intact in terms of morphological alterations.
However, in different river-fed wetlands, the flood regimes affect macrophytes community
traits and thus the structure and function of the wetlands [46]. The entire set of the
studied waterbodies hosted 73 macrophyte species, which is a rather high number in
comparison to river habitats, where in over 1000 reaches of 33 Slovenian rivers 87 species
were recorded [47]. In similar studies within the Danube river corridor, Schmidt-Mumm
and Janauer [15] recorded 78 species in 49 transects sampled in oxbows and side-channels
in Austria, while Gyosheva et al. [17] recorded 112 species within a much larger set of
144 samples from Bulgaria.

The study of macrophytes in subtropical ponds revealed that pond size was positively
related to richness of emergent and floating species, and the isolation of the pond negatively
affected the richness of amphibious species, which was a consequence of their dispersal
strategies [48], but our results do not confirm such relations. Emergent species in the studied
waterbodies presented a great share of species, namely 43. This high helophyte diversity
may be a consequence of relative naturalness of the adjacent parts of their catchment
areas within the floodplain and supported by rich seed banks as shown in a case of small
ponds [7].

Diverse and abundant stands of helophytes provide a protection for hydrophytes in
the water since they act as their buffer zones. Despite this protection, native species could be
endangered by alien Elodea, as both species of Elodea found in surveyed water bodies usually
exhibit high growth rates with a high tolerance to a wide range of environmental conditions,
low vulnerability to grazing and other stress factors, high distribution and reproduction
potential [49]. Our results revealed no influence from both Elodea species on the floristic
composition of aquatic vegetation (Figure 2), which is stronger in the case of E. nuttalli
since its abundance is responsible for 9% of variability of macrophyte stands. Besides,
E. nuttallii is also documented to replace E. canadensis from several waterbodies where it
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has established before the invasion of E. nuttallii [50,51]. The ecophysiological differences
between both species explain the invasion success of E. nuttallii over E. canadensis [52].
Szabó et al. [53] found out that under more eutrophic conditions, E. nuttallii grows quicker
and reaches the water surface sooner in comparison to E. canadensis. In addition, intensive
branching outcompetes all other plants, including E. canadensis.

In our case, no evident impact on the native plant diversity was confirmed, neither in
case of single Elodea species, nor when both species were present (Table 2). One of the rea-
sons is that the hydromorphological characteristics of the majority of studied waterbodies
has not been modified, except the ponds that are of anthropogene origin. This also explains
the highest abundance of E. nuttallii in the ponds (Table 3). Otahelová et al. [14] report
that new man-modified aquatic habitats have been successfully invaded by E. nuttallii.
Mazej-Grudnik and Germ [54] report that E. nuttallii can cause severe problems in water
bodies that are heavily modified due to human activity. The reason for lower competitive
ability of E. nuttallii over E. canadensis, as well as other submerged species, is connectivity
of these waterbodies with the main course of the Drava river [55] that floods the entire
floodplain during the extreme events. Vukov et al. [16] report that both species are charac-
teristic for aquatic habitats with lower levels of connectivity with main channels. There is
also a difference between these two species in their preference to the reaction of the water,
according to Ellenberg indicator values (EIV) for reaction [56]. E. canadensis has a relatively
high EIV = 7 (out of 9) for water pH, while E. nuttallii is indifferent to pH (x). Since the
catchment area above the studied section of the Drava river is mostly in the Central Alps
and built mainly by non-carboniferous rocks, the sediments forming the floodplain of
the Drava river and the river itself contain relatively low contents of basic cations and
provide habitats with relatively low pH. This might explain lower abundance values of
E. canadensis in comparison to E. nuttallii in these ecosystems and its absence from lentic
habitats (Table 3).

We obtained positive correlation between the abundance of E. nuttallii and temperature
of the water, thus further increasing in temperatures of these small waterbodies may favour
the spread of E. nuttalli. Mazej Grudnik et al. [57] report that one can expect a more invasive
character of E. nuttallii in the years with higher temperatures in January and March.

On the other hand, the abundance of E. nuttallii was negatively correlated with the
sum of abundances of floating macrophytes (e.g., Nymphaea alba and Spirodela polyrhiza).
However, it is not a case for all floating species, since a study with Lemna revealed the
opposite result, especially under low nutrient concentrations [58]. Elodea is effective in using
nutrients as phosphorus and nitrogen, which results in nutrient deficiency for other primary
producers [59]. In our case it seems that nutrients were not a problem, since the conductivity
was relatively high; therefore, better position regarding light conditions in floating-leaved
macrophytes in comparison to submerged Elodea deprived this species. We presume that
the spreading of floating species may help to suppress the spread of these two IAS in the
waterbodies. Netten et al. [60] found out that the free-floating Salvinia natans in mesocosms
benefited from increased temperature and increased nutrient concentrations and lowered
the potential of submerged E. nuttallii to take advantage of such conditions. Their results
also indicate that with global warming, invasive free-floating plants might become more
successful and cause decline of submerged plants. The environment below floating plants
is poorer with light [61]. Deliberate introduction of the pleustophyte Spirodela polyrhiza,
which is a native species and distributed in waterbodies in the studied region, would be
easy to imply, but it may also affect other submerged species so the use of such a measure
for mitigation of the spread of these invasive species should be studied in advance. The
study in Slovenian watercourses revealed that the abundance of E. canadensis is negatively
related to abundance of M. spicatum [62], which is also highly invasive in USA [63]. This
effect was only partly confirmed in the present study. According to this knowledge, we
strongly discourage the removal of the stands of M. spicatum as well as any other native
macrophyte.
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5. Conclusions

Surveyed water bodies along the river Drava harboured a high number of species.
Against expectations, the presence of alien E. nuttallii and E. canadensis exerted no effect
on presence and abundance of hydrophytes, possibly due to water level fluctuations in
these water bodies. E. nuttallii reached the highest abundance in ponds, which are the only
group of anthropogenic ecosystems. We can conclude that maintenance of good ecological
status of waterbodies, including their morphology, is among the most important measures
to prevent the spreading of invasive species.

Different hydrological dynamics, as one of the consequences of the climate changes,
has led to increased frequency of the floods as well as droughts. Small water bodies and
wetlands, respectively, found within the floodplains can mitigate both types of events since
they enable substantially longer water retention than do regulated rivers. The maintenance
and hydrological connectivity of these waterbodies in sufficient extent could not only
contribute to higher species diversity but could also reduce the flood-waves and supply
the water for the baseflow at lower water levels due to their retention capacity.
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