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Abstract: The Socotra Cormorant (Phalacrocorax nigrogularis) is a regionally endemic seabird that
is vulnerable due to human disturbance and habitat degradation. This study aimed to predict
the potential current and future marine distribution of the species under different climate change
scenarios using environmental variables affecting distribution using MaxEnt. Occurrence data
were collected over several years using satellite tagged adults in the Arabian Gulf. The current
model showed large areas of high suitability, mainly in the Arabian Gulf and in the Red Sea, where
31,300 km2 or 48% of total highly suitable areas existed. These areas are currently not utilized by
the species. The future model predicted a sharp decline in suitable areas with 73% loss under the
SSP5-8.5 climate change scenario of 2050 (extreme scenario). Nevertheless, the Red Sea is predicted
to still hold considerable moderately suitable areas. Suitable areas increased around the Socotra
archipelago. The model did not include biological variables due to lack of fish distribution data.
Two variables, namely, mixed layer thickness and sea floor depth, explained most of the species’
distribution. These variables significantly influence nutrient cycling and forage fish distribution
patterns, which in turn influence seabird distributions. Thus, the model could be useful in predicting
the distribution of Socotra cormorants. However, the model outcomes should be interpreted with
caution as potential areas of future expansion of the species to be further tested and validated.
Conserving these areas as a precaution might encourage the Socotra Cormorant to colonize the region
and persist in the future under the most extreme climate change scenarios, given that small forage
fish that are eaten by the species are abundant in the predicted areas outside of the Arabian Gulf.

Keywords: Socotra Cormorant; Arabian Gulf; Arabian Sea; Red Sea; habitat suitability; habitat loss;
foraging range; distribution modeling; Maxent

1. Introduction

Seabirds are important components of marine ecosystems [1–3]. Climate change, the
impact of invasive exotic species, incidental capture, overfishing, pollution, and hunting
are important factors that currently threaten seabirds [2]. Although some of these threats
have great direct and immediate effects on breeding and foraging seabirds [1,4,5], the
consequences of climate change are also potentially high, with long-term shifts in spatial
distribution or catastrophic declines in populations predicted for some seabird species [1,2].
Climate change can affect complete regions compared to the local impact of some of these
other threats, adding to the cumulative pressure on seabirds, especially species that are
endemic to small regions [4,5]. Whereas some of these threats have recognized and proven
solutions, mitigation may have limited scope for the main impacts such as sea level rise
and extreme rainfall (destruction of colonies), increased severe weather events, changing
oceanographic processes, reduction in marine productivity near colonies, and increased
infections and severity of avian diseases [2].

An overall climate warming is predicted for many regions of the earth under different
conservative scenarios. Impacts of this warming could include reduction in the distribu-
tion range and changes in habitat suitability of multiple groups of terrestrial and marine
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organisms, including seabirds [2,4,6]. Shifts in seabird phenology were also reported due
to impacts associated with climate warming [7], which is particularly alarming for seabirds
with a limited range and declining populations [8–10]. Rising temperatures influence the
productivity of phytoplankton, thus altering the fecundity and abundance of herbivorous
zooplankton. Inevitably, the impacts of these changes reach pelagic fish, squid, and car-
nivorous zooplankton [4,9] and, in turn, could significantly impact the seabirds which
largely feed on these species [4,5]. Previous studies on demographic dynamics of small
populations of pelagic fish in upwelling ecosystems indicated that a collapse in such forage
fish or zooplankton populations is often preceded by sharp decline in predatory seabird
populations [4,9]. During the last 60 years, seabird populations have decreased by nearly
70% worldwide [1,2,11]. Obtaining adequate knowledge of seabird movement patterns
and spatial distribution is increasingly important to conserve the marine environment they
depend upon. The marine environment is highly dynamic, and species such as seabirds are
challenging to study given their mobility and breeding cycles [12,13]. Various restricted
range seabird species live within the productive upwelling zones. For example, seabirds in
the southern Benguela ecosystem off South Africa, those off the coast of New Zealand, or
those in shallow gulfs such as the Arabian (Persian) Gulf are especially vulnerable to such
changes in oceanographic as well as trophic changes triggered by climate change [9,14,15].
Adaptable species such as Cape Gannets (Sula) can travel greater distances to forage in
response to shifting prey distributions, therefore avoiding population declines [9]. Less
adaptable species such as Cape Cormorants or African penguins, with restricted foraging
ranges, are unable to alter their foraging patterns in relation to shifting prey distributions,
thereby experiencing population crashes [9].

Socotra Cormorants are endemic to a restricted range extending from the Arabian Gulf
and the Gulf of Oman along the Omani coastline into the Gulf of Aden [10,16]. Most of
the species’ population roosts and breeds within the Arabian Gulf, forming the northern
subpopulation. The smaller southern subpopulation resides on islands off Oman and in the
Gulf of Aden, although there is no known breeding within the Red Sea. Nonetheless, non-
breeding birds roam widely within the Arabian Gulf, the coastline of Oman and near the
entrance to the Red Sea [8,10]. The latest total population estimate was 750,000 birds [10].
Overall, the Socotra Cormorant is poorly studied in some aspects of its annual life cycle.
Distribution of Socotra Cormorants is governed by the abundance of forage fish, including
anchovies (e.g., Encrasicholina) and sardines (Sardinella) [10,14,17]. The only studies investi-
gating its foraging and roosting areas are from the Siniya Island colony, located north of
the UAE. Roosting and foraging sites of cormorants breeding in other colonies (western
Arabian Gulf or Gulf of Oman) remain unclear. Socotra Cormorants are opportunistic
predators that rely on diverse, locally abundant forage fish stocks [10,17]. The annual
fish consumption from the Siniya Island population alone was estimated to be between
11,000 and 18,000 tons [17]. A subsequent study calculated the average daily fish intake
as 47 tons [18]. Socotra Cormorants likely improve fish diversity and the dynamics of the
marine ecosystem and fisheries by controlling fish density and intra specific competition,
which enhance size structures of fish populations and individual growth [17–22]. They also
contribute greatly to marine nutrient cycling by depositing their nutrient-rich guano and
affecting vegetation and invertebrates on nesting islands [19–21].

The species is listed as vulnerable, and its population is declining due to range limi-
tations and human disturbance on many of its breeding islands [8,10,14,22]. Overall, the
Arabian Gulf is considered among the most anthropogenically impacted marine areas [23].
Evidence that heavy metals bioaccumulate in forage fish in concentrations exceeding the
maximum permissible limits suggests that many pollutants may be traversing through
food webs in this system [24,25]. The Arabian Gulf is also one of the most extreme marine
environments (high temperature and salinity, limited seasonality) [10,26]. Consequently,
Arabian Gulf marine organisms have been reported to be living near their environmental
tolerance boundary [10,27]. Generally, the movement patterns of the Socotra Cormorant are
not clear, though one study suggested a dispersive movement [14], and rare observations
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have been reported on the west coast of India and in the west of the Red Sea [28]. Recent
remote sensing data indicates short-distance directional migration by individuals nesting
on one colony in eastern UAE [29]. There is often a mismatch between fish distributions
and Socotra Cormorant distributions due to their generalist diet. Thus, observations of
Socotra Cormorant movements appear to indicate seasonally changing distributions of the
prey fish species, although systematic studies showing distribution and migratory patterns
of the fish are missing [10,29].

Remote sensing and presence-only (PO) modeling techniques have contributed sig-
nificantly towards our knowledge of the marine environment and the species that live
in them [4,6,12]. Different modeling techniques have been used to better understand the
current distribution of seabirds and predict their future distributions in light of environ-
mental change [12]. In this study, we aim to (i) determine the possible current geographic
distribution of Socotra Cormorants, a regionally endemic seabird with a restricted range
around the Arabian Gulf, the Gulf of Oman, and the Gulf of Aden, to analyze the important
environmental variables that affect its current distribution; and (ii) predict the possible
future distribution in 2050 using a selected climate change scenario.

2. Materials and Methods
2.1. Collection and Preparation of Occurrence Data

Platform terminal transmitters (PTTs) (Kiwisat, Model K3H 174A, Sirtrack) were
attached to individual breeding Socotra Cormorants as part of a larger study on for-
aging ecology. This helped to monitor breeding individuals during breeding seasons
(September to December) as well as the post-breeding dispersal (December to July) in se-
lected years. Occurrence data covered three periods. The first deployment of PTTs was
in November 2013. Data were collected from November 2013 to December 2013 and then
from May to June 2014. The gap in data was due to a technical error in the ARGOS satellite
system that prevented signal recording. In this phase, 8 PTTs were attached to individuals
from the Siniya Island, Umm Al Quwain, UAE colony using a harness made of Teflon rib-
bons in a back-pack arrangement (see [29]). The second deployment was in November 2014,
and the data collection period was from November 2014 to August 2015 from 10 PTTs
from birds caught on Siniya Island. The third deployment was at 2 different colonies in
the southern Arabian Gulf, with 4 transmitters attached on Bu Tinah Island (in western
Abu Dhabi), and 6 devices attached on Rubud Al Sharqiya on the northern portion of the
Hawar archipelago in Bahrain. Data for this period were collected from December 2019 to
December 2020. In each deployment, occurrence data represented nesting birds, foraging
birds, and roosting birds during an annual migratory cycle.

Occurrence data were rarefied to avoid model overfitting and bias [30,31] at a resolu-
tion of 10 km, matching the environmental predictors. Moran’s Index was calculated to
check spatial autocorrelation in the species distribution. The index ranged from +1 (perfect
correlation) to −1 (perfect dispersion), and values near zero indicated randomness in the
spatial pattern [12]. Both steps were carried out using ArcGIS. Overall, Maxent had the
best performance at low sample sizes and the second best at intermediate and high sample
sizes when compared with other common models [32]. It could also predict the reasonable
and representative total area regardless of the sample size [33].

2.2. Collection and Preparation of Predictor Variables

The following variables were chosen to perform the modeling: SST (sea surface
temperature, ◦C); SSS (sea surface salinity, ppt); SSH (sea surface height, m); depth (m);
and MLD (mixed layer thickness, m). These predictors are either known or presumed
to be linked to the abundance and distribution of seabirds by affecting multiple factors
(e.g., water circulation, mixing and distribution of nutrients, upwelling, stratification,
and sea level), which ultimately affect island availability, marine productivity, and prey
fish abundance [27,34–36]. The movement, breeding, and foraging patterns are mostly
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along shallow coastal waters for both the Socotra Cormorant and the forage fish they prey
upon [10].

Current variables were obtained at 0.083◦ (~9.2 km) resolution as monthly averages
from E.U. Copernicus Marine Service Information [37], covering the period from 2011 to
May 2020. The Depth variable was considered invariant throughout this study period. For
the period of June to December 2020, the variables were obtained from the E.U. Copernicus
Marine Service Information [38] also as monthly averages at the same resolution. The
future variables were extracted as monthly data at 10 km resolution for the period of
2041 to 2050. The future scenario used was the Shared Socioeconomic Pathway SSP5-8.5
from the HadGEM3-GC31-HH model [39]. For this scenario, the radiative forcing in 2050
is projected to reach nearly 4 W/m2 and 5.9 W/m2 for CO2 and all greenhouse gases
(GHGs), respectively [40]. Future variables were interpolated using the kriging method [4]
in ArcGIS (Desktop 10.8.1). The kriging method has good sensitivity and is known to
produce accurate re-gridded surfaces [41,42]. All variables were averaged and processed to
have the same spatial extent and resolution of 10 km using ArcGIS. Finally, multicollinearity
was assessed between the environmental variables using Variance Inflation Factor analyses
(VIF) in R (version 4.1.1) using VIF >10 as a threshold [43].

2.3. Modeling Procedures and Calibration

Maxent 3.4.3 [44] was used for the modeling analyses. Maxent is one of the commonly
used techniques in niche and species distribution modeling, as it requires presence-only
(PO) data [45–47]. Its method is considered robust [48], and it performed better when
compared to most other PO modeling programs [32,46,47,49]. One of Maxent’s most
argued criticisms is the common use of its default settings and visualizing it as a ‘blackbox’
tool [33,47]. In addition, the present study samples covered the marine distribution of
some of the most well-known colonies in the Arabian Gulf [10], but no location data were
included from the southern subpopulation outside the Arabian Gulf. Accounting for these
arguments, the spatial jackknifing tool in SDM toolbox in ArcGIS was used [50]. The tool
tests the Maxent model on multiple levels using varying parameters to produce the most
likely calibrated and powerful model [50,51]. Regularization Multiplier (RM) is one of the
tested parameters that aids the model to achieve accurate prediction and maximum entropy
or the most uniform distribution, thereby reducing model overfitting [33,47]. Maxent was
also provided with a bias file that was created using gaussian kernel density of sampling
localities in the SDM toolbox. The bias file accounts for sampling bias by providing Maxent
with a background file that has the same level of bias in presence localities. It also allows
the model to control the density and locations of background points and to thus avoid
sampling the less informative background points that lies outside the known range of the
species [50].

The final model was run using an RM of 2 with linear and quadratic features. It
was replicated for 15 runs by the subsampling method where 25% of occurrence data
were allocated for model testing. The purpose of replication is to average prediction
probabilities and avoid any skewness in the model outcome. To further prevent the model
from under or overpredicting spatial relationships, iterations were set at 5000 considering
the recommended convergence threshold of 10−5. Finally, Maxent projected the current
model to the year 2050 using the provided future variables of the SSP5-8.5 scenario. The
final distribution maps were visualized, and areas were calculated using ArcGIS.

2.4. Model Evaluation

To evaluate the model, the area under the receiver operating characteristic (ROC)
curve (AUC) was used as a threshold independent method. AUC values ranged from 0 to 1,
with values closer to 1 indicating better model performance [52]. True skill statistics
(TSS) and Cohen’s kappa (k) were used as threshold dependent methods, with maxi-
mum training sensitivity and specificity as the threshold [53]. For the Cohen’s kappa
method, k < 0.4 indicates low model accuracy, 0.4 < k < 0.75 indicates good accuracy, and
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k > 0.75 reflects excellent model accuracy [54]. Kappa statistics have been criticized for
being dependent on the prevalence of data. As a result, TSS was calculated to support
the kappa results, since it retains all kappa advantages, is less affected by prevalence,
and accounts for omission and commission errors [55]. TSS ranges from −1 to +1, where
TSS < 0 represents a random model, and values closer to +1 reflect excellent model per-
formance [53]. Both statistics were calculated using Microsoft Excel and R. To assess the
relative importance of each environmental predictor, contribution percentage and jackknife
analysis were conducted using MaxEnt.

2.5. Model Exploration

To investigate variable differences between current and future distributions, multivari-
ate environmental similarity surfaces (MESS) and the most dissimilar variable (MoD) of
the MESS map were calculated using MaxEnt [56]. Pixel-by-pixel analysis was performed
to calculate the extent of extrapolation or the similarity of a given point to a reference point
between current and future variable values. MESS scores range from positive to negative,
with negative values indicating an extrapolation or degree of novelty in that point, and a
score of +100 meaning the point is not novel at all. MoD analysis is based on the MESS,
as it shows the variable with the smallest similarity at each point [56,57]. Limiting factor
analyses (LF) was conducted in MaxEnt to examine the most important variable(s) that
influenced the model prediction at each point for both current and future predictions [56].
The variable that increases the model value the most when its value changes with respect
to the average value at species sites is considered a limiting factor [56]. All maps were
processed and visualized in ArcGIS.

3. Results
3.1. Autocorrelation Tests

The filtering of occurrence data resulted in 58 presence points (Figure 1). Moran’s
Index was −0.0023, indicating a random distribution of presence points. The slightly
negative value indicated a tendency towards dispersion, but this was negligible since it was
close to zero. The P-value was 0.72, and the z-score was −0.36. Both values showed that
the species localities were randomly distributed. For the predictor variables, VIF analysis
showed no correlation, considering a VIF >10 as a critical threshold [43]. Thus, no variables
were excluded from the distribution modeling.
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Figure 1. Occurrence points used for the distribution modelling.

3.2. Model Evaluation and Sensitivity Analysis

The final model showed a credible level of accuracy, with AUC-test at 0.965 and AUC-
train at 0.966 with a standard deviation of 0.006, meaning the model had 96.5% performance
(Table 1). Cohen’s kappa analysis also indicated good model accuracy as Kmax = 0.438,
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which fell within the desired range (0.4 < k < 0.75) [54]. The TSS results also supported
the earlier results, as the averaged value was TSS = 0.874, and this indicated a high
performance [53]. MLD and Depth were the top contributors of the model, with 43.3% and
41.1%, respectively (Table 1). The jackknife test results also showed that the environmental
variable with the highest gain when used in isolation was MLD (Figure 2). It was also
the variable that decreased the gain the most when omitted. Depth was the second most
important variable with a clear drop in average gain when it was not used in the model.

Table 1. Model evaluation and sensitivity tests and contribution percentage for each variable in the
distribution model of Phalacrocorax nigrogularis.

Variable Contribution to the Model (%)

MLD 42.3
Depth 41.1

SST 9.6
SSH 6.4
SSS 0.6

Evaluation Test Result

AUC-test 0.965
AUC-train 0.966

TSS 0.874
Kappa max 0.448

Diversity 2022, 14, 840 6 of 15 
 

 

3.2. Model Evaluation and Sensitivity Analysis 

The final model showed a credible level of accuracy, with AUC-test at 0.965 and 

AUC-train at 0.966 with a standard deviation of 0.006, meaning the model had 96.5% per-

formance (Table 1). Cohen’s kappa analysis also indicated good model accuracy as Kmax = 

0.438, which fell within the desired range (0.4 < k < 0.75) [54]. The TSS results also sup-

ported the earlier results, as the averaged value was TSS = 0.874, and this indicated a high 

performance [53]. MLD and Depth were the top contributors of the model, with 43.3% and 

41.1%, respectively (Table 1). The jackknife test results also showed that the environmen-

tal variable with the highest gain when used in isolation was MLD (Figure 2). It was also 

the variable that decreased the gain the most when omitted. Depth was the second most 

important variable with a clear drop in average gain when it was not used in the model.  

Table 1. Model evaluation and sensitivity tests and contribution percentage for each variable in the 

distribution model of Phalacrocorax nigrogularis. 

Variable Contribution to the Model (%) 

MLD 42.3 

Depth 41.1 

SST 9.6 

SSH 6.4 

SSS 0.6 

Evaluation Test Result 

AUC-test 0.965 

AUC-train 0.966 

TSS 0.874 

Kappa max 0.448 

 

Figure 2. Jackknife evaluation of the relative importance of each variable. Depth: sea floor depth, 

MLD: mixed layer thickness, SSS (sea surface salinity), SST (sea surface temperature), SSH (sea sur-

face height). 

3.3. Predicted Potential Suitability 

Socotra Cormorants were predicted to have large moderate and high suitability areas 

across the study area (Figure 3a). The total predicted suitable area was 219,400 km2, with 

64,100 km2 predicted as highly suitable areas (>0.6) (Table 2). From that, the Arabian Gulf 

alone had 24,000 km2, which equated to 37.4% of the total predicted distribution. The 

model also predicted suitable areas off Oman extending from Masirah Island in the north, 

with highly suitable areas, to the Al Hallaniyat archipelago, where suitability was mostly 

low (<0.4). Interestingly, the model predicted considerable highly suitable areas in the 

southern Red Sea, with 31,300 km2 or 48.8% of the total. The potential future distribution 

of the Socotra Cormorant is expected to decline sharply under the SSP5-8.5 scenario for 

2050 (Figure 3b). The total suitable area was 32,600 km2, indicating a loss of ~73% in suit-

able areas, and only 1700 km2 of this was highly suitable (>0.6) (Table 2). These areas were 

mostly found near the Socotra archipelago. The Red Sea mostly had moderately suitable 
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MLD: mixed layer thickness, SSS (sea surface salinity), SST (sea surface temperature), SSH (sea
surface height).

3.3. Predicted Potential Suitability

Socotra Cormorants were predicted to have large moderate and high suitability areas
across the study area (Figure 3a). The total predicted suitable area was 219,400 km2, with
64,100 km2 predicted as highly suitable areas (>0.6) (Table 2). From that, the Arabian Gulf
alone had 24,000 km2, which equated to 37.4% of the total predicted distribution. The
model also predicted suitable areas off Oman extending from Masirah Island in the north,
with highly suitable areas, to the Al Hallaniyat archipelago, where suitability was mostly
low (<0.4). Interestingly, the model predicted considerable highly suitable areas in the
southern Red Sea, with 31,300 km2 or 48.8% of the total. The potential future distribution of
the Socotra Cormorant is expected to decline sharply under the SSP5-8.5 scenario for 2050
(Figure 3b). The total suitable area was 32,600 km2, indicating a loss of ~73% in suitable
areas, and only 1700 km2 of this was highly suitable (>0.6) (Table 2). These areas were
mostly found near the Socotra archipelago. The Red Sea mostly had moderately suitable
areas of 5200 km2, and 100 km2 of highly suitable areas. The Arabian Gulf lost all its highly
and moderately suitable areas under this scenario.
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Figure 3. Potential current and future geographic distribution of Phalacrocorax nigrogularis:
(a) predicted current distribution, (b) projected future distribution under SSP5-8.5 scenario in 2050.

Table 2. Suitability area for Phalacrocorax nigrogularis in each region expressed in surface area.

Regions

Suitability Area (km2)

Unsuitable
(<0.2)

Least
Suitable (0.2–0.4)

Moderately
Suitable (0.4–0.6)

Highly
Suitable (>0.6)

Current Future Current Future Current Future Current Future

All 1,980,500 2,172,700 113,300 24,900 42,000 6000 64,100 1700

Arabian Gulf 156,200 225,600 27,300 0 16,400 0 24,000 0

Gulf of Oman, Arabian
Sea, Gulf of Aden 1,488,100 1,524,600 25,500 4100 7800 800 8800 1600

Red Sea 336,200 422,500 60,500 20,800 17,800 5200 31,300 100

3.4. Model Exploration

The response curves for the Maxent model were created to visualize the occur-
rence probability of Socotra Cormorants in relation to individual environmental variables
(Figure 4). The probability of occurrence declined sharply with the increasing values of
the Depth and MLD variables. For these two variables, high suitability (>0.6) occurred in
areas where depth was ≤30.3 m and MLD was ≤12.5 m. In contrast, potential suitability
increased with increasing SSS and SST values until stabilization, with highly suitable areas
occurring when SSS was ≥37.2 ppt and SST was ≥28.3 ◦C. Suitability increased with the
corresponding value of SSH of up to 0.24 m followed by a gradual decrease.

The MESS analysis values ranged from −44.22 to 55.89 (Figure 5a). The model ex-
trapolated most in the southern Red Sea, as it had negative values, indicating novelty in
environmental space (i.e., outside the training range). The novelty was mostly driven by
SST (Figure 5b). The areas around the Socotra archipelago were the least extrapolated
(i.e., closer and inside the training range) within the predicted future distribution of the
Socotra Cormorant (areas within the black polygon). The LF analyses indicated that MLD
is the dominant limiting factor over the predicted current range (Figure 5c). Areas off the
southern UAE coast had Depth as the limiting factor, while areas around Hawar Islands
had SSS as the limiting factor. For the potential future distribution (Figure 5d), SSH was
the limiting factor in almost the entire predicted future range. Areas near the Socotra
archipelago showed MLD as the limiting factor.
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reference points; (b) most dissimilar variable (MoD) map showing the smallest similarity at each point;
and (c) limiting factor (LF) analyses highlighting the most important limiting factors for predicted
current and (d) future distributions. The black polygons represent the potential future distribution
range for (a,b,d), and (c) the potential current distribution range based on Maxent prediction. Depth
(sea floor depth, m), MLD (mixed layer thickness, m), SSS (sea surface salinity, ppt), SST (sea surface
temperature, ◦C), and SSH (sea surface height, m). (See text for details).

4. Discussion
4.1. Predicted Suitability and Re/Colonization

The current model predicted large areas of high suitability in the Arabian Gulf. This
region was expected to be highly suitable, as it currently supports the largest portion of the
bird population. Unexpectedly, the model predicted large patches of highly suitable areas
in the southern Red Sea region with an overall suitable area that exceeded the prediction
in the Arabian Gulf by 7300 km2. Some islands in this region were historically used,
although there are limited studies on the species from the region [8,14], and there are no
up to date breeding records [8]. Historically, there appear to be foraging areas located
on either side of the coast of the southern Red Sea. Thus, the suitability predicted by
our model highlights historic foraging areas for the species [8]. It must be noted that our
model did not include biological variables (e.g., prey fish movement and abundance) due
to the lack of these data in the region. However, the variables used as predictors have a
strong influence on oceanographic factors, which in turn impact forage fish distributions
(discussed further below) [10]. It was also difficult to obtain representative parameters
for the future scenarios. In low latitude regions, biotic conditions are thought to play a
primary role in determining distributional limits [58]. Modelling a species distribution and
its relationship with environmental variables is an iterative process, where further testing
and validation takes place [59]. Since our model was restricted to marine physical data,
the outcomes of the modeling should be tested in an iterative manner using additional
sampling, validating, and re-modeling.

Several other variables can affect the distribution of seabirds, including predation,
competition, prey abundance, genetic diversity, adaptation, evolution, and the ability to
disperse [59]. There are no studies on Socotra Cormorants that extensively investigated
their movement between colonies or how they respond to changes in their islands and
marine foraging ground status. Khan et al. [22] reported that Socotra Cormorants were
able to relocate to inactive colonies and colonize new areas, as seen in the cases of Ghagha,
Bu Tinah, and Digala Islands off the western Abu Dhabi emirate coast. However, the
proximity between these islands and the surrounding active colonies were ≤150 km. These
three colonies showed low disturbance levels, and two of them (Ghagha and Bu Tinah)
have restricted access, emphasizing the importance of conserving suitable areas for pos-
sible future colonization. Since the study was conducted on decadal bases (1996, 2006,
2016), the temporal movement of colonization/recolonization could not be documented
precisely. However, the general outcome indicated that the species made a gradual shift to
these colonies.

Breeding Socotra Cormorants may move between colonies [10,14,22,29]. Intermixing
occurs during the post-breeding period at roosting sites, and although recolonization
could occur [10,14,22], the extent of this has not been studied. For example, the breeding
population in Abu Dhabi islands increased significantly during the last decade. The
movement was suspected to be from nearby colonies off eastern Qatar or other UAE
colonies [22]. Our tracking data showed that birds from Siniya (eastern and northern UAE)
and Abu Dhabi (western UAE) colonies visited the eastern Qatar and Hawar Archipelago
colonies between January and March for a few days. However, recolonization movement
between these two areas cannot be determined unless long-term tracking takes place.
Several studies show that Socotra Cormorants breeding on Siniya Island migrate to western
UAE (the islands in Abu Dhabi) where they may mix during non-breeding periods with
individuals that breed in the area [10,17,29]. Similarly, it is widely believed that populations
breeding on Hawar Islands may periodically also nest on some of the coastal islands
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of Saudi Arabian within the Gulf of Salwa [14], although there are no studies carefully
documenting the extent of this interchange of breeding sites.

The distribution of forage fish is highly correlated with the distribution of breeding
Socotra Cormorants during the breeding season, as individual birds are obliged to return
to the colony at the end of their daily foraging activities to incubate their eggs or tend to
the chicks. In comparison, non-breeding bird distribution is often not correlated with prey
distributions because individuals do not need to return to a specific island after foraging
and may roost in one of many islands during the night [29]. In the absence of detailed fish
prey distribution data, it is difficult to correlate prey distributions and predict their predator
(Socotra Cormorant) distributions. However, there are several species of forage fish that
serve as prey within the Arabian Gulf, the Gulf of Oman (along the Omani shoreline), the
Gulf of Aden, and within the Red Sea. These species undergo seasonal migrations within
the Arabian Gulf, Red Sea, or in the Gulf of Oman and Gulf of Aden along the coastlines
of Oman and Yemen [10]. Therefore, it is feasible for Socotra Cormorants to expand their
distribution and colonize areas within the southern Red Sea region from nearby colonies
off Yemen.

Socotra Cormorants have been reported near the Eritrean coastline and islands, with
numbers surpassing 1500 birds in the summer season alone [60]. Breeding was also
suspected to occur on the southern Eritrea coast extending to Djibouti [60], but this has not
been confirmed to date [16]. The Red Sea is a unique environment, as it has high levels of
surface temperature and salinity. It is also one of the busiest shipping routes globally, and
anthropogenic disturbance is high [61]. Similar or higher levels of disturbance occurs in
the Arabian Gulf [23,61]. Yet the species was able to persist and increase in numbers with
the growing protection, as most of the islands it uses are designated as Important Bird and
Biodiversity Areas (IBAs) [10,22].

The predicted future distribution under the SSP5-8.5 scenario showed an extreme
declining trend that ranged between complete loss and significant reduction of suitability.
This trend is similar to those found in other studies investigating climate change impacts
on seabirds [4,6,62]. During model projection, extrapolation and clamping were allowed.
Clamping deals with the uncertainty of predicting outside the training range by capping the
prediction at the lowest/highest values observed during model training. In total, the future
model predicted 5300 km2 of moderate and highly suitable areas in the southern Red Sea.
The model extrapolated more in this region compared to others and was mostly driven by
SST. Interestingly, in contrast to all other regions, suitable areas near the Socotra Archipelago
increased under future prediction. This can be explained by the MESS analysis that showed
less extrapolation in and around Socotra Archipelago, suggesting that the environmental
conditions will likely be most similar to the current environmental conditions. Overall,
moderate and high suitable areas in the future should remain intact, suggesting that the
Socotra Archipelago could be of high importance to the conservation of this species in
the future.

A recent study surveyed 538 animal and plant species globally and predicted
that ≥30% may become extinct within their regions based on all future scenarios [63].
The study also indicated that dispersal alone might not be enough to face temperature
change, and niche shifts may be highly important to avoid extinction [63]. Indeed, a credi-
ble projection of range change and expansion depends on long-term monitoring programs,
where species abundance, migration, dispersal, and persistence are monitored [59]. Given
that such data are lacking for Socotra Cormorants, the projection in the Red Sea might
carry uncertainty. We present this projected range expansion as an initial hypothesis to be
tested [59]. Socotra Cormorants may have to adapt or shift their niche to be able to survive
in that region in the future (see below).

4.2. Influence of Predictor Variables

Depth was an important limiting factor preventing the species from spreading deeper
into the Indian Ocean, with a contribution of 41% towards the model. Shallow sea floors
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are important because of their association with upwelling areas of high productivity [34].
Specifically, depths ≤30 m were predicted to be highly suitable for Socotra Cormorants.
Socotra Cormorants of the Siniya Island colony were observed foraging mostly at depths of
15 m or less, and this is where forage fish are commonly encountered in winter [10,18]. MLD
was limiting the bird distribution mostly in the middle (deeper) areas of the Arabian Gulf
and the Red Sea. In the Arabian Gulf, the water column at deeper locations tends to be
more stratified, which lowers mixing of nutrients, especially in the summer, as surface
heating increases [64]. In shallow areas of the Arabian Gulf, thermal stratification is almost
absent, and the whole water column is mixed in most areas in winter. Even in summer,
the water column was moderately well-mixed in shallow areas [27,64]. The combination
of these two factors enhances productivity [27]. MLD had the highest contribution to the
model (42.3%). It also had the highest gain when used in isolation. Therefore, it appears
that MLD had the most useful information in determining the outcome of the model. The
variable also lowered the model gain the most when it was omitted, suggesting that it had
the most information that was not present in other variables.

SSH also limited the distribution mostly along the eastern Arabian Gulf. Its current
level is lower than 0.18 m on average, which corresponds to the least suitable areas as
indicated by the response curve. The LF analyses of future distribution showed that SSH
will limit Socotra Cormorant distribution in most areas. In some areas, SSH was predicted
to increase, while for others it was predicted to decrease. Increasing SSH will submerge
shallow islands and coastlines, which will increase the challenges for Socotra Cormorants
to find suitable breeding and roosting sites. Decreasing SSH, on the other hand, will affect
upwelling, circulation patterns and current dynamics [34]. The rise in SST in the future
may affect MLD and cause more stratification and hence less nutrient mixing. The increase
in SST by itself is threatening, as extreme environmental conditions (i.e., high SST and SSS)
already exist in the Arabian Gulf and the Red Sea, and marine organisms are living near
the edge of their tolerance level. As a result, a wide range of marine organisms including
the Socotra Cormorant are expected to decrease in numbers [27].

SSH reflects ocean surface topography and large-scale circulations [34]. It is used as a
proxy for eddies, upwelling areas, and current dynamics. These processes bring nutrients to
the sea surface and affect its distribution on the water surface, thus contributing to marine
productivity [34]. SSH, for example, is also used as a proxy for the potential location of
many commercial fish catches such as tuna [65]. In the Arabian Gulf, many fish species
migrate from the northern areas off the UAE coastline toward the south off Abu Dhabi
emirate. This migration is correlated with predominant surface water currents in the
area [10] that are influenced by MLD, SSH, depth, and SST. Thus, the important limiting
variables contributing towards our model are consistent with our understanding of the
impact of these variables on large-scale circulation patterns, nutrient dynamics, and forage
fish distributions [10]. Thus, our model could form the basis for testing and validating
direct linkages between nutrient circulation, forage fish distribution, seabird distribution,
and these predictor variables.

4.3. Limitations and Unresolved Questions

Species distribution models have some methodological constraints, mainly for not in-
tegrating representative variables of the ecological interactions such as fishing exploitation
and human disturbance [4]. As a result, it is recommended for researchers and environ-
mental data providers (projects and services that provide bioclimatic and marine data)
to explore options on how to account for these impacts. It is important to recognize that
modeling marine species has significant challenges compared to terrestrial animals and
stationary plants, as the conditions of marine environments are dynamic [12]. Consequently,
data availability is affected, as there are fewer sources with calibrated, high-resolution,
and continuous temporal coverage available for marine researchers. Furthermore, SDMs
for seabirds face an unresolved question regarding the best spatiotemporal scale to use
for modeling. Several approaches have been suggested for seabird distribution modeling,
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and there is no preponderance for a certain approach over another. One approach collects
occurrences over several years and uses averaged environmental data [4]. Another similar
approach pools presence data and averages the predictor variables on seasonal basis [12].
There is also the annual approach, which models the seabird distribution separately for
each year [66]. Future studies could attempt to select the most suitable model using some
sort of information theoretic approach to avoid biases in the use of SDMs.

The statistical tools for distribution modeling have been available for a considerable
time now. Nevertheless, the present study is one of only a few studies that attempted to
assess the impacts of climate change on seabirds in the Arabian Peninsula. We urge marine
researchers and modelers to explore the region in depth and collect more data. There is also
a need for baseline studies on the movement patterns of forage fish in the Arabian Gulf,
as they are very limited and restricted to a few large, commercially important species.
Understanding the movement of small forage species will help scientists better understand
not only the Socotra Cormorant distribution but also other seabirds, larger fish species, and
marine mammals in the region [10]. It will also facilitate the conservation of the marine
grounds they depend upon.
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