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Abstract: A yellow, Gram-stain-negative, aerobic, non-spore-forming, motile, and rod-shaped bacte-
rial strain designated M6T was isolated from fully weathered granitic soil. The strain showing the
highest 16S rRNA gene sequence similarity to M6T was Sandaracinobacteroides hominis SZY PN-1T

(96.3%), the only species in the genus Sandaracinobacteroides. The average nucleotide identity and
digital DNA-DNA hybridization value between these two strains were 72.6% and 18.0% respectively.
Growth was inhibited by NaCl (≥0.1% (w/v)). Strain M6T contained C18:1ω7c (33.8%), C14:0 2-OH
(16.6%), summed feature 3 (15.8%), and C16:0 (12.6%) as the major fatty acids. The polar lipids
profile consisted of phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid,
four unidentified phospholipids, and four unidentified lipids. The genome of strain M6T was 3.4 Mb
with 67.7% GC content. Further genomic analysis revealed a biosynthetic gene cluster for zeaxanthin,
the production of which was verified by a high-resolution mass spectrum. The existence of multiple
genes for aromatic ring-hydroxylating dioxygenases implies the potential ability for organic pollution
controlling. The morphological, physiological, chemotaxonomic, and phylogenetic analysis clearly
distinguished this strain from its phylogenetic neighbors, thus strain M6T represents a novel species
of the genus Sandaracinobacteroides, for which the name Sandaracinobacteroides saxicola sp. nov. is
proposed. The type of strain is M6T (=CGMCC 1.19164T=NBRC 115420T).

Keywords: novel species; Sandaracinobacteroides saxicola; whole genome sequence; zeaxanthin;
aromatic ring-hydroxylating dioxygenase; biodegradation

1. Introduction

The genus Sandaracinobacteroides, a member of the family Sphingosinicellaceae, order
Sphingomonadales, and class Alphaproteobacteria was proposed in 2021 [1]. A similar genus
Sandaracinobacter with closely phylogenetic distance had been described in 1997 [2], and
subsequently amended in 2020 [3], however, this genus is not a validly published name
according to the List of Prokaryotic Names with Standing in Nomenclature (www.bacterio.
net (accessed on 19 July 2022)) [4].

At the time of writing, the genus Sandaracinobacteroides includes only one species, the
S. hominis SZY PN-1T originated from human skin [1]. The genus Sandaracinobacter contains
2 species, the S. sibiricus RB16-17 T and S. neustonicus PAMC 28131T. They originated from
freshwater and sea surface microlayers respectively [2,3]. All three species were Gram-stain-
negative, strictly aerobic, or facultatively anaerobic. Their colonies were yellow-orange or
yellow due to the presence of carotenoid pigments. Summed feature 8 (C18:1ω6c and/or
C18:1ω7c) and summed feature 3 (C16:1ω6c and/or C16:1ω7c) had been discovered as their
major cellular fatty acids. Phosphatidylglycerol and phosphatidylethanolamine were the
major known polar lipids.

The majority of bacteria in nature have not been cultivated in the laboratory yet [5].
They are likely to possess novel biosynthetic pathways and unknown biochemical charac-
teristics and therefore could provide potential applications in biotechnology, agriculture,
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and bioremediation [5]. Rock surfaces are challenging habitats for microbes due to the rapid
changes in the intensity of radiation, temperature, water supply, and nutrient availabil-
ity [6]. Aimed at investigating the unexplored bacterial lineages from the fully weathered
granitic rack, a soil sample was collected from a rocky mountain in South China. In this
study, we aimed to report the phenotypic, genetic, and chemotaxonomic features of the
strain M6T to characterize it as a novel species in the genus Sandaracinobacteroides, with
an emphasis on its ability to produce zeaxanthin, a coloring additive in the food industry
and an essential micronutrient for humans. In addition, the sequences of the six aromatic
ring-hydroxylating dioxygenases encoded by its genome were analyzed in detail in order
to evaluate its potential ability to degrade organic pollutants.

2. Materials and Methods
2.1. Isolation and Maintenance of the Organisms

In 2019, the strain M6T was isolated from a soil sample collected on a rocky mountain
in Changsha, Hunan province, South China (28.46◦ N, 113.18◦ E). For isolation, 5 g dried
soil was taken in 250 mL Erlenmeyer flasks containing 45 mL of sterile 0.25% Ringer’s
solution (2.25 g NaCl, 0.105 g KCl, 0.045 g CaCl2, 0.05 g NaHCO3 L−1) and agitated on a
rotary shaker at 30 ◦C for 30 min. Subsequently, the suspension was serially diluted up to
10−5 times. An aliquot of 0.2 mL of each of these dilutions was spread SSE/HD agar [7].
After six days of aerobic incubation at 30 ◦C, one yellow colony was transferred, purified,
and designated as M6T. The isolates were sub-cultivated routinely on R2A (Reasoner’s
2A) agar or modified RO (rich organic) medium (1 g yeast extract, 1 g Bacto peptone, 1 g
sodium acetate, 0.3 g KCl, 0.5 g MgSO4·7H2O, 0.05 g CaCl2·2H2O, 0.3 g NH4Cl, 0.3 g
K2HPO4, 20 µg vitamin B12, 15 g Bacto agar L−1) [8,9], and preserved in a glycerol solution
(20%, v/v) at −80 ◦C. When compared with the sequences in the NCBI and EzBioCloud
database, nearly half of the strains isolated from this soil sample showed the highest 16S
rRNA gene sequence similarity below 98.7%, the threshold proposed for differentiating
two species [10]. At that time, the M6T strain showed the highest similarity to the available
sequence of Sandaracinobacter sibiricus (Table S1) and its sequenced genome was related
to this genus (NCBI Reference Sequence: NZ_CP059851.1). In this study, we compared
the M6T strain with reference type strain S. neustonicus PAMCS 28131T and the recently
described Sandaracinobacteroides hominis SZY PN-1T, purchased from the Japan collection
of microorganisms and the Japanese national biologic resource center respectively, while
S. sibiricus RB16-17 T was unavailable from any public culture collections [11].

2.2. Phenotypic and Biochemical Characteristics

Cell size and morphology of strain M6T grown in R2A for five days at 30 ◦C were
studied by Hitachi SU8010 cold field scanning electron microscopy. The Gram reaction was
determined by the standard Gram staining method. The motility of cells was performed by
observing the growth spread of cells in test tubes containing semi-solid modified RO agar
(0.3% w/v). Growth on modified RO and R2A agar at different temperatures (4, 10, 15, 20,
25, 30, 37, 42 ◦C) was observed. The pH range (pH 5.0–10.0 at intervals of 0.5 pH unit) for
growth and tolerance to different NaCl concentration (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 3.0
and 5.0%, w/v) was assessed by using R2A and modified RO medium after incubation for
one week. The pH of the media was adjusted with 10 mM MES (pH 5.0–6.0), 10 mM Tris
(pH 7.0–9.0) or sodium carbonate/sodium bicarbonate (pH 10.0). Tests for hydrolysis of
casein, starch, chitin, and Tweens (40, 60, 80) were performed using the methods described
previously [12]. Catalase activity was examined by bubble production after application of
3% (v/v) H2O2 solution to the isolated colony and oxidase activity was accessed by using
1% (v/v) N, N, N′, N′,-tetramethyl-1, 4-phenylenediamine reagent [13]. Other physiological,
biochemical, and enzymatic activities were conducted by using API 20NE, API ID32, API
ZYM, and API 50CH test kit (bioMérieux) according to the manufacturer’s instructions.
Cells grown on the modified RO agar plates at 30 ◦C for three days were employed for
API tests.
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For determining the presence of bacteriochlorophyll a and carotenoid pigment, cells
were harvested and extracted with an acetone-methanol mixture. The supernatant was
detected for absorbance at different wavelengths on a spectrophotometer (Pgeneral, T6) [11].
High-resolution mass spectrometry (HRMS) was carried out on an Agilent 6545 Quadrupole
Time of Flight (Q-TOF) high-resolution mass spectrometer equipped with a reverse phase
C18 column (Agilent, Eclipse Plus, 1.8 µm 50 × 2.1 mm), running in positive ionization
mode with a resolution of 30,000. The flow rate was set at 0.3 mL/min with a mobile
phase of H2O/ACN each containing 0.1% of formic acid. The ACN percentage gradually
increased from 5% to 95% in 12 min. The injection volume was 2 µL. Voges-Proskauer
(VP) reaction was tested as previously described [12] with Escherichia coli and Enterobacter
aerogenes as negative and positive control respectively. H2S production assay was performed
using triple sugar iron agar.

2.3. Chemotaxonomic Analysis

The polar lipids were analyzed using freeze-dried cells as described by Minnikin
et al., 1984 [14]. Fatty acid methyl esters were prepared according to the standard MIDI
protocol (Sherlock Microbial Identification System, version 6.0B) and identified by using
the MIDI with the TSBA database version 6.1. Isoprenoid quinones were analyzed by using
reversed-phase HPLC as described by Shin, et al. 1996 [15].

2.4. The 16S rRNA Gene Sequencing and Phylogenetic Analysis

The 16S rRNA gene of strain M6T was amplified by PCR using forward primer 27F
and reverse primer 1492R [16] and sequenced with an Applied Biosystem 3730XL DNA
analyzer. The closest phylogenetic neighbors of this sequence were identified by using
BLASTN search program at the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 19 July 2022)) and the EZBioCloud server [17]. The 16S rRNA gene sequence
of the strain M6T was subjected to multiple alignments with the sequences of the closely
related bacteria by using CLUSTAL Ω [18]. Gaps at the 5′ and 3′ ends were deleted using
the software package BioEdit. Phylogenetic trees were reconstructed by using three differ-
ent methods, the neighbor-joining method [19], the maximum-likelihood algorithm [20],
and the minimum-evolution method [21] with the MEGA7 program [22]. During the phy-
logenetic analysis, evolutionary distances were calculated using Kimura’s two-parameter
model [23], and bootstrap values were calculated based on 1000 replications [24].

2.5. Complete Genome Sequencing and Phylogenomic Analysis

Genomic DNA was extracted by a standard phenol-chloroform method and further
purified by AMPure XP beads (Beckman Coulter, Brea, CA, USA) and then quantified
and quality controlled using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA), NanoDrop software and agarose gel electrophoreses [25]. High-molecular-
weight DNA was isolated using a BluePinppin system (Sage Science, Beverly, MA, USA).
Approximately 1.5 µg of genomic DNA was used for library construction using a one-
dimensional (1D) ligation sequencing kit (SQK-LSK109 kit; Oxford Nanopore, Oxford, UK).
No size selection or shearing was applied. The library was loaded into an R9.4 flow cell
for the PromethION platform (PromethION flow cells, FLO-PRO002; Oxford Nanopore).
Nanopore quality control was achieved with a threshold value (Q) of 7. Illumina sequencing
was performed on the NovaSeq PE150 instrument at the Wuhan Benagen Co. Ltd. (Wuhan,
China) Low-quality bases (quality value, ≤30, account for only 9.0%), and were removed.
De novo assembly in combination with the Illumina short reads and ONT long reads was
conducted using SPAdes 3.10.0, Unicycler 0.4.8., Racon, Miniasm and Pilon1.22.

Digital DNA-DNA hybridization (dDDH) values were determined by using the
genome-to-genome distance calculator (GGDC 2.1) at http://ggdc.dsmz.de (accessed
on 2 July 2022) [26]. The average nucleotide identity (ANI) was calculated using Or-
thoANI with default parameters on the website [27]. For phylogenetic analysis of core
proteome, the extraction of the core proteome from the genomic sequence was automati-

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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cally executed based on the M1CR0B1AL1Z3R pipeline (https://github.com/orenavram/
microbializer (accessed on 2 July 2022)) with the default parameters as described by [28].
A phylogenomic tree based on a bacterial core gene set was reconstructed with the
genome sequences of the isolate and its closely related species, using an automated
multi-locus species tree (autoMLST) pipeline (https://automlst.ziemertlab.com/ (accessed
on 7 July 2022)) [29]. Conserved proteins shared between strain pairs were estimated
based on the percentage of conserved proteins (POCP), which were calculated as the al-
gorithm [(C1 + C2)/(T1 + T2)] × 100% [30]. The average amino acid identity (AAI) was
obtained from the website http://enve-omics.ce.gatech.edu/aai/ (accessed on 5 September
2022) [31].

3. Results and Discussion
3.1. Phylogenetic Placement and Phylogenomics

An almost complete 16S rRNA gene sequence of strain M6T (1407 nucleotides) was
deposited in GeneBank under accession number ON876070. Sequence analysis by BLASTN
and on the EzBioCloud database revealed the highest similarity of 96.3% to S. hominis
SZY PN-1T, followed by S. sibiricus RB16-17T and S. neustonicus PAMC 28131T with a
similarity of 95.5% and 95.1%, respectively, all below the proposed threshold 98.7% for
differentiating two species [10] but above the minimum identity value that guarantees the
circumscription of a single genus [32]. Other closely related genera were Sphingomonas
(≤94.6%), Sandarakinorhabdus (≤93.8), and Polymorphobacter (≤93.8%). The phylogenetic
analyses based on 16S rRNA gene sequences demonstrated that strain M6T formed a
distinct lineage in a stable clade with the two Sandaracinobacter species and the S. hominis
in the maximum-likelihood phylogenetic tree (Figure 1), and this relationship was also
supported by the neighbor-joining and minimum-evolution trees (Figures S1 and S2).

To further prove that strain M6T should be placed in the genus Sandaracinobacteroides
other than establishing a new genus, we calculated the POCP (percentage of conserved
proteins) and AAI values between M6T and its phylogenetic relatives. As summarized in
Table 1, they were all above the established cut-off values for genus delineation of 50% and
60% respectively [30,31].

In order to establish a more specific taxonomic position at the species level, genome
comparison was performed between M6T and its phylogenetic relatives first using ANI
(Average Nucleotide Identity) and dDDH (digital DNA-DNA Hybridization) value calcula-
tion (Table 1). The levels of dDDH between M6T and its phylogenetic relatives were far
below the threshold value of 70% for assigning strains to the same genomic species. The
ANI values were also under the proposed cut-off ANI values of 95–96% for demarcating
bacterial species [33]. Moreover, maximum-likelihood phylogenetic trees based on either
the core proteome or the 80 core genes from the autoMLST analysis both revealed a separate
lineage for strain M6T (Figures 2 and S3). These consistent results indicated that strain M6T

represented a new member of the genus Sandaracinobacteroides.

Table 1. The 16S rRNA gene similarity, POCP, AAI, ANI, and dDDH values between M6T and its
closely related strains available with genome sequence.

Strains Pair 16S% Identity POCP Value AAI dDDH ANI

M6T vs. Sandaracinobacteroides hominis 96.3% 80.7% 62.1% 18.0% 72.6%
M6T vs. Sandaracinobacter neustonicus 95.1% 79.2% 62.4% 18.4% 72.9%

S. hominis vs. S. neustonicus 96.6% 88.2% 74.2% 21.1% 77.2%

https://github.com/orenavram/microbializer
https://github.com/orenavram/microbializer
https://automlst.ziemertlab.com/
http://enve-omics.ce.gatech.edu/aai/
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In spite that Sandaracinobacteroides hominis SZY PN-1T and Sandaracinobacter neustonics
PAMC 28131T were placed in two genera, the values based on genome and proteome
comparison between these two strains (Table 1) were actually above the threshold limits
for delineation of the bacterial genus.

Venn diagram generated from the genome comparative studies of S. saxicola M6T,
S. hominis SZY PN-1T, and S. neustonicus PAMC 28131T using the OrthoVenn2 tool further
demonstrated that the three species form a total of 2718 clusters, of which 1071 orthologous
clusters (at least contains two species) and 1647 are single-copy gene clusters. The S. saxicola
M6T contains 50 unique clusters, some of which are involved in cellular aromatic compound
or heterocycle metabolic process (Figure 3). Overall genome sequence identity between
these three strains is shown in Figure 4.
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3.2. Morphology and Metabolic Profile

Cells of M6T were Gram-negative, aerobic, long rod-shaped, with a size of 0.5–0.6 ×
1.1–1.3 µm (Figure 5). Colonies grew in a circular, convex, opaque manner with detectable
yellow pigmentation on the modified RO and R2A agar plates. Growth was observed at
temperatures of 15–37 ◦C and pH 6.0–9.0, with optimal growth at 30 ◦C and pH 6.0–8.5.
Strain M6 T was sensitive to NaCl, growth was inhibited by NaCl (≥0.1% (w/v)). Unlike
the Sphingomonas oligophenolica JCM 12082T, a halo-sensitive soil bacterium with a 16S
rDNA sequence similarity of 94.6% to M6T, this inhibition could not be recovered by 6 mM
CaCl2 [35].
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Figure 3. Venn diagram and the bar plots generated by Orthovenn2 represent the distribution of
shared and unique gene clusters amongst S. saxicola M6T, S. hominis SZY PN-1T, and S. neustonicus
PAMC 28131T. (a) The Venn diagram represents the distribution of core ortholog clusters, shared
clusters, and unique clusters in all three species. (b) The bar plot represents the cumulative ortholog
clusters found in each species. (c) The bar plot illustrates the cumulative core, shared, and unique
clusters in all the three species, where label 1 on the horizontal scale shows the cumulative number of
unique clusters (127) for all the three species, while label 2 shows the total number of clusters shared
by two species (897) and so on.
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Though the two Sandaracinobacter species S. sibiricus RB16-17T and S. neustonicus PAMC
28131T were listed as invalid names, we still included them together with Sandaracinobac-
teroides hominis SZY PN-1T as reference strains for a comprehensive phenotypic, genomic
and chemotaxonomic properties comparison. Moreover, our data based on phylogenomics
analysis also implied that Sandaracinobacter neustonics PAMC 28131T and Sandaracinobac-
teroides hominis SZY PN-1T should be placed in a single genus. In contrast to S. sibiricus
RB16-17T, strain M6T, S. hominis SZY PN-1T, and S. neustonicus PAMC 28131T all did not
contain the bacteriochlorophyll a, a main feature of the genus Sandaracinobacter [11]. A
major carotenoid peak of 424 nm was also not detected in these three strains (Figure S4).
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According to the API tests and other biochemical assays, both strains M6T and
S. hominis SZY PN-1T were positive for catalase and trypsin, and hydrolyzed starch and aes-
culin. Unlike S. hominis SZY PN-1T, strain M6T was negative for α-chymotrypsin, esterase
(C4), and esterase lipase (C8), and consequently does not hydrolyze Tweens (40, 60, and
80), however, it was positive for valine arylamidase, cystine arylamidase, α-galactosidase,
β-Galactosidase (Table 2). In short, the strain M6T maintained commonality within this
genus in many respects, while also preserving many unique characteristics that could
differentiate it from the related strains.

Table 2. Phenotypic characteristics distinguishing strains M6T from other species of the genus
Sandaracinobacteroides and Sandaracinobacter.

Characteristics 1 2 3 4

Oxygen requirement Aerobic Obligately aerobic Facultatively anaerobic Strictly aerobic

Growth at/with:
NaCl (%, w/v) 0 0–1.0 0.5–1.0 0–1.0
Temperature

(optimum) (◦C) 15–37 (30) 10–37 (30) 4–37 (30) (25–30)

pH range (optimum) 6.0–9.0 (6.0–8.5) 6.0–8.0 (7.0) 6.0–8.0 (6.5–7.0) (7.5–8.5)

Motility + − − +
Bacteriochlorophyll a − − − +

Major carotenoid peaks (nm) 450, 474 452, 478 450, 474 424, 450, 474
Catalase activity + + + −
Oxidase activity − − + +

Hydrolysis of:
Starch + + + −

Tweens (80) − − + ND

Quinone(s) Q-9, Q-10 Q-10, Q-11 Q-10 Q-9, Q-10
DNA G+C content (mol %) 67.7% 65.0% 65.3% 68.5% *

Enzyme activities:
Esterase lipase (C8) − weakly − ND

Esterase (C4) − + − ND
Valine arylamidase + − ND ND

Cystine arylamidase + − ND ND
α-chymotrypsin − weakly + ND
α-Galactosidase + − − ND
β-Galactosidase + − + ND

Acid production from:
Aesculin + + − ND

D-Maltose − − + ND
Potassium 5-ketogluconate − − + ND

Main polar lipids PG, PE, PL1–4, GL,
L1-4

DPG, PE, PG,
SGL1-2, GL1-4, L1-7

PG, PE, PL1–2, AL, GL,
L ND

Strains: 1, M6T (this study); 2, Sandaracinobacteroides hominis SZY PN-1T (data from Qu et al. [1]); 3, S. neustonicus
PAMC 28131T (this study); 4, S. sibiricus RB16-17T (data from Yurkov et al. [2,11]). +, Positive; −, Negative. ND,
could not be detected because the strain was unavailable from any public culture collection center. * Thermal
denaturation method [2].

3.3. Chemotaxonomic Characteristics

Cellular fatty acids profiles of M6T, Sandaracinobacteroides hominis SZY PN-1T, and
S. neustonicus PAMC 28131T are depicted in Table S2. The predominant fatty acids (relative
account > 10%) of the novel isolate were C18:1ω7c, summed feature 3, C14:0 2-OH, and C16:0,
whereas both Sandaracinobacteroides hominis SZY PN-1T and S. neustonicus PAMC 28131T

contained summed feature 3, 8 and C17:1ω6c as the major fatty acids.
In consistent with S. hominis SZY PN-1T and S. neustonicus PAMC 28131T, phos-

phatidylglycerol (PG) and phosphatidylethanolamine (PE) have been determined as the
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predominant polar lipids of strain M6T. In comparing with S. hominis SZY PN-1T, which
additionally included one diphosphatidylglycerol (DPG), two sphingoglycolipids (SGL),
four unidentified glycolipids (GL), and seven unidentified lipids (L) as the major polar
lipids, strain M6T contained four unidentified phospholipids (PL), four unidentified lipids
(L) and an unidentified glycolipid (GL) (Figure S5).

3.4. The Biosynthesis of Zeaxanthin

The assembled genome sequence of strain M6T had a length of 3,364,212 bp and a
GC content of 67.7% (Figure S6). Genome annotation by the NCBI Prokaryotic Genome
Annotation Pipeline 4.12 (PGAP) predicted a total of 3375 genes with 3298 coding sequences
and 49 RNA genes (three rRNAs, 43 tRNAs, and three noncoding RNAs).

AntiSMASH [36] analysis of the genome detected a gene cluster for zeaxanthin biosyn-
thesis. This gene cluster contains three genes located adjacent to each other. They encoded
the phytoene synthase (RS11760), phytoene desaturase (RS11765), lycopene beta-cyclase
(RS11770) respectively. The gene for beta-carotene hydroxylase (RS12330), the enzyme
responsible for the last step in zeaxanthin biosynthesis was found upstream of the gene
cluster (Figure 6a,b). The presence of zeaxanthin was subsequently confirmed by HRMS
(high-resolution mass spectrum), in which a protonated molecular ion at m/z 568.4260
[M+H]+ (calcd. for C40H56O2, 568.4280, 3.5 ppm) was observed (Figure 6c).
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3.5. Multiple Copies of Aromatic Ring-Hydroxylating Dioxygenases

According to the PGAP annotation, the genome of M6 also contained six genes en-
coding aromatic ring-hydroxylating dioxygenases (ARHD), the enzyme involved in the
first and rate-limiting step of aerobic biodegradation of aromatic compounds [37]. Multiple
sequence alignment demonstrated they all had a conserved Rieske [2Fe–2S] center and
a C-terminal catalytic domain (Figure 7). Further analysis of Pfam indicated that these
enzymes are homotrimers and are distantly related to the typical oxygenase [38].
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Subsequently, ClassicRAST-based functional gene subsystem clustering analysis re-
vealed 19 ORFs involved in the metabolism of aromatic compounds (Figure S7) [40].
Considering that the Sphingomonas oligophenolica JCM 12082T, a strain with a 16S rDNA
sequence similarity of 94.6% to M6T, was reported to degrade phenolic acids at low con-
centrations [35], and it has only 10 ORFs classified into the class for the metabolism of
aromatic compounds, we speculate that the strain M6T might be able to degrade some
unusual aromatic compounds.

3.6. Description of Sandaracinobacteroides saxicola sp. nov.

sa.xi’co.la, L. neut. n. saxum rock, L. masc./fem. Suffix n. -cola inhabitant, N.L.
masc./fem. n. (nominative in apposition) saxicola rock dweller.

Cells are Gram-negative, motile, and long rod-shaped with a width of 0.5–0.6 µm
and a length of 1.1–1.3 µm. The colonies are round convex, opaque, and in yellow color.
Growth is observed on R2A agar at 15–37 ◦C (optimum, 30 ◦C), and at pH 6.0–9.0 (op-
timum 6.0–8.5). Growth occurs in the absence of NaCl. Negative for VP reaction, H2S
production, and oxidase activities. Positive for catalase activities. Xanthine, hypoxanthine
and Tweens (40, 60 and 80) are not hydrolyzed, but casein and starch are hydrolyzed.
According to the API ZYM test, strain M6T is positive for alkaline phosphatase, trypsin,
acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase and α-glucosidase,
β-glucosidase, leucine arylamidase, β-galactosidase, N-acetyl-β-glucosaminidase, valine
arylamidase, cystine arylamidase, α-fucosidase, but negative for esterase (C4), esterase li-
pase (C8), lipase (C14), α-chymotrypsin, β-glucuronidase. In API 20NE test strips, this novel
isolated was positive for aesculin hydrolysis and β-galactosidase, but negative for nitrate
reduction to nitrite, nitrite reduction, urease, indole production, acidification of glucose,
arginine dihydrolase, and gelatin hydrolysis. In the API 50CH test, acid was produced from
aesculin, 5-ketogluconate, sucrose and maltose, DL-arabinose, starch, melezitose, but not
from 2-ketogluconate, N-acetylglucosamine, D-adonitol, amygdalin, DL-arabitol, arbutin,
cellobiose, dulcitol, erythritol, D-fructose, DL-fucose, D-galactose, gentiobiose, D-glucose,
glycerol, glycogen, inositol, inulin, lactose, D-lyxose, D-mannitol, D-mannose, melibiose,
methyl α-D-glucopyranoside, methyl α-D-mannopyranoside, methyl β-D-xylopyranoside,
potassiumgluconate, raffinose, L-rhamnose, D-ribose, salicin, D-sorbitol, L-sorbose, D-
tagatose, trehalose, turanose, xylitol or DL-xylose. Cell could assimilate sucrose, maltose,
L-alanine, L-serine, glycogen, D-glucose, 3-hydroxybutyrate, L-proline, but not assimilate
adipate, 3-hydroxybenzoate, acetate, N-acetylglucosamine, L-arabinose, citrate, L-fucose,
caprate, L-histidine, inositol, itaconate, 2-ketogluconate, 5-ketogluconate, lactate, mal-
onate, D-mannitol, D-melibiose, phenylacetate, propionate, L-rhamnose, D-ribose, salicin,
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D-sorbitol, suberate, gluconate, D-mannose, 4-hydroxybenzoate, malate or valerate (ac-
cording to API 20NE and API ID 32GN test strips).

Sandaracinobacteroides saxicola sp. nov. was deposited in the China General Microbi-
ological Culture Collection Center (CGMCC 1.19164) and the NITE Biological Resource
Center (NBRC 115420) in Japan.

4. Conclusions

The 16S rRNA gene sequence similarity, POCP, and AAI values between strain M6T

and type strains in genus Sandaracinobacteroides, were all below the prescribed thresh-
old for differentiating two species but above the established cut-off values for genus
delineation [26,33]. Phylogenetic analysis based on 16S rRNA gene sequence and core
proteome showed that strain M6T was close to species in genera Sandaracinobacteroides
and Sandaracinobacter but had obvious genetic distance. Furthermore, the discrepancies
in the physiological, biochemical, and chemotaxonomic characteristics also could clearly
differentiate M6T, and from the closely related species. In conclusion, we suggest that strain
M6T represents a novel species of the genus Sandaracinobacteroides, for which the name
Sandaracinobacteroides saxicola sp. nov. is proposed.

In addition, we testified that zeaxanthin was one of the carotenoid pigments produced
by M6T. In view of its application in the food and pharmaceutical industry, strain M6T

could be an attractive candidate for the production of zeaxanthin. Moreover, according to
the ARHD sequence analysis, strain M6T could also be used in controlling organic pollution
when applied alone or in combination with other strains.
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and S. neustonicus PAMC 28131T. Figure S1: Neighbor-Joining tree based on the 16S rRNA gene
sequences of strain M6T and representatives of related taxa. Figure S2: Minimum-evolution tree
based on the 16S rRNA gene sequences of strain M6T and representatives of related taxa. Figure S3:
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