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Abstract: Eisenia nordenskioldi is the dominant earthworm species in many tundra and boreal habitats.
Nothing is known about the genetic diversity of this species along the elevation gradient in China.
This study sampled 28 individuals in the E. nordenskioldi complex from Wuling Mountain, northern
China, to examine their external morphology and genetic diversity. Mt. Wuling is the southern
limit of the distribution of the E. nordenskioldi complex. The specimens from Mt. Wuling were
classified into three groups along an elevation gradient. Mismatch distribution analysis suggested
that the Pleistocene glaciations possibly did not significantly affect the distribution of earthworm
species in this region. We also found that elevation affected the genetic diversity, but not the external
morphology of E. nordenskioldi. Given the altitudinal genetic diversity within the E. nordenskioldi
complex, the phylogeography of this species provides important information for the zoogeographic
reconstruction of the mountains in northern China. With the relatively limited sample size, the result
is not conclusive, and further studies need to be conducted in the future to verify the results.

Keywords: COI barcoding; Eisenia nordenskioldi; elevation gradient; Wuling Mountain

1. Introduction

The vertical zonation of mountain climates results in the formation of diverse, unique
habitats for animals, plants, and microorganisms, giving rise to vertical differences in the
biome along altitude gradients [1]. Xu et al. [2] showed that altitude did not affect the
overall abundance of epigeic soil animals on Mt. Dongling but did affect the distribution
of various functional feeding groups of animals at different altitudes. Few studies have
examined earthworm diversity along an altitude gradient [3]. One suggested that the
difference in earthworm species richness along an elevation gradient in the mountains of
northeastern Puerto Rico was due to a combination of biotic and soil physical and chemical
factors [4]. No study has examined the intra or inter-specific genetic diversity of Eisenia
along an elevation gradient in northern China.

In northern China, Mt. Wuling is the main peak in the Yanshan Mountains, which
have a typical warm-temperate, semi-humid, continental monsoon climate. It is a nature
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reserve with a total area of 143 km2 and forest coverage of 76.2%. The vegetation and soil
types vary along the elevation gradient [5].

Eisenia nordenskioldi, an earthworm species that is widespread in Northern Asia and ad-
jacent regions, is known for its high morphological, karyotypic, and genetic variation [6,7].
The diagnostic features of this species include having purple dorsally and faint yellow
ventrally; the body has no stripes; the intersegmental furrows in adult individuals are faint
yellow; the clitellum is faint yellow, saddle-shaped in xxvii–xxxii; the spermathecal pores
are paired in 9/10 and 10/11 ventrally; setae lumbricine, ab > bc, aa > bc; the spermathecae
are tiny and ball-shaped; the gizzard is located in xvii–xviii. The Eisenia nordenskioldi
complex contains two subspecies, the pigmented E. n. nordenskioldi and the unpigmented
E. n. pallida [6,7]. Several genetic diversity and phylogeographic studies on E. nordenskioldi
have been conducted previously [7–14]. In this study, we analyzed the genetic diversity of
the E. nordenskioldi complex from Mt. Wuling along its elevation gradient and discussed
its phylogeography.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

E. nordenskioldi is a common species widely distributed in tundra and boreal habitats
in northeast Asia [6]. Nature reserves were selected with high, medium, and low latitudes
in North China in order to discuss the genetic differentiation of this species at different
altitudes. A total of 28 specimens of the E. nordenskioldi complex were collected by hand
sorting in litter from four elevations in natural forest habitats on Mt. Wuling: 1000–1200,
1200–1400, 1400–1700, and 1700+ m (Table 1, Figure 1). Total DNA was extracted from
the tail muscle of individuals fixed in 95% ethanol using a DNA extraction kit (Sangon,
Shanghai, China) according to the manufacturer’s instructions. Total genomic DNA was
extracted using the Invitrogen Genomic DNA extraction kit according to the manufacturer’s
protocol. A COI gene fragment was amplified by PCR using primers LCO1490 (5′ GGT
CAA CAA ATC ATA AAG ATA TT 3′) and HCO2198 (5′ TAA ACT TCA GGG TGA CCA
AAA AA 3′), as described by [15]. The PCR products were sequenced directly using the
Big Dye Terminator v3.1 Cycle Sequencing kit using these primers. Pairwise (p) distances
were calculated using MEGA X [16]. Other samples of E. nordenskioldi were collected from
nature reserves in northeast China (DQH, BS, SH, and LTDZ). The specimens from Russia
were not collected, COI sequences from Russian earthworms were retrieved from GenBank
(accession no. KU708313-708411 [9]), and those sequences of earthworms from Mongolia
were taken from Blakemore [17]. The specimens collected from forests in northern China
are stored in 95% ethanol in the Hebei Key Laboratory of Animal Diversity, Langfang
Normal University, China. The net weight of the earthworm individuals was measured
after ethanol fixing for two weeks.

Table 1. Collected locations of Eisenia nordenskioldi complex in North China.

Location Code No. Specimens N. Latitude E. Longitude Elevation m Habitat

Mt. Wuling Nature Reserve in Xinglong, Hebei L-1 11 40.5634 117.4873 1116 Litter in mixed-forest
Mt. Wuling Nature Reserve in Xinglong, Hebei L-2 8 40.5609 117.4777 1310 Litter in mixed-forest
Mt. Wuling Nature Reserve in Xinglong, Hebei M3 7 40.5694 117.4743 1478 Litter in coniferous
Mt. Wuling Nature Reserve in Xinglong, Hebei H4 2 40.5878 117.4795 1740 Litter in coniferous

Danqinghe Nature Reserve in Heilongjiang DQH 7 46◦37′ 129◦22′ 482 Litter in mixed-forest
Baoshan Nature Reserve in Heilongjiang BS 5 48◦57′ 128◦52′ 405 Litter in mixed-forest

Shuanghe Nature Reserve in Heilongjiang SH 9 52◦59′ 125◦22′ 354 Litter in mixed-forest
Laotudingzi Nature Reserve in Heilongjiang LTDZ 2 41◦19′ 124◦54′ 906 Litter in mixed-forest
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Figure 1. Geographic distribution of E. nordenskioldi from Mt. Wuling and northeast China. (A) is 
the location mark of northeast China. As shown in the legend, different groups are represented by 
different colors, the number of samples at the collection point is represented by the size of the dot, 
and the different color areas of the dot represent the proportion of different groups in the sampling 
point. The location of Wuling Mountain is indicated by a red five-pointed star. (B) is an enlarged 
view of the sampling point of Wuling Mountain, and the altitude has been marked. (C) represents 
the geographic distribution of E. nordenskioldi from Mt. Wuling and northeast China, the position of 
the dot and the sampling position (see Table 1 for coordinates). 

2.2. Sequence Analysis 
COI DNA diversity statistics, including nucleotide and haplotype diversities, Taji-

ma’s D neutrality test statistics, nucleotide mismatch distribution, gene flow, and genetic 
differentiation analysis results, were calculated using DnaSP 5.0 (Barcelona, Spain) [18]. 
Bayesian analysis was performed using MrBayes v3.2.6 
(http://nbisweden.github.io/MrBayes/index.html). Two simultaneous independent anal-
yses were run from different random starting trees using four chains of metropo-
lis-coupled Monte Carlo simulations for 50,000,000 generations, sampling a tree every 
1000 generations. MrModetest suggested a model based on hierarchical likelihood ratio 
tests for COI sequences. The combined COI dataset was analyzed in MrBayes using a 
gamma shape parameter of 0.007692. For the COI tree, the sequences of Eisenoides caro-
linensis (Michaelsen, 1903) (FJ214226), Eisenia zebra (Michaelsen, 1903) (FJ214229), and 
Eisenia andrei (Bouché, 1972) (AY874508) were used as an outgroup. Haplotype networks 
were reconstructed using TCS v1.21 [19]. Haplotype and nucleotide diversities were 
calculated using MEGA (https://www.megasoftware.net). MrModeltest indicated the 
best model as GTR+I+G [20]. 

  

Figure 1. Geographic distribution of E. nordenskioldi from Mt. Wuling and northeast China. (A) is
the location mark of northeast China. As shown in the legend, different groups are represented by
different colors, the number of samples at the collection point is represented by the size of the dot,
and the different color areas of the dot represent the proportion of different groups in the sampling
point. The location of Wuling Mountain is indicated by a red five-pointed star. (B) is an enlarged
view of the sampling point of Wuling Mountain, and the altitude has been marked. (C) represents
the geographic distribution of E. nordenskioldi from Mt. Wuling and northeast China, the position of
the dot and the sampling position (see Table 1 for coordinates).

2.2. Sequence Analysis

COI DNA diversity statistics, including nucleotide and haplotype diversities, Tajima’s
D neutrality test statistics, nucleotide mismatch distribution, gene flow, and genetic differ-
entiation analysis results, were calculated using DnaSP 5.0 (Barcelona, Spain) [18]. Bayesian
analysis was performed using MrBayes v3.2.6 (http://nbisweden.github.io/MrBayes/
index.html). Two simultaneous independent analyses were run from different random start-
ing trees using four chains of metropolis-coupled Monte Carlo simulations for 50,000,000
generations, sampling a tree every 1000 generations. MrModetest suggested a model based
on hierarchical likelihood ratio tests for COI sequences. The combined COI dataset was
analyzed in MrBayes using a gamma shape parameter of 0.007692. For the COI tree, the
sequences of Eisenoides carolinensis (Michaelsen, 1903) (FJ214226), Eisenia zebra (Michaelsen,
1903) (FJ214229), and Eisenia andrei (Bouché, 1972) (AY874508) were used as an outgroup.
Haplotype networks were reconstructed using TCS v1.21 [19]. Haplotype and nucleotide
diversities were calculated using MEGA (https://www.megasoftware.net). MrModeltest
indicated the best model as GTR+I+G [20].

http://nbisweden.github.io/MrBayes/index.html
http://nbisweden.github.io/MrBayes/index.html
https://www.megasoftware.net
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3. Results
3.1. Distribution of the E. nordenskioldi Complex along an Elevation Gradient

Group 1 (G1) was widely distributed not only in Mt. Wuling but also in north-
east China. Group 2 (G2) was found only at low and mid-elevations on Mt Wuling.
Groups 3 and 4 existed only in northeast China. Group 5 (G5) was distributed only at
low elevation on Mt. Wuling. Some low-elevation locations from Mt. Wuling had their
own set of haplotypes; these are described as cold intolerant with a narrow distribution
(Figures 1 and 2). The topological relationships of the Mt. Wuling clusters were classified
into three groups (G1, G2, and G5) along an elevation gradient: G1 could be described as
cold tolerant as it is widely distributed in many zones (Mt. Wuling and northeast China)
with very low temperature; G2 was adapted to either cold or warm habitats on Mt. Wuling,
and gene flow was more frequent within this group; G5 existed only in a narrow low-
altitude zone (Figures 1 and 2). Gene flow estimated from the sequence data had values
of DeltaSt = 0.05159, GammaSt = 0.08542, and Nm = 0.68. A haplotype network (Figure 3)
was constructed using the 635-bp COI fragment of 128 individuals from different locations
not only in Mt. Wuling but also in other adjacent regions (northeast China, Mongolia,
and far east Russia). This indicated that the E. nordenskioldi complex in northern China
comprises at least five exclusive groups, in accordance with the BI tree.
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al., 2016); Different branch color indicates a different post-inspection probability; Different label 
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Figure 2. Bayesian Inference phylogenetic tree constructed using COI nucleotide sequences. E.n.p
(Eisenia nordenskioldi pallida) L1, L2, L3, L4, and L5 are lineages of Russian Groups (Shekhovtsov et al.,
2016); Different branch color indicates a different post-inspection probability; Different label color
indicates a different locations unit (OTU); Different background color indicates different altitudes of
Mt. Wuling.
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Figure 3. Haplotype networks for E. nordenskioldi. Geographic information of DQH, BS, SH, LTDZ, L1,
L2, M3, and H4 are shown in Table 1; Circle sizes are proportional to the number of individuals having
this haplotype; COI sequences of Russian and Mongolian Groups were retrieved from Genbank.

3.2. External Morphological Data of E. nordenskioldi Complex from Mt. Wuling

Morphological data (body length, width, and net weight) were obtained for 28 individ-
uals from the E. nordenskioldi complex. The respective body length, width, and net weight
of the individuals were as follows: 32.99 ± 12.79 mm, 3.85 ± 0.73 mm, and 0.21 ± 0.13 g for
Cluster L-1 (low altitude); 41.19 ± 10.53 mm, 4.21 ± 0.68 mm, and 0.36 ± 0.16 g for Cluster
L-2 (low altitude); 43.43 ± 17.24 mm, 3.94 ± 1.39 mm, and 0.28 ± 0.22 g for Cluster M3
(intermediate altitude); and 46.5 ± 2.26 mm, 4.65 ± 0.64 mm, and 0.46 ± 0.09 g for Cluster
H4 (high altitude) (Figure 4).
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Figure 4. Morphological data of E. nordenskioldi at an elevation gradient from Mt. Wuling.

3.3. Genetic Diversity and Differentiation of the Mt. Wuling E. nordenskioldi Complex

COI sequences were determined for 28 E. nordenskioldi specimens from Mt Wuling. The
complete alignment included 635 sites (i.e., no length polymorphism was detected). There
were 432 conserved sites and 203 variable sites, of which 182 were parsimony informative,
and 21 were singleton sites. The overall average p distance was 0.174. The p distance was
highest between L1 and H4 (0.208) and lowest between M3 and H4 (0.072). The p distance
was highest within L1 (0.174). The genetic p distance was high both within and among
the four elevation groups on Mt. Wuling. Figures 5 and 6 compare basic genetic diversity
parameters among the four elevation groups, including the numbers of segregation sites,
haplotypes and polymorphic sites, nucleotide and haplotype diversities, the total number of
mutations, and average number of nucleotide differences. Mismatch distribution analysis
suggested that the earthworm species had not experienced expansion (Figure 7). Table 2
shows the genetic diversity of E. nordenskioldi from different regions. Our E. nordenskioldi
sequences fell into five groups in the Bayesian phylogeny, strongly supported by Bayesian
posterior probabilities (Figures 1 and 2). Figures 2 and 3 present the data for G1 and G5
of the E. nordenskioldi complex showing both high haplotype and nucleotide diversities
because of the elevation gradient. The probability obtained from a permutation test with
1000 replicates (PM test) was significant (p < 0.05) (Table 3), indicating genetic differentiation
among G1, G2, and G5 (Figures 1 and 2).
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Table 2. Comparison among Eisenia nordenskioldi complexes from different regions.

Russia Mongolia N.E China Mt. Wuling

S 221 508 545 545
h 56 3 22 28
K 84.953 413.667 352.158 342.783
M 381 826 1598 1373
Np 221 577 545 545
Hd 0.979 1 0.996 1
Pi 0.156 0.759 0.646 0.629

S = Number of segregating sites; h = Number of haplotypes; Pi = Nucleotide diversity; Hd = Haplotype diversity.
Np: Number of polymorphic sites, M: Total number of mutations; K: Average number of nucleotide differences.

Table 3. Results from Tajima’s Neutrality Test.

S ps Θ π D

545 1 0.174417 0.512729 6.288815
Abbreviations: S = Number of segregating sites, ps = S/n, Θ = ps/a1, π = nucleotide diversity, and D is the
Tajima test statistic). NOTE: The analysis involved 174 nucleotide sequences. All positions containing gaps and
missing data were eliminated. There was a total of 545 positions in the final dataset. Evolutionary analyses were
conducted in MEGA X. Not significant p > 0.10.

4. Discussion
4.1. Morphological and Genetic Variations within the E. nordenskioldi Complex According
to Elevation

Eisenia nordenskioldi is known to have very high genetic diversity and contains several
cryptic genetic lineages [7–14]. The E. nordenskioldi complex is separated into two species:
E. nordenskioldi from northern and western Russia and Eisenia nordenskioldi from southern
and southeastern Russia [13]. Both species need to be described and will be future work.
The sequences of pigmented E. n. mongol and E. n. onon [17] were included within
E. n. nordenskioldi from Russia, while unpigmented E. n. pallida from Korea [21] formed a
separate branch within Eisenia nordenskioldi from southern and southeastern Russia. Our
groups were morphologically similar to Eisenia from southern and southeastern Russia,
characterized by body-color (purple dorsally and faint yellow ventrally), spermathecae
shape (ball-shaped), and clitellum position (saddle-shaped in xxvii–xxxii).

It was indicated that altitudinal stratification has an effect on the genetic diversity of megas-
colecid worms from mountains in Taiwan, China [22]. The studies of Shekhotsov et al. [7–14]
have not discussed the genetic diversity of E. nordenskioldi complex (Lumbricidae) in rela-
tion to its altitudinal distribution. In this work, we tackled the pattern of genetic variation
in E. nordenskioldi along elevational gradients in northern China. Our results showed that
elevation affected the genetic diversity, but not external morphological diversity, within
E. nordenskioldi. The E. nordenskioldi complex from Mt. Wuling is not monophyletic and
consists of three morphologically similar altitude groups (G1, G2, and G5) that have high
genetic divergence (Figures 1 and 2).

4.2. Distribution of the E. nordenskioldi Complex from Mt. Wuling

Dong et al. [23] found two exclusive lineages for Amynthas triastriatus of the Megascole-
cidae in southeast China: Lineage A is distributed mainly at high altitudes and Lineage B
mainly at low altitudes. Similarly, regarding the distribution of the E. nordenskioldi complex
from Mt. Wuling (Figure 1), we hypothesized that G1 tolerates low temperatures in the
tundra and high boreal habitats, while G5, which may be close to E. n. pallida, is intolerant
to low temperatures and has a narrow regional distribution. We found that Mt. Wuling har-
bors high earthworm diversity. In the haplotype network (Figure 3), Mt. Wuling haplotypes
were relatively close to Mongolian ones but far from Russian or northeast Chinese ones.
This suggests a dispersal route from Siberia to Mongolia to Inner Mongolia to Mt. Wuling.
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4.3. Phylogeography of the E. nordenskioldi Complex from Mt. Wuling

The Pleistocene glaciation resulted in dramatic shifts in animal habitats and a dramatic
reduction in intra-specific diversity [24]. The cold Pleistocene glacial periods caused alpine
insects to disperse into lowland regions [25]. Insects, such as bees and beetles, have signif-
icantly stronger dispersal ability compared with soil invertebrates, such as earthworms.
Genetic differences were observed among different elevations on Mt. Wuling, which had
their own haplotype sets (Figure 3). This indicated that the Pleistocene glaciations did
not significantly affect the distribution of earthworm species. The analysis of allelic gene
frequency and nucleotide mismatch implied that the events shaping the phylogeography
of Mt. Wuling E. nordenskioldi occurred long before the last glacial maximum. Given this
altitudinal genetic diversity within E. nordenskioldi, the phylogeography of this species
provides important information for the zoogeographic reconstruction of the mountains in
northern China.

5. Conclusions

Mt. Wuling is the southern limit of the distribution of the E. nordenskioldi complex. Our
results showed that elevation has an effect on the genetic diversity of the E. nordenskioldi
complex but not on the morphological diversity. The E. nordenskioldi complex in northern
China has at least five exclusive genetic groups, and those of Mt. Wuling were classified
into three groups (G1, G2, and G5) along an elevation gradient. Mismatch distribution
analysis indicated that Pleistocene glaciations did not significantly affect the distribution
of earthworm species in this region. Future work should examine the distribution and
dispersal of the E. nordenskioldi complex in the Palearctic.
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