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Abstract: The Qinghai–Tibetan Plateau (QTP) with high altitude and low temperature is one of
the most sensitive areas to climate change and has recently experienced continuous warming. The
species distribution on the QTP has undergone significant changes especially an upward shift with
global warming in the past decades. In this study, two dominant trees (Picea crassifolia Kom and
Sabina przewalskii Kom) and one dominant shrub (Potentilla parvifolia Fisch) were selected and their
potential distributions using the MaxEnt model during three periods (current, the 2050s and the
2070s) were predicted. The predictions were based on four shared socio-economic pathway (SSPs)
scenarios, namely, SSP2.6, SSP4.5, SSP7.0, SSP8.5. The predicted current potential distribution of three
species was basically located in the northeastern of QTP, and the distribution of three species was
most impacted by aspect, elevation, temperature seasonality, annual precipitation, precipitation of
driest month, Subsoil CEC (clay), Subsoil bulk density and Subsoil CEC (soil). There were significant
differences in the potential distribution of three species under four climate scenarios in the 2050s
and 2070s including expanding, shifting, and shrinking. The total suitable habitat for Picea crassifolia
shrank under SSP2.6, SSP4.5, SSP7.0 and enlarged under SSP8.5 in the 2070s. On the contrary, the
total suitable habitat for Sabina przewalskii enlarged under SSP2.6, SSP4.5, SSP7.0 and shrank under
SSP8.5 in the 2070s. The total suitable habitat for Potentilla parvifolia continued to increase with SSP2.6
to SSP8.5 in the 2070s. The average elevation in potentially suitable habitat for Potentilla parvifolia
all increased except under SSP8.5 in the 2050s. Our study provides an important reference for the
conservation of Picea crassifolia, Sabina przewalskii, Potentilla parvifolia and other dominant plant species
on the QTP under future climate change.

Keywords: climate change; potential distribution; MaxEnt model; suitable habitat; average elevation

1. Introduction

Climate change is considered to be one of the most important driving factors of species
distribution [1–3] According to the report of the sixth Coupled Model Intercomparison
Project (CMIP6), the global temperature will continue to increase by the end of the 21st
century [4]. The Qinghai–Tibetan Plateau (QTP), famous as the “third pole” in the world
with high altitude and low temperature, is one of the most sensitive regions to climate
change [5]. With global warming, many species shift their suitable habitats especially
upward in altitude in order to adapt to changes in environmental conditions [6,7].

However, it remains unclear what influences climate change will have on alpine
species at large regional scales and whether alpine species respond uniformly on the QTP.
Two dominant and representative alpine trees (Picea crassifolia Kom, Sabina przewalskii
Kom) and one dominant and representative alpine shrub (Potentilla parvifolia Fisch) on
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the QTP were used in this study, Picea crassifolia favors shady slopes, semi-shady slopes
and humid valleys in the mountains with an altitude of 1750–3100 m (a.s.l), is endemic
to China, and is distributed in the Qilian Mountains, Qinghai, Gansu, Ningxia, Inner
Mongolia. Sabina przewalskii grows on sunny slopes of 2600–4000 m (a.s.l), is endemic
to China, and is distributed in Qinghai, Gansu Hexi Corridor, and the north of Sichuan.
Potentilla parvifolia favors dry hillside, rock crack, forest edge and forest with an altitude of
900–5000 m (a.s.l), and it is distributed in Heilongjiang, Inner Mongolia, Gansu, Qinghai,
Sichuan and Tibet in China. Species on shady slopes are more sensitive to the magnitude of
temperature fluctuations, and species on sunny slopes can tolerate larger temperature fluc-
tuations [8]. The previous study was conducted on potential distribution for Picea crassifolia,
Sabina przewalskii and Potentilla parvifolia, but they only focused on the potential distribu-
tion under different climate scenarios without considering the influence of geographical
factors [9].

Species distribution models are popular methods in modeling the potential distribu-
tions of species in response to climate change in the past few decades [10]. Many species
distribution models are used to predict potential distributions, such as maximum entropy
(MaxEnt) [11]), random forests (RFs) [12], CLIMEX, and genetic algorithm for rule set
production (GARP) [13]. Among them, MaxEnt is widely selected because it performs
excellently with a small number of sample records compared to other models [14]. This
research used MaxEnt to predict potential distribution for three species under different
shared socio-economic pathways (SSPs) scenarios.

SSPs can be selected to predict greenhouse gas emission scenarios under different
climate conditions [15]. SSPs consider the effects of land use and socio-economic with the
development of regional climate change and are different from representative concentration
pathways (RCPs) [16]. SSPs have a higher beginning point than RCP and the result of
prediction is near to the true value [17]). SSP2.6 (Low forced scenario), SSP4.5 (Medium
forced scenario), SSP7.0 (Medium-high forced scenario), SSP8.5 (High forced scenario)
were selected to predict the potential distribution of three species during the period of the
2050s and 2070s in this study.

The aims of this research are: (1) to predict the potential distribution of three species
under different climate scenarios; (2) to assess the key environment variables affecting
the distribution of three species; (3) to analyze the area and elevation changes of the
suitable habitat of three species in the future climate change. The results of this study will
provide an important reference for the conservation of Picea crassifolia, Sabina przewalskii,
Potentilla parvifolia and other dominant plant species on the QTP under climate change.

2. Materials and Methods
2.1. Study Area

The Qinghai–Tibetan Plateau (QTP), located in western China, is famous as the “Roof
of the World” with the highest and one of the most extensive plateaus on earth [18], It
lies between 26◦ N to 39◦ N and 73◦ E to 104◦ E, and covers a total area of approximately
2.5 million km2 with an average elevation above 4000 m (a.s.l). Alpine desert ecosystems,
alpine meadow, alpine grassland, shrub and forest are distributed from the southwestern
to the northeastern of QTP, which is characterized by low annual temperature differences,
high daily temperature differences, low air temperature and strong solar radiation [19]).
Climate change probably affect species on the QTP more than those in other regions with
the same latitude [20,21]).

2.2. Occurrence Data

As the accurate location information of species distribution is the basis of high preci-
sion simulation and prediction, the geographical distribution information of Picea crassifolia,
Sabina przewalskii and Potentilla parvifolia were obtained from: (1) Chinese Virtual Herbar-
ium (CVH, https://www.cvh.ac.cn/, accessed on 23 September 2021); (2) Global Bio-
diversity Information Facility (GBIF, http://www.gbif.org/, accessed on 24 September

https://www.cvh.ac.cn/
http://www.gbif.org/
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2021); (3) Relevant literature reports (CNKI, Web of Science, https://www.cnki.net/
https://apps.webofknowledge.com/, accessed on 15 November 2021). Google Earth
(http://ditu.google.cn/, accessed on 22 November 2021) was used to proofread speci-
men distribution information and the duplicate records were removed [22]. Finally, the
172 records of Picea crassifolia distribution data, 69 records of Sabina przewalskii distribution
data and 146 records of Potentilla parvifolia distribution data were used (Figure 1). The
longitude and latitude of the distribution data and the species name were entered into
Excel and converted to csv format for modeling.
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2.3. Environment Variables
2.3.1. Climate Data

The data used for climate assessment were downloaded from the WorldClim global
climate database [23] (http://www.worldclim.org, accessed on 15 November 2021).

Current climate data included 19 Bioclimatic variables with 30” spatial resolution
during 1970–2000 [24], which reflect temperature and precipitation.

Future Bioclimatic data were obtained from BCC_CSM1.1 (Beijing Climate Center,
China Meteorological Administration, Beijing, China) global circulation model) [8]), which
is available for predicting the global climate response to increasing greenhouse gas con-
centration [22]). Bioclimatic data (at 2.5′ spatial resolution) for four scenarios of Shared
Socioeconomic Pathways (SSPs) provided by the sixth Coupled Model Intercomparison
Project (CMIP6) were used for modeling [25]). Each SSP includes scenarios of SSP2.6,
SSP4.5, SSP7.0, SSP8.5, and analyses the spatial and temporal changes of the annual tem-
perature and precipitation during 2021–2100 [26]). The future climate variables were
resampled to the same spatial resolution with current data using ArcGIS 10.7 [27]).

2.3.2. Topographic Data

The DEM data with a cell size of 90 m × 90 m were downloaded from the WIST
geodatabase of NASA (http://srtm.csi.cgiar.org/, accessed on 15 November 2021). The
variables of slope, aspect and elevation were derived from DEM using ArcGIS 10.7.

https://www.cnki.net/
https://apps.webofknowledge.com/
https://apps.webofknowledge.com/
http://ditu.google.cn/
http://www.worldclim.org
http://srtm.csi.cgiar.org/
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2.3.3. Soil Property Data

Soil data used in this study were collected from Harmonized World Soil Database
(HWSD, http://www.fao.org/soils-portal, accessed on 15 November 2021).

2.3.4. Processing and Selection of Environment Variables

All environment variables were resampled to 30” spatial resolution and were pro-
cessed to the same geographic bounds. In the modeling process, high correlation variables
and environment variables that contribute less to the model were removed to improve
the accuracy of the model [28,29]. The correlation coefficient was calculated to account for
the influence of collinearity on the model accuracy. The variables with r below 0.8 were
selected [30]. The 16 variables with low correlation coefficients and high contribution rates
were selected for distribution modeling (Table 1).

Table 1. The selection of environmental variables used in this study.

Data Source Symbol Variables Unit Important Variables for Modelling

WorldClim Bio1 Annual mean temperature ◦C

Bio2 Mean diurnal range ◦C

Bio3 Isothermality (BIO2/BIO7)
(×100) %

Bio4 Temperature seasonality
(standard deviation ×100)

◦C
√

Bio5 Max temperature of
warmest month

◦C

Bio6 Min temperature of
coldest month

◦C

Bio7 Temperature annual range
(BIO5-BIO6)

◦C
√

Bio8 Mean temperature of
wettest quarter

◦C

Bio9 Mean temperature of
driest quarter

◦C

Bio10 Mean temperature of
warmest quarter

◦C

Bio11 Mean temperature of
coldest quarter

◦C

Bio12 Annual precipitation mm
√

Bio13 Precipitation of wettest month mm

Bio14 Precipitation of driest month mm
√

Bio15 Precipitation seasonality
(coefficient of variation) 1

√

Bio16 Precipitation of wettest quarter mm

Bio17 Precipitation of driest quarter mm

Bio18 Precipitation of warmest quarter mm
√

Bio19 Precipitation of coldest quarter mm
√

DEM ASL Elevation m
√

SLOP Slope ◦ √

ASPE Aspect ◦ √

http://www.fao.org/soils-portal
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Table 1. Cont.

Data Source Symbol Variables Unit Important Variables for Modelling

HWSD S_GRAVEL Subsoil gravel content %vol

S_SAND Subsoil sand fraction %wt

S_SILT Subsoil silt fraction %wt

S_CLAY Subsoil clay fraction %wt
√

S_USDA_TEX_CLASS Subsoil USDA
texture classification name

S_REF_BULK_DENSITY Subsoil reference bulk density kg/dm3

S_ BULK_DENSITY Subsoil bulk density kg/dm3 √

S_OC Subsoil organic carbon % weight

S_PH_H2O Subsoil pH (H2O) −log(H+)

S_CEC_CLAY Subsoil CEC (clay) cmol/kg
√

S_CEC_SOIL Subsoil CEC (soil) cmol/kg
√

S_BS Subsoil base saturation %
√

S_TEB Subsoil TEB cmol/kg

S_CACO3 Subsoil calcium carbonate % weight

S_CASO4 Subsoil gypsum % weight
√

S_ESP Subsoil sodicity (ESP) %

S_ECE Subsoil salinity (Elco) dS/m

2.4. Distribution Modeling

MaxEnt with advantages in performance and stability was used to predict the poten-
tial distribution of three species (Figure 2) [11,31]. In addition, MaxEnt has the advantage
of utilizing continuous and classified data and integrating the interaction between vari-
ables [14]. MaxEnt software version 3.4.4k was used to identify the species potential habitat
distribution. The MaxEnt was set to run 500 iterations with a maximum of 10,000 back-
ground points, a convergence threshold (0.00001), a regularization multiplier of 1, a logistic
output grid format, and the algorithm parameters set to “auto feature”. The other parame-
ter values were kept in the default settings [32]. A total of 70% of the distribution point
data were selected for training, and the rest were used for testing [33]. The Jackknife was
used for testing the importance of environmental variables in a model with a small amount
of the distribution point records [34].

2.4.1. Accuracy Assessment

The value of the area under the receiver operating characteristic curve (AUC) was
selected to assess model accuracy [11]). Model performance can be regarded as fail when it
is between 0.5 and 0.6, poor when it is between 0.6 and 0.7, fair when it is between 0.7 and
0.8, good when it is between 0.8 and 0.9; and excellent when it is between 0.9 and 1 [35].

2.4.2. The Area and Elevation Changes of the Habitat Suitability

SDMtoolbox of ArcGIS 10.7 was used to convert the current and future results. The asc
format files in the model result were converted to the raster format and reclassified into four
suitable habitats, and we calculated the area and average altitude of potential distribution
by zonal statistic tool [36]. The area and average altitude changes in the suitable habitat
for species distribution were used as an indicator to evaluate the impact of climate change
on the distribution of species [8]. The intersection distributions of the three species were
obtained through the raster calculator and extracted by attributes tools.
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3. Results
3.1. Model Assessment and Key Environmental Variables

The mean AUC of three species in training and testing all exceeded 0.9 in current
and future modeling. The model for the geographic distribution prediction performed
excellently and had high accuracy.

We selected the variables whose contribution rate for three species is more than 0.1
for analysis. The internal jackknife test of the MaxEnt model for environmental variables’
importance showed that aspect was the most critical factor determining the distribution
of the three species. Aspect contributed 33.9% to model output for Picea crassifolia, 51.7%
for Sabina przewalskii and 56.1% for Potentilla parvifolia (Table 2). In addition, elevation
contributed 20.2% to model output for Picea crassifolia, 26% for Sabina przewalskii and 15.9%
for Potentilla parvifolia. The following factors were precipitation of driest month (Bio14:
23.1% for Picea crassifolia, 3.4% for Sabina przewalskii and 3.5% for Potentilla parvifolia),
annual precipitation (Bio12: 10.7% for Picea crassifolia, 4.9% for Potentilla parvifolia) and
temperature seasonality (Bio4: 6% for Picea crassifolia). The total contributions of three
subsoil variables (S_CEC_CLAY, S_BULK_DEN, S_CEC_SOIL) did not exceed 3% (Table 2).
The results indicated that subsoil conditions had very limited impacts on the potential
distribution of Picea crassifolia, Sabina przewalskii and Potentilla parvifolia. The cumulative
percentage of aspect, elevation, Bio14, Bio12, Bio4, S_CEC_CLAY, S_BULK_DEN, and
S_CEC_SOIL was 95.6% for Picea crassifolia, 82.5% for Sabina przewalskii and 83.5% for
Potentilla parvifolia, respectively.

3.2. Potential Distribution of Three Species at Current Climate Scenarios

The total suitable habitat area for Picea crassifolia was 99,203.04 km2 (account for
3.86% of QTP), and was mainly concentrated in the northeastern of QTP. The total suitable
habitat area for Potentilla parvifolia was 102,179.35 km2 (account for 3.98% of QTP) and
was mainly distributed in the southern and northeastern of QTP. While the total suitable
habitat area (21,283.4 km2) for Sabina przewalskii was much lower than Picea crassifolia and
Potentilla parvifolia (only account for 0.82% of QTP) (Table 3, Figure 3).
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Table 2. The contribution and cumulative percentage of key environmental variables.

Symbol Variables

Picea crassifolia Sabina przewalskii Potentilla parvifolia

Contribution
(%)

Cumulative
Percentage

(%)

Contribution
(%)

Cumulative
Percentage

(%)

Contribution
(%)

Cumulative
Percentage

(%)

ASPE Aspect 33.9 33.9 51.7 51.7 56.1 56.1

Bio14 Precipitation of
driest month 23.1 57.0 3.4 55.1 3.5 59.6

ASL Elevation 20.2 77.2 26.0 81.1 15.9 75.5

Bio12 Annual precipitation 10.7 87.9 0.0 81.1 4.9 80.4

Bio4 Temperature
seasonality 6.0 93.9 0.0 81.1 0.2 80.6

S_CEC_CLAY Subsoil CEC (clay) 1.2 95.1 0.4 81.5 0.5 81.1

S_BULK_DEN Subsoil bulk density 0.3 95.4 0.9 82.4 2.3 83.4

S_CEC_SOIL Subsoil CEC (soil) 0.2 95.6 0.1 82.5 0.1 83.5

Table 3. The area of suitable habitat for three species under different climate scenarios.

Suitable
Habitat

The Area of Potential Suitable Habitat for Three Species (km2)
The Area at

Current (km2)2050s 2070s

SSP2.6 SSP4.5 SSP7.0 SSP8.5 SSP2.6 SSP4.5 SSP7.0 SSP8.5

P. crassifolia High 10,271.02 10,171.20 8483.41 10,813.65 6294.73 4882.79 9386.29 4767.55 8830.95
Moderately 33,347.47 34,940.89 42,712.89 30,644.28 4143.71 34,927.27 26,032.80 54,663.53 32,876.52

Low 55,668.94 47,247.23 57,771.42 53,073.74 43,502.34 58,147.09 48,217.26 48,614.71 57,495.57
Total 99,287.43 92,359.32 108,967.72 94,531.67 53,940.78 97,957.15 83,636.35 108,045.79 99,203.04

S. przewalskii High 625.21 1883.79 361.15 0 774.02 1046.25 232.30 120.69 194.19
Moderately 7243.89 4968.09 3235.84 1260.40 3468.14 4416.38 6272.95 1838.42 3327.49

Low 32,359.29 18,678.21 16,681.90 13,747.32 26,963.81 22,868.65 31,810.31 18,537.56 17,761.72
Total 40,228.39 25,530.09 20,278.89 15,007.72 31,205.97 28,331.28 38,315.56 20,496.67 21,283.40

P. parvifolia High 3047.10 991.80 2301.20 1096.16 1153.32 3744.90 2755.82 915.58 3167.78
Moderately 20,949.47 13,109.41 18,451.36 9,434.38 14,813.53 15,636.56 13,672.01 19,009.42 21,045.65

Low 86,588.17 83,692.61 92,607.04 59,658.84 81,386.87 80,101.97 99,566.01 99,144.06 77,965.92
Total 110,584.74 97,793.82 113,359.60 70,189.38 97,353.72 99,483.43 115,993.84 119,069.06 102,179.35

3.3. Potential Distribution of Three Species under Future Climate Scenarios

There were significant differences in the distribution area of low suitable habitat,
moderately suitable habitat and high suitable habitat under future climate scenarios
as compared to current. The high suitable habitat for Picea crassifolia decreased un-
der SSP2.6, SSP4.5 and SSP8.5 in the 2070s. Especially, the high suitable habitat for
Sabina przewalskii declined to zero under SSP8.5 in the 2050s. The total suitable habitat for
three species all decreased under SSP8.5 in the 2050s (Figure 4). The total suitable habitat
for Picea crassifolia shrank under SSP2.6, SSP4.5 and SSP7.0 and enlarged under SSP8.5 in
the 2070s. On the contrary, the total suitable habitat for Sabina przewalskii enlarged under
SSP2.6, SSP4.5 and SSP7.0 and shrank under SSP8.5 in the 2070s. The total suitable habitat
for Potentilla parvifolia continued increasing from SSP2.6 to SSP8.5 in the 2070s (Table 3,
Figure 5)).
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The average elevation in potentially suitable habitat for three species showed a slight
upward shift under many climate scenarios in the 2050s and 2070s as compared to the aver-
age elevation of their potential distribution at current. For instance, the average elevation in
potentially suitable habitat for Potentilla parvifolia all increased except under SSP8.5 (3552 m)
in the 2050s. The average elevation of high suitable habitat for Picea crassifolia was 2758 m
at current. However, the average elevation of highly suitable habitat for Picea crassifolia
varied from 2773 m (SSP2.6) to 2849 m (SSP8.5) in the 2050s and increased to 2961 m
(SSP2.6), 2891 m (SSP4.5) and 3043 m (SSP8.5) in the 2070s. The average elevation of highly
suitable habitat, medium suitable habitat and low suitable habitat for Sabina przewalskii
was 2951 m, 3175 m and 3083 m, respectively, at current. However, the average elevation of
potentially suitable habitat for Sabina przewalskii varied from 2597 m to 3487 m in future
climate scenarios. The changes of the average elevation in potentially suitable habitat for
Picea crassifolia and Sabina przewalskii under different climate scenarios were not obvious,
while the mean elevation in potentially suitable habitat for Potentilla parvifolia basically rose
from the current period to the 2070s (Table 4).

Table 4. The average elevation of suitable habitat for three species under different climate scenarios.

Suitable
Habitat

The Average Elevation under Different Climate Scenario (m) Average
Elevation at
Current (m)

2050s 2070s

SSP2.6 SSP4.5 SSP7.0 SSP8.5 SSP2.6 SSP4.5 SSP7.0 SSP8.5

P. crassifolia High 2773 2834 2790 2849 2961 2891 2691 3043 2758
Moderately 3033 3000 3124 3022 2972 2964 2987 3077 3031

Low 3353 3333 3374 3383 3298 3335 3077 3375 3359

S. przewalskii High 2597 3093 3103 —— 3090 2894 2764 2649 2951
Moderately 2765 3487 3305 3149 3334 3224 2775 2878 3175

Low 3079 3312 3130 3049 3066 3081 3090 2996 3083

P. parvifolia High 3712 3987 3795 3552 3831 3728 3640 4220 3617
Moderately 3578 3597 3537 3717 3822 3605 3625 3586 2636

Low 3499 3539 3502 3711 3587 3482 3520 3629 3475

3.4. The Changes of the Intersection Distribution of Three Species

Due to the large distribution area in the northeastern of QTP for three species, we
analyzed the changes of intersection distributions for three species under future climate
scenarios. Figure 6 showed the modeled vegetation fractional cover and spatial distribution
of suitable habitat under future climate scenarios in the 2050s and 2070s in the northeastern
of QTP. There was a decreasing trend for the intersection distribution area of three species
(34,745 km2 for SSP2.6, 15,441 km2 for SSP4.5 and 7822 km2 for SSP8.5 in the 2050s;
18,584 km2 for SSP2.6, 17,060 km2 for SSP4.5 and 15,440 km2 for SSP8.5 in 2070s), which
expanded their distribution area to the northeast. Under SSP8.5, the distribution for
Potentilla parvifolia enlarged but the distribution for Picea crassifolia and Sabina przewalskii
contracted. The total suitable habitat area for Potentilla parvifolia in the QTP would increase
from 97,353.72 km2 under SSP2.6 to 119,069.06 km2 under SSP8.5 in the 2070s. However, the
total suitable habitat area for Sabina przewalskii in the QTP would shrink from 31,205.97 km2

under SSP2.6 to 20,496.67 km2 under SSP8.5 in the 2070s.
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4. Discussion
4.1. Influence of Environmental Variables on the Potential Distribution of Three Species

It is widely known that the species distributions are not only determined by climatic
factors but also impacted by local topography, human activities and species interactions [37].
Terrain characteristics, i.e., slope, altitude, and aspect are key environmental variables
for shaping the vegetation distribution by changing moisture and heat especially for
alpine trees [38,39]. In this study, analyses of environmental variables showed that aspect
and elevation are critical factors restricting the distribution of the three species. The
three species live in different aspects and their suitable habitats so they have their own
ecological characteristics. Species distribution is primarily affected by elevation and aspect
in alpine forest ecosystems [40]. According to the results of this study, Picea crassifolia is
distributed between 2691 and 3375 m. The mean elevation of the highest habitat Suitability
of Picea crassifolia under SSP8.5 in the 2050s is about 2849 m, which is similar to the previous
study [41].

Temperature and precipitation are two major climate factors affecting the species
distribution, especially growth-season temperatures, cold tolerance and the available water
supply for alpine trees [42]. The results showed that precipitation of driest month (Bio14),
annual precipitation (Bio12), temperature seasonality (Bio4) are major climatic factors
that influence the distribution of Picea crassifolia, Sabina przewalskii and Potentilla parvifolia.
Higher precipitation of the driest month and annual precipitation have a positive impact on
species distribution. Temperature and precipitation are the key factors influencing species
distribution in the drier upper sites. However, species distribution is more restricted by
precipitation than the temperature in the wetter upper sites [37]). Temperature seasonality
is positively related to elevation and strong seasonal variation in temperature may inhibit
the growth of trees [43].

Soil provides the necessary space and nutrients for species to survive and limits their
distributions [44]. The soil thickness at different sites is the reason for the spatial difference
of species distribution [45]. Soil thickness ≥40 cm can store enough available water to
allow trees to survive during drought periods [40]. In this study, we used physical and
chemical characteristics of subsoil (30–100 cm) variables to further evaluate the suitable
distribution of three species. We found subsoil CEC (clay), subsoil bulk density and subsoil
CEC (soil) have a little influence on species distributions the QTP.
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4.2. Average Elevation Changes of Potential Suitable Habitat for Three Model Species

The average elevation in potentially suitable habitat for three species showed a slight
upward shift under many climate scenarios in the 2050s and 2070s as compared to the
average elevation of their potential distribution at current. Especially the average elevation
in potentially suitable habitat for Potentilla parvifolia all increased except under SSP8.5
(3552 m) in the 2050s. These results are similar to other studies, which show plant species
shift to higher elevation and cooler habitats responding to climate warming [46,47]. In
order to adapt to climate change at local, regional, and global scales, alpine species shape
the mechanism of shifting suitable climatic niches to relatively cooler habitats [48]. For
three species in this study, the modeled predictions indicate species would shift to a higher
elevation to occupy the current climate niche by the 2070s.

The changes of the average elevation in potentially suitable habitat for trees (Picea crassifolia
and Sabina przewalskii) under different climate scenarios were not obvious, while the mean
elevation in potentially suitable habitat for shrub (Potentilla parvifolia) had a basically rising
from current to 2070s. The modeling results suggested there would be a competitive
relationship between shrubs and trees. The existence of shrubs restricts the growth of trees
to higher altitudes, so the average altitude of Picea crassifolia and Sabina przewalskii did not
increase further with climate warming. The previous study found the changes in the mean
elevation could be influenced by other factors rather than climate alone [49].

4.3. Influence of Other Factors on the Potential Distribution of Three Species

The vegetation is currently growing to a higher altitude [50,51], and this expansion will
probably go on in the future. It is mainly responsible for climate change due to temperature
or water availability [52,53]. In this study, we found that the positive interaction between
shrubs and trees can promote the upward movement of vegetation. These interactions occur
at slightly higher altitudes [54,55]. Shrubs are expected to expand to a higher elevation
than trees with the same critical survival temperature. The snow cover is the protection of
shrubs because it alleviates the influence of the temperature on shrubs [56]. The interaction
between shrubs and trees may become more and more important to explain changes in
the species composition and structure on the QTP. The expansion of shrubs could be
discontinuous spatially and temporally which actually covers up tree expansion.

In addition, the two Ips species (Ips nitidus Eggers and Ips shangrila Cognato and
Sun) are the most destructive secondary bark beetles on Picea crassifolia and always cause
mortality of trees by their cooperation [57]. Increasing human interventions, such as
harvesting, grazing and mining, may also result in distribution changes of the three species.
The human population on the QTP has expanded dramatically in the past decades. Some
suitable habitats for alpine species were converted to other land uses, such as pastures or
settlements [40].

5. Conclusions

In this study, we explored the influence of climate change on two dominant alpine
trees (Picea crassifolia Kom and Sabina przewalskii Kom) and one dominant alpine shrub
(Potentilla parvifolia Fisch) under different climate scenarios on the Qinghai–Tibetan Plateau.
The predicted current potential distribution of three species was basically located in the
northeastern of Qinghai–Tibetan Plateau, and the distribution of three species was most
impacted by aspect, elevation, temperature seasonality, annual precipitation, precipitation
of driest month, Subsoil CEC (clay), Subsoil bulk density and Subsoil CEC (soil). There
were significant differences in the potential distribution of the three species under four
climate scenarios in the 2050s and 2070s including expanding, shifting, and shrinking.
The mean elevation in potentially suitable habitat for Potentilla parvifolia basically rose
from the current period to the 2070s. Our study provides an important reference for the
conservation of Picea crassifolia, Sabina przewalskii, Potentilla parvifolia and other dominant
plant species under climate change. However, our research only used the friendly MaxEnt
model without considering other models. In future studies, we will select the ensemble
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model which can improve the reliability and accuracy of forecast results to further predict
species distribution.
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