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Abstract: Understanding the influence of fertilizer on soil quality is vital to agricultural management,
yet there are few studies, particularly in black soil. In this study, soils under various treatments, namely
no fertilizer, bio-organic + humic acid, bio-organic + chemical, and chemical fertilizer, were sampled
to identify their major physiochemical properties, and to investigate the fungal community structure
using environmental sequencing techniques. Physiochemical properties and fungal community
structure were examined at four important stages of the maize life cycle: seedling, jointing, heading
period, and maturity. We found that chemical fertilizer in the mature stage increased the soil available
phosphorous (AP) content. Organic matter content was greatly affected by bio-organic + chemical
fertilizer during the mature stage. Bio-organic + humic acid significantly increased soil phosphatase
activity in maturing maize, whilst chemical fertilizers reduced invertase activity. Taken together,
our results clearly illustrated that bio-organic + humic and chemical fertilization indirectly alter
fungal community structure via changing soil properties (especially AP). Chemical fertilizer markedly
heightened the AP content, thereby decreasing specific fungal taxa, particularly Guehomyces. OM was
of positive connection with bio-organic + humic acid and Mortierella abundance, respectively, through
RDA analysis, which are in agreement with our result that bio-organic + humic acid fertilization to
some extent increased Mortierella abundance. Additionally, bio-organic + humic acid decreased the
abundance of Fusarium and Humicola, suggesting that bio-organic + humic acid possibly could help
control crop disease. These results help to inform our fundamental understanding of the interactions
between fertilizers, soil properties, and fungal communities.

Keywords: black soil (Mollisols); fertilization method; Illumina MiSeq sequencing; fungal diversity

1. Introduction

The USDA soil classification categorizes black land as Udoll black soil, which is also known
as Mollisols [1]. There are just four large black soil regions in the world, one of which is located in
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the northeast plains of China [2]. Black land offers a vital soil resource, with soils that are highly
productive fertile soil containing a high (5–8%) organic carbon content [3]. Thus, the Northeast Black
Soil Region of China has become the primary grain-producing area of the country. To enhance crop
yields, substantial quantities of chemical fertilizers are commonly applied to croplands [4]. However,
the excessive use of chemical fertilizers may alter soil properties, such as the reduction of extracellular
enzyme activity, soil zinc content, soil pH content, or the accumulation of soil phosphorus content etc.,
which finally resulted in soil acidification, nitrogen leaching, and compaction [5]. In addition, chemical
fertilizer not only influences soil properties but also has a negative impact on soil fungi community
diversity and composition. Although previous investigations reported that chemical fertilizer could
increase fungal biomass, it greatly decreased fungal community diversity and altered community
composition, shifting dominant flora from bacteria to fungi [6]. Application of bio-organic fertilizers
with addition of humic acid is a cost-effective agricultural practice to avoid soil degradation issues
mentioned above [7]. Multiple long-term studies have demonstrated that bio-organic + humic acid
fertilizers increase microbial biomass and alter community composition and diversity by introducing
considerable external carbon (C) into the soil [8]. Additionally, bio-organic + humic acid addition
can bolster the capacity of soil to hold water, enhance its cation exchange capacity, increase biological
enzyme activity, improve the soil structure, and prevent soil acidification [9], implying that bio-organic
+ humic acid additions have the potential to reverse the degradation associated with the long-term use
of chemical fertilizers [10].

Soil enzymes, one of the most valuable parts of the soil biochemical process, acts in a crucial role
in the decomposition of organic matter and nutrient cycling [11]. A review by Lemanowicz et al. [11]
elaborated that phosphatase activity is an index to evaluate the direction and intensity of soil phosphorus
biotransformation. Additionally, urease activity could be used to characterize soil nitrogen status [12].
Apart from this, a fertilization by Wu et al. [13] indicted that invertase activity could reflect the
utilization of soluble substances in soil by microorganisms and the accumulation, transformation of
soil organic matter. In a word, it could be seen that the above enzyme activities do matter for healthier
soil and current modernization of agriculture. Hence, we chose the above enzyme activities to explore
if various fertilizers have a positive or negative influence on soil.

Fungal community structure and diversity play essential roles in maintaining soil function, such as
the decomposition of plant residues both above and below ground [14]. Prior research has proved that
the C-to-N ratio in fungal cells is much greater than that in bacterial cells, which requires the fungi
to obtain more soil-derived C [15]. Additionally, Wu et al. [16] confirmed that fungi have a greater
ability to acquire nitrogen (N) and phosphorus (P) than bacteria. Remarkably, the dominant soil fungal
community, compared to the bacterial community, is more likely to affect soil fertility [15,17], while not
much is known on how fertilization impacts fungal composition, structure, and diversity.

Black soil, which is highly productive, has become an important resource for main grain production.
So, understanding the impact of fertilizers on soil quality is particularly important for a modern
agricultural system, while this remains rarely documented in black soil. Herein, we utilized Illumina
MiSeq technology and aimed to evaluate how particular types of fertilizer affected the soil fungi
community structure and assessed the relationship between soil properties and fungi communities in
northeastern China black soil.

2. Materials and Methods

2.1. Site Description

An experimental field with an area of 4.5 m × 400 m was selected in Bayan County
(45◦54′28′′–46◦40′18′′ N, 126◦45′53′′–127◦42′16′′ E), Harbin, Heilongjiang Province, China. This region
has a mid-temperate continental monsoon climate. The annual mean temperature is −2.9 ◦C, with a
monthly mean temperature reaching a maximum of 22.4 ◦C in July and a minimum of −20.9 ◦C in
January. The cumulative average precipitation is 582.2 mm, with a minimum of 372.5 mm. The soil
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is classified as typical black soil with a clay loam soil texture. The soil background is as follows:
alkali-hydrolysis nitrogen (AN), 172.4 mg/kg, available phosphorus (AP), 58.5 mg/kg; available
potassium (AK), 182.75 mg/kg; pH 5.8; organic matter (OM), 38.68 g/kg.

2.2. Fertilizer Preparation

Bio-organic and chemical fertilizers used in this experiment are commercially available and were
purchased from the Harbin Tong Dazhou Agricultural Resources Co., Ltd. (Harbin, China). Before
executing the experiment, the microbial community composition of the bio-organic fertilizer was
detected preliminarily. Bacillus megaterium and B. mucilaginosus are the main active components of
the bio-organic fertilizer with an effective viable count
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treatments, all humic acid was sterilized (121 ◦C, 0.1 MPa for 1.5 h) prior to soil amendment.

2.3. Experimental Design

We divided the experimental field into three experimental belts of 1 m × 400 m. A minimum
buffer area 0.75 m wide was established between belts to avoid interference. In the middle of each belt,
four plots (1 m × 10 m), with a 5-m buffer between adjacent plots, were each treated with a different
fertilization treatment: (1) no fertilizer; (2) 1950 kg ha−1 of 30% bio-organic fertilizer and 70% humic
acid (bio-organic + humic acid); (3) 45 kg ha−1 of bio-organic fertilizer combined with 300 kg ha−1

of chemical fertilizers (bio-organic + chemical); and (4) 375 kg ha−1 chemical fertilizer was applied
(chemical fertilizer). The four treatments contained the same amount of the main nutrient components
(i.e., nitrogen (N), phosphorus (P2O5), potassium (K2O)). Each treatment normally top-dressed urea
37.5 kg ha−1 at the jointing period.

Maize was planted in mid-May and harvested in late September of 2017. At the four growth
stages (seedling, jointing, heading period, and maturity), five individual soil cores of 5–7cm diameter
and from 20-cm deep below the edge of roots were collected in each plot and mixed to yield a sample
for that plot. A 2-mm mesh was used to sieve soil samples, and visible organic debris, stones, and plant
residue were manually removed. In total, 1 g of each soil sample was added to a 50-mL tube and
stored at −80 ◦C until DNA was extracted. The remaining soil was dried at room temperature for
analysis of enzyme activity and chemical properties.

2.4. Soil Physicochemical Property Analysis

A 1:2.5 soil–water suspension (w/v) was used for measurements of soil pH. Total N (TN) content
was determined by the semi-micro Kjeldahl method [18]. The total P (TP) and the available P (AP)
were measured as described by Barrow and Shaw [19]. The available potassium (AK) and total K (TK)
were quantified using a neutral ammonium acetate solution extraction and the flame photometric
method [20]. Soil available N (AN) was assessed via the alkaline hydrolysis diffusion method [21].
Soil organic matter (OM) was determined using the K2Cr2O7-capacitance method [22].
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2.5. Analysis of Soil Enzyme Activities

Urease activity was measured using the phenol sodium hypochlorite colorimetric approach.
Invertase was measured with the 3,5-dinitrosalicylic acid colorimetric method. Acid phosphatase
activity was measured using the disodium phenyl phosphate colorimetric method. All enzyme
activities were measured according to Ge et al. [23].

2.6. Fungal Community Diversity Analysis

To assess the fungal community diversity, 0.5 g of soil DNA was extracted (Follow the MoBio
Power Soil DNA Isolation Kit (100), QIAGEN) and ITS nrRNA was amplified using the primer
pair ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-TGCGTTCTTCATCGATGC-3′)
(Allwegene Company, Beijing, China). All PCRs were conducted in triplicate in a Mastercycler Gradient
(Eppendorf, Germany), with 4 uL of 12.5-mM dNTP Mix, 5 mL of 10 × Ex Taq Buffer containing
Mg2+, 2 mL of the sample template DNA, 1.25 U of Ex Taq DNA polymerase, and 36.75 uL of dd
H2O per reaction. PCR settings were 2 min at 94 ◦C; 30 cycles of 30 s at 94 ◦C, followed by 30 s
at 57 ◦C and 30 s at 72 ◦C, with a final 10 min extension at 72 ◦C. The PCR products were isolated
via the QIAquick Gel Extraction Kit (Qiagen, Dusseldorf, Germany), and were pooled in equimolar
amounts. Sequencing was performed by the Allwegene Company on an Illumina MiSeq PE300 machine
(Paired-end sequencing, on-machine sequencing reagent MiSeq® Reagent Kit v3 (600 cycle) (PE300),
300 bp length).

We used the Illumina Analysis Pipeline (version 2.6) to process and analyze the raw sequence
data [24]. The raw data were filtered such that reads with a length < 200 bp, low-quality scores
(≤20), ambiguous bases or nonprime sequences, or barcode tags that did not match exactly were
removed. Unique barcodes were used to separate samples, and the Illumina Analysis Pipeline
(version 2.6) was used for barcode trimming. Subsequently, QIIME 1 was used for data analysis [25].
Operational taxonomic units (OTUs) that had at least 97% similarity were clustered together. These were
used to construct clustered rarefaction curves and derive diversity and richness index values [26].
Next, taxonomic group assignments were made using the Ribosomal Database Project (RDP) Classifier
tool [24], and Fast Tree [27] was used for phylogenetic tree construction. For sampling effort correction,
the lowest number of sequences for any sample (34,033) was used to randomly downsample sequences
from other samples. All reads were accessioned into the GenBank short-read archive (SRP189595).
In database of SRP189595, A, B, C, and D represent the maize growth period of seedling, jointing,
heading period, and maturity; CK, T1, T2, and T3 indicate fertilization treatments of no fertilizer,
bio-organic + humic acid, bio-organic + chemical, and chemical fertilizer, receptively.

2.7. Statistical Analysis

We used QIIME to compute Good’s coverage, Chao1 estimator of richness, Simpson diversity
index, PD_whole_tree index, and the Shannon diversity index to assess soil fungal alpha diversity.
One-way ANOVAs were used to compare alpha diversity, soil characteristics, and relative fungal taxa
abundance within each sample at each time-point using SPSS (v16.0; SPSS, Inc., Chicago IL, USA).
In addition, nonmetric multidimensional scaling (NMDS) ordination plots were used to compare the
composition of fungal communities. Mantel tests were employed to compute the correlation between
the soil microbial community and soil properties. Environmental factors related to soil microbial
communities were assessed via a redundancy analysis (RDA) with CANOCO 4.5. These analyses were
performed using the sample OTU results in the “vegan” R packages (v3.1.2; http://www.r-project.org/).

3. Results

3.1. Soil Chemical Properties

Fertilization treatments significantly altered measured soil properties (Figure 1). It was not
difficult to observe that organic matter (OM) content in the maize mature stage was greatly affected by

http://www.r-project.org/
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bio-organic + chemical fertilizer and chemical fertilizer (p < 0.05). In particular, bio-organic + chemical
and chemical fertilizer in the maize mature stage exerted a significant impact on AP, which was
enhanced by 173.8% and 209.9% relative to no fertilizer (p < 0.05), respectively. In addition, chemical
fertilizer enhanced soil AN and AK compared with no fertilizer. Soil AK during the maize jointing and
maturity stages increased by 8.6% and 59.8% (p < 0.05), respectively, and soil AN during the maturity
stage increased by 19.4% (p < 0.05). Furthermore, the application of chemical fertilizer during maize
jointing decreased pH of the soil from 5.78 to 5.47 (p < 0.05), whereas bio-organic + humic acid and
bio-organic + chemical treatments kept the soil pH stable.

Figure 1. The impact of different fertilization methods on soil chemical properties at four maize 

growth stages: (a) soil pH; (b) soil total nitrogen; (c) soil total phosphorus; (d) soil total 

potassium; (e) soil organic matter; (f) soil alkali-hydrolysis nitrogen; (g) soil available 

phosphorus; and (h) soil available potassium. Values are mean and standard deviation (± 

SD, n = 3), different letters indicate significant difference at the 0.05 level. 
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 Figure 1. The impact of different fertilization methods on soil chemical properties at four maize growth
stages: (a) soil pH; (b) soil total nitrogen; (c) soil total phosphorus; (d) soil total potassium; (e) soil
organic matter; (f) soil alkali-hydrolysis nitrogen; (g) soil available phosphorus; and (h) soil available
potassium. Values are mean and standard deviation (± SD, n = 3), different letters indicate significant
difference at the 0.05 level.
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3.2. Soil Enzyme Activity

The invertase activity treated with chemical fertilizer treatment in all maize growth stages was
lower than that of no fertilizer (Figure 2, p <0.05). Moreover, soil phosphatase levels were elevated in
response to the bio-organic + chemical group especially at the maturity stage (p < 0.05).

 

Figure 2. The impact of fertilization methods on soil enzyme activity at four maize growth 

stages: (a) Invertase, (b) Phosphatase, and (c) Urease. Values are mean and standard 

deviation (±SD, n = 3), and different letters correspond to significantly different values as 

determined via one-way ANOVA (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The impact of different fertilization methods on the relative abundances of the top 

four fungi genera during stage of (a) seedling, (b) jointing stage, (c) heading period, and (d) 

maturity. Values are mean and standard deviation (±SD, n = 3), different letters correspond to 

significantly different values as determined via one-way ANOVA (p < 0.05). 

Seedling stage Jointing stageHeading period Maturity

In
v
e
rt

a
s

e
 (

m
g

/g
 s

o
il
)

0.00

0.05

0.10

0.15

0.20

a b c

 Seedling stageJointing stageHeading period Maturity

U
re

a
s

e
 (

m
g

/g
 s

o
il
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No Fertilizer

Bio-organic + Humic Acid

Bio-organic + Chemical

Chemical Fertilizer

 Seedling stageJointing stageHeading period Maturity

P
h

o
s
p

h
a
ta

s
e

(m
g

/g
 s

o
il
)

0

10

20

30

40

a

ab

a

b b
ab

a

c

a

b

b

b
a

b

a

c

b

a

b

ab

a

a

b

b

b b

aa

c

b

a

b

ab
a a

b

a
a a a c

a

b
b

b

c

a
ab

 

Humicola Guehomyces Mortierella Fusarium

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
(%

)

0

5

10

15

20

25

30

a b

c d Humicola Guehomyces Mortierella Fusarium

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
(%

)

0

5

10

15

20

25

30
No Fertilizer

Bio-organic + Humic Acid

Bio-organic + Chemical

Chemical Fertilizer

Humicola Guehomyces Mortierella Fusarium

R
e
la

ti
v
e

 a
b

u
n

d
a

n
c

e
(%

)

0

10

20

30

40

50

Humicola Guehomyces Mortierella Fusarium

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
(%

)

0

5

10

15

20

25

30

a

b

ab

ab

a

a

a

a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

a

b b a

a

a

a

a

a

a

a

ab

bc

a

c a

a

a
a

a
a

aa

a

a

a

a ab

a

bc
c

a

a
a

a

a
a

a
a

Figure 2. The impact of fertilization methods on soil enzyme activity at four maize growth stages:
(a) Invertase, (b) Phosphatase, and (c) Urease. Values are mean and standard deviation (±SD, n = 3),
and different letters correspond to significantly different values as determined via one-way ANOVA
(p < 0.05).

3.3. Fungal Taxonomic Classification and Relative Abundance

After filtering, we obtained 2,070,714 sequences from the illumina MiSeq sequencing run (Table 1),
of which 34,033–47,208 were obtained for each soil sample (mean 43,140). Read lengths ranged from
200 to 260 bp. We assessed the fungal community diversity based on the relative abundance of OTUs.
Across samples, the most abundant fungal phyla were Ascomycota (54.15–78.13%), Basidiomycota
(11.65–32.69%), and Mortierellomycota (4.12–11.94%) (Figure 3; Table S1). In addition, the minor
fungal phyla and their relative abundances were Chytridiomycota (0.4–5.59%) and Glomeromycota
(0.06–1.58%) (Figure 3; Table S1). Despite some degree of fluctuation in the relative levels of these
dominant fungal phyla after the application of different fertilization treatments, the difference between
the four treatments was mostly not statistically significant. However, soil from the jointing stage that was
treated with bio-organic + humic acid showed an increased relative abundance of Mortierellomycota
and reduced relative abundance of Ascomycota (p < 0.05). Furthermore, chemical fertilizer reduced
the relative abundance of Basidiomycota at the maize jointing and maturity stages compared with the
bio-organic + humic acid treatment (p < 0.05; Table S1).
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Table 1. Illumina Mi-Seq sequenced fungal data and fungal community diversity indices (at 97% sequence similarity) based on the ITS nrRNA gene.

Period of
Growth Sample Quality

Sequences
Fungal
Sequences

Number of
Species a

Chao 1
Richness a

Shannon’s
Diversity a

PD _Whole
_Tree a

Simpson’s
Diversity a

Coverage
a (%)

Seedling
stage

No Fertilizer 44,165 ± 842.0 43,841 ± 817.0 426 ± 32.0 a 568 ± 32.0 ab 4.91 ± 0.34 a 103.48 ± 12.64 ab 0.0113 ± 0.0150 a 99.60
Bio-organic + Humic Acid 42,243 ± 5929 41,950 ± 5852 490 ± 33.0 a 666 ± 46.0 a 5.51 ± 0.05 a 118.05 ± 3.600 a 0.0033 ± 0.0040 b 99.53
Bio-organic + Chemical 40,350 ± 3217 40,124 ± 3183 406 ± 16.0 a 515 ± 20.0 b 5.20 ± 0.17 a 95.53 ± 4.430 b 0.0033 ± 0.0400 ab 99.66
Chemical Fertilizer 42,251 ± 6977 41,961 ± 6914 407 ± 43.0 a 511 ± 56.0 b 5.09 ± 0.46 a 98.01 ± 9.400 ab 0.0216 ± 0.0310 ab 99.67

Jointing
stage

No Fertilizer 44,948 ± 2914 44,585 ± 2896 430 ± 17.0 a 574 ± 45.0 a 5.08 ± 0.15 a 101.12 ± 4.080 a 0.0001 ± 0.0001 ab 99.60
Bio-organic + Humic Acid 43,838 ± 3143 43,480 ± 3128 434 ± 19.0 a 581 ± 35.0 a 5.27 ± 0.14 a 100.80 ± 3.810 ab 0.0045 ± 0.0060 b 99.58
Bio-organic + Chemical 44,785 ± 1227 44,415 ± 1153 425 ± 3.00 a 569 ± 26.0 a 4.90 ± 0.13 a 95.86 ± 1.520 ab 0.0153 ± 0.0200 a 99.60
Chemical Fertilizer 41,566±2349 41,295 ± 2352 400 ± 36.0 a 534 ± 58.0 a 5.09 ± 0.28 a 88.30 ± 7.630 b 0.0065 ± 0.0090 ab 99.62

Heading
period

No Fertilizer 45,884 ± 546.0 45,564 ± 484.0 380 ± 28.0 b 481 ± 45.0 b 4.74 ± 0.69 a 99.77 ± 11.03 b 0.0706 ± 0.0920 a 99.67
Bio-organic + Humic Acid 42,116 ± 1548 41,801 ± 1569 501 ± 10.0 a 657 ± 28.0 a 5.33±0.38 a 114.66 ± 2.570 ab 0.0190 ± 0.0250 a 99.52
Bio-organic + Chemical 44,280 ± 1429 43,931 ± 1402 587 ± 36.0 a 776 ± 67.0 a 5.63 ± 0.27 a 132.97 ± 7.740 a 0.0123 ± 0.0160 a 99.44
Chemical Fertilizer 43,644 ± 1206 43,323 ± 1192 530 ± 68.0 a 707 ± 76.0 a 5.75 ± 0.49 a 127.42 ± 14.92 a 0.0109 ± 0.0140 a 99.52

Maturity

No Fertilizer 44,248 ± 1426 43,911 ± 1445 562 ± 37.0 a 747 ± 69.0 a 5.52 ± 0.11 a 128.34 ± 5.270 a 0.0025 ± 0.0030 a 99.43
Bio-organic + Humic Acid 43,964 ± 1426 43,657 ± 2751 692 ± 96.0 a 692 ± 96.0 a 5.82 ± 0.07 a 124.95 ± 11.35 a 0.0014 ± 0.0020 a 99.53
Bio-organic + Chemical 42,428 ± 2002 41,579 ± 1480 674±133 a 674 ± 133 a 5.31 ± 0.25 a 133.09 ± 20.21 a 0.0088 ± 0.0120 a 99.50
Chemical Fertilizer 45,264 ± 4131 44,821 ± 4131 613±53.0 a 613 ± 53.0 a 5.31 ± 0.28 a 107.93 ± 5.010 a 0.0107 ± 0.0150 a 99.58

a The data was calculated from 34,033 fungal sequences per soil sample. b Different letters within the same column indicate significant difference between the treatments in individual
sampling time tested using a one-way analysis of variance (ANOVA) (p < 0.05).
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Additional genus-level classification revealed > 400 fungal genera in our samples. The whole
fungal community was different even among the samplings at the genus level (Figure S1) and the
20 dominant fungal genera showed differently under different fertilization methods at different
maize growth stages (Figure S2). Among them, the most abundant and successfully identified
genera were Humicola (8.38–28.48%), Mortierella (4.12–11.32%), Fusarium (9.35–20.81%), and Guehomyces
(2.35–8.20%). Relative Mortierella abundance was usually not significantly different, except for soil
samples that were collected during the jointing stage of maize. In this case, the bio-organic + humic acid
treatment exhibited the highest Mortierella abundance of all treatments. Moreover, although the relative
abundance of Fusarium was not significantly different, Fusarium abundance marginally fell for the
bio-organic + humic acid application, especially in the heading stage of maize (Figure 4). Conversely,
the relative Guehomyces and Humicola levels were significantly affected by the chemical and bio-organic
+ humic acid fertilizers, respectively. The relative Humicola levels from the soil samples collected in
the maize seedlings decreased (p < 0.05), and the bio-organic + humic acid treatment exhibited the
lowest abundance of the maize seedlings of all treatments. Likewise, the abundance of Guehomyces was
the lowest during the maturing stage when treated with chemical fertilizer. In addition, some fungal
genera were affected by the growth cycle of maize inconsistently. The relative abundances of two
Ascomycota genera (Coniochaeta and Chloridium) and one Basidiomycota genus (Mrakiella) decreased
or increased with maize development (Figure S3).

 

Figure 2. The impact of fertilization methods on soil enzyme activity at four maize growth 

stages: (a) Invertase, (b) Phosphatase, and (c) Urease. Values are mean and standard 

deviation (±SD, n = 3), and different letters correspond to significantly different values as 
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Figure 4. The impact of different fertilization methods on the relative abundances of the top four fungi
genera during stage of (a) seedling, (b) jointing stage, (c) heading period, and (d) maturity. Values are
mean and standard deviation (±SD, n = 3), different letters correspond to significantly different values
as determined via one-way ANOVA (p < 0.05).

3.4. Fungal Community Diversity

We assessed overall fungal community diversity across differently treated samples. In order to
control for survey effort, we randomly downsampled sequences to the minimum depth found in any
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sample (i.e., 34,033 sequences). Our analyses showed that fertilization methods exerted a minimal
impact on the number of phylotypes and on fungal alpha-diversity indices, including Shannon and
Simpson diversity (Table 1).

3.5. Fungal Community Structure

The NMDS results show that fungal community composition varied among fertilization
methods (Figure 5). The fungal communities at the maize heading and maturity stage in the
bio-organic + chemical and chemical fertilizer treatments were separated from those in the no fertilizer
and bio-organic + humic acid treatments along the NMDS2 axis (dashed line 5–1), implying that
different fertilization methods affected the community structure of black soil fungi. Simultaneously,
the fungi community sampled at the first two sampling dates of bio-organic + chemical treatment
was independent from those sampled during the latter two sampling dates (along the NMDS1).
This difference illustrated that the soil fungal community also responded to the growth stage of
maize. Overall, these findings suggested that the fungal community was not only affected by different
fertilization methods but also by growth stage.

Diversity 2020, 12, x FOR PEER REVIEW 9 of 15 

 

impact on the number of phylotypes and on fungal alpha-diversity indices, including Shannon and 
Simpson diversity (Table 1). 

3.5. Fungal Community Structure 

The NMDS results show that fungal community composition varied among fertilization 
methods (Figure 5). The fungal communities at the maize heading and maturity stage in the bio-
organic + chemical and chemical fertilizer treatments were separated from those in the no fertilizer 
and bio-organic + humic acid treatments along the NMDS2 axis (dashed line 5–1), implying that 
different fertilization methods affected the community structure of black soil fungi. Simultaneously, 
the fungi community sampled at the first two sampling dates of bio-organic +chemical treatment was 
independent from those sampled during the latter two sampling dates (along the NMDS1). This 
difference illustrated that the soil fungal community also responded to the growth stage of maize. 
Overall, these findings suggested that the fungal community was not only affected by different 
fertilization methods but also by growth stage. 

 
Figure 5. The nonmetric multidimensional scaling (NMDS) plot for soil fungal communities under 
different fertilization methods. Differently shaped and colored symbols correspond to different 
sampling dates and different fertilization methods, respectively. The fungal communities of the maize 
heading stage and maturity stage in bio-organic + chemical and chemical fertilizer treatments were 
separated from those in no fertilizer and bio-organic + humic acid treatment along the NMDS2 axis 
(dashed line–1). 

3.6. The Relationship between Soil Properties and Fungal Community Composition 

The fungal community structure in soil treated with bio-organic + humic acid and bio-organic + 
chemical was similar to the no fertilizer treatment but distinct from the chemical fertilizer treatment 
along RDA1 axes (Figure 6a). The Mantel test highlighted that AP, OM, and TN dictated the structure 
of the fungal communities, suggesting a strong link between soil fungal community structure with 
the alteration of soil properties (Table 2). Chemical fertilizer treatment was positively correlated with 
AP, while OM was positively correlated with bio-organic + humic acid treatment. Correlation 
analysis, also, showed that Guehomyces was negatively associated with AP and Mortierella was 
positively correlated with OM (Figure 6b), which was consistent with our results that chemical 
fertilizer markedly heightened the AP content, thereby decreasing specific fungal taxa, particularly 

Figure 5. The nonmetric multidimensional scaling (NMDS) plot for soil fungal communities under
different fertilization methods. Differently shaped and colored symbols correspond to different sampling
dates and different fertilization methods, respectively. The fungal communities of the maize heading
stage and maturity stage in bio-organic + chemical and chemical fertilizer treatments were separated
from those in no fertilizer and bio-organic + humic acid treatment along the NMDS2 axis (dashed
line–1).

3.6. The Relationship between Soil Properties and Fungal Community Composition

The fungal community structure in soil treated with bio-organic + humic acid and bio-organic +

chemical was similar to the no fertilizer treatment but distinct from the chemical fertilizer treatment
along RDA1 axes (Figure 6a). The Mantel test highlighted that AP, OM, and TN dictated the structure
of the fungal communities, suggesting a strong link between soil fungal community structure with
the alteration of soil properties (Table 2). Chemical fertilizer treatment was positively correlated
with AP, while OM was positively correlated with bio-organic + humic acid treatment. Correlation
analysis, also, showed that Guehomyces was negatively associated with AP and Mortierella was positively
correlated with OM (Figure 6b), which was consistent with our results that chemical fertilizer markedly
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heightened the AP content, thereby decreasing specific fungal taxa, particularly Guehomyces, or that
bio-organic + humic acid fertilization was of positive connection with OM via RDA analysis and then
to some extent increased Mortierella abundance.
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Table 2. Correlation Analysis of the Soil Fungal Community and Environmental Factors.

Environmental Factors r Value p Value

pH −0.08865 0.75
Organic matter (OM) 0.2156 0.011
Total nitrogen (TN) 0.1816 0.021

Total phosphorus (TP) 0.122 0.112
Total potassium (TK) −0.1194 0.854

Alkaline nitrogen (AN) 0.1219 0.134
Available phosphorus (AP) 0.3166 0.001
Available potassium (AK) 0.1504 0.064

Phosphatase (P2O5) 0.139 0.056
Urease (NH3+-N) 0.125 0.087

Sucrase −0.01976 0.553

The data were used to analyze the correlation between the fungal community structure and physical and chemical
factors by integrating data from the four sampling periods. Values marked in bold indicate significance at
p < 0.05 level.

4. Discussion

4.1. Impact of Different Fertilization Strategies on the Properties of Soil

It was quite evident that different fertilization methods altered soil properties, such as P and N.
Among them, chemical fertilizer significantly enhanced AP content; soil possesses strong adsorption
for phosphorus, which can be released by chemical fertilizer [28]. Furthermore, bio-organic + chemical
fertilizer contributed to soil OM and N content in two ways: one was the direct input as the bio-organic
fertilizer itself contains OM, and the other is the indirect effect of increasing the OM and N content in
the field by increasing crop yield and stubble residue [29].

4.2. Impact of Different Fertilization Treatments on Soil Enzymes

We found that invertase activity was lessened by the application of chemical fertilizer. A previous
study noted that pH and invertase activity were significantly positively correlated [30]. Therefrom,
we deemed that chemical fertilizer resulted in a reduction of invertase activity via decreasing soil pH,
which would be an important direction of future research. Additionally, Liu et al. (2017) pointed out
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that as the amount of chemical fertilizer increased or there was too much chemical fertilizer, invertase
activity showed a remarkably downward trend [31].

In our experiments, we also observed an increase in phosphatase activity following the application
of bio-organic + humic acid, which was because the bio-organic + humic acid not only enhanced soil
organic colloids but also provided extra nutrient for soil, thereby ameliorating soil fertility, promoting
microorganism reproduction, and indirectly increasing soil phosphatase activity [32,33].

4.3. Impact of Fertilization Treatments on Fungal Diversity in Soil

Our study discovered an interesting phenomenon: fungi species number and Chao 1 richness
during the heading stage of maize were notably higher in soil treated with bio-organic + chemical and
chemical fertilizer compared with no fertilizer (p < 0.05; Table 1). We proposed that this phenomenon
may be caused by the addition of chemical fertilizers, which could result in an imbalance of soil nutrients
and soil pH, thereby disrupting the normal growth and metabolism of some microorganisms [34].
Yet, fungi may use specialized organs, such as hyphae, to obtain large amounts of nutrients from crop
roots or other nutrient sources for their own metabolism [35,36]. This study also could not exclude the
influence of the growth period on the fungal community. Soil microbial biomass reached its maximum
at the maize heading stage, which might be the reason for processing topdressing of crop in the jointing
period (seen material: the addition of urea). Topdressing of crop further caused an increase in soil
moisture and available nitrogen, which promoted the strengthening of root metabolism, increased
secretions, and led microorganisms to use more nutrients for reproduction. Meanwhile, during the
heading stage, the demand for crop nutrients in the soil decreased, thereby boosting soil microbial
biomass [37].

4.4. Impact of Fertilization Treatments on Fungal Community Structure

Different fertilization treatments inevitably changed soil conditions which affected the formation
and structure of microbial communities [10]. For example, Humicola and Fusarium abundance decreased
with the application of bio-organic + humic acid, which further supported the viewpoint of Song et al.
(2018), who found that Humicola and Fusarium abundance was negatively correlated with bio-organic
+ humic acid [38]. Humicola and Fusarium abundance, major common crop diseases, were reduced,
implying that bio-organic humic acid possibly could inhibit the spread of plant pathogens [39]. Another
noteworthy result was that Mortierella abundance, known as antagonize pathogenic fungi, such as
Atheliales, seemed to increase with the addition of bio-organic + humic acid, further conforming that
the bio-organic + humic acid may obstruct the growth of pathogenic fungi [40]. Moreover, through
NMDS and fungal relative abundance analysis, we found that the fungal community was not only
impacted by fertilization methods but also the maize growth stage (Figure S3), which was consistent
with previous studies [41].

4.5. The Relationship between Soil Properties and the Composition of Fungal Communities

Chemical and bio-organic + humic acid fertilization were closely related with soil indexes (AP,
OM), which indirectly led to alterations of the fungal community structure. Maina et al. (2009)
found that Guehomyces abundance was significantly negatively correlated with AP [42]. Furthermore,
a positive connection of AP with chemical fertilizer application was found by Cai et al. (2015) [28].
Based on our results, we came to an assumption that chemical fertilizer may heighten the AP content,
thereby decreasing specific fungal taxa like Guehomyces. Simultaneously, the fungal community was
influenced by bio-organic + humic acid application, which was possibly linked with OM via RDA
analysis [43]. Mortierella, regarded as an indicator of rich OM and nutrients, was positively correlated
with OM [44], which conformed to the results that bio-organic + humic acid fertilization to some extent
increased Mortierella abundance.
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4.6. Impact of Different Fertilization Treatment on Soil-Borne Plant Pathogens

We concluded that the relative abundance of dominant Fusarium and Humicola genera was to a
certain extent decreased with the application of bio-organic + humic acid. Several Fusarium species,
including F. oxysporum Schltdl. (1824) and F. equiseti (Corda) Sacc. (1886), are the causal agents of
root rot [45], and Humicola is the pathogen that induces root rot on other commercial crops [40].
Additionally, we found that the addition of bio-organic + humic acid not only decreased the abundance
of pathogens from these fungal genera but also decreased the abundance of relatively minor fungal
genera, such as Nigrospora. Nigrospora is a pathogen that causes crop root rot and is also the causative
agent of wilt disease (data not shown; Figure S4) [7]. So, our study provided the hypothesis that
bio-organic + humic acid may decrease the population of soil-borne plant pathogens and help to inhibit
the prevalence of plant diseases. Further research, such as isolating pathogenic species and pathogen
inhibition experiment, is needed to determine if the reductions of these genera would really reduce
crop pathogens.

5. Conclusions

Our results clearly illustrate that bio-organic + humic and chemical fertilization indirectly alter
fungal community structure in black soil via changing soil properties (especially AP). Chemical
fertilizer markedly heightened the AP content, thereby decreasing specific fungal taxa like Guehomyces.
Bio-organic + humic acid fertilization showed a positive connection with OM through RDA analysis,
and then OM content was positively associated with Mortierella abundance, which was in line with
the result that bio-organic + humic acid fertilization to some extent increases Mortierella abundance.
In addition, we found that bio-organic + humic fertilization decreased the relative abundance of several
potential crop pathogens, such as Fusarium, Humicola, and Nigrospora, providing further support for
the idea that organic fertilizers might help to control crop disease. Taken together, these findings help
to improve our fundamental understanding of the interactions between fertilizers, soil properties,
and fungal communities. Additionally, our results may provide a scientific basis for black soil fertility
cultivation by applying chemical fertilizer prudently.
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genera, Figure S3: Seasonal changes of the relative fungal genera abundances of (a) Mrakiella, (b) Coniochaeta,
and (c) Chloridium at the four maize growth stages, Figure S4: Effect of different fertilization methods on the
relative abundances of soil pathogen Nigrospora at the four maize growth stages, Table S1: Relative abundance (%)
of fungal phyla of all soil samples.
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