Landscape and climate influence the patterns of genetic diversity and inbreeding in Cerrado plant species

Luciana Cristina Vitorino, Mateus Neri Oliveira Reis, Layara Alexandre Bessa, Ueric José Borges de Souza and Fabiano Guimarães Silva

Table S1. Species or subspecies, number of microsatellite locus and reference article used to obtain the genetic parameters: Observed Heterozygosity (Ho), Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficients (*Fis*) for Cerrado plant populations.

Species or Subspecies	Number of	
Species of Subspecies	locus	Reference
Annona coriacea	10	Ribeiro, Priciane Cristina Correa, et al. "Transferability and characterization of nuclear microsatellite markers in populations of <i>Annona coriacea</i> (Annonaceae), a tree from the Brazilian Cerrado." <i>Brazilian Journal of Botany</i> 37.3 (2014): 353- 356
Annona crassiflora	10	Collevatti, Rosane G., et al. "Contrasting spatial genetic structure in <i>Annona crassiflora</i> populations from fragmented and pristine savannas." Plant systematics and evolution 300.7 (2014): 1719-1727.
	10	Pereira, M. F., et al. "Development of microsatellite markers in <i>Annona crassiflora</i> Mart., a Brazilian Cerrado fruit tree species." Molecular ecology resources 8.6 (2008): 1329-1331.
Aspidosperma polyneuron	16	Ferreira-Ramos, Ronai, et al. "Microsatellite markers for <i>Aspidosperma polyneuron</i> (Apocynaceae), an endangered tropical tree species." <i>American journal of botany</i> 98.11 (2011): e300-e302.
Campomanesia adamantium	7	Crispim, Bruno do Amaral, et al. "Relationship between genetic variability and land use and land cover in populations of <i>Campomanesia adamantium</i> (Myrtaceae)." <i>Diversity</i> 10.4 (2018): 106.
Caryocar brasiliense	10	Collevatti, Rosane G., et al. "Short-distance pollen dispersal and high self-pollination in a bat-pollinated neotropical tree." <i>Tree Genetics & Genomes</i> 6.4 (2010): 555-564.
	8	Antiqueira, Lia Maris Orth Ritter, et al. "Genetic structure and diversity of <i>Copaifera langsdorffii</i> Desf. in Cerrado fragments of the São Paulo State, Brazil." <i>Revista Árvore</i> 38.4 (2014): 667-675.
Copaifera langsdorffii	8	Carvalho, Ana Cristina Magalhães de, et al. "Diversidade genética, endogamia e fluxo gênico em pequena população fragmentada de <i>Copaifera langsdorffii.</i> " <i>Brazilian Journal of Botany</i> (2010): 599-606.
	8	Sebbenn, A. M., et al. "Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree <i>Copaifera langsdorffii</i> Desf." <i>Heredity</i> 106.1 (2011): 134-145.
Diworokaudya wollic	19	Souza, Helena Augusta Viana E., et al. "A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species." <i>Annals of botany</i> 119.2 (2017): 239-252.
Dimorphandra mollis	9	Souza, Helena AV, et al. "Development of microsatellite markers for <i>Dimorphandra mollis</i> (Leguminosae), a widespread tree from the Brazilian cerrado." <i>American journal of botany</i> 99.3 (2012): e102-e104.

	9	Telles, M. P. C., et al. "Discovery and characterization of new microsatellite loci in <i>Dipteryx alata</i> vogel (Fabaceae) using next-generation sequencing data." <i>Genetics and Molecular Research</i> 16.2 (2017).
Dipteryx alata	8	Tarazi, Roberto, et al. "High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree <i>Dipteryx alata</i> Vog. (Fabaceae)." <i>Genetics and Molecular Biology</i> 33.1 (2010):
	11	78-85. Soares, Thannya Nascimento, et al. "Development of microsatellite markers for the neotropical tree species Dipteryx alata (Fabaceae)." American journal of botany 99.2 (2012): e72-e73.
Eugenia dysenterica	10	Zucchi, Maria Imaculada, et al. "Genetic structure and gene flow in <i>Eugenia dysenterica</i> DC in the Brazilian Cerrado utilizing SSR markers." Genetics and Molecular Biology 26.4 (2003): 449-457.
Euterpe edulis	18	Gaiotto, Fernanda A., Dario Grattapaglia, and Roland Vencovsky. "Genetic structure, mating system, and long- distance gene flow in heart of palm (<i>Euterpe edulis</i> Mart.)." <i>Journal of Heredity</i> 94.5 (2003): 399-406.
Ficus eximia	11	Nazareno, Alison Gonçalves, et al. "Transferability and characterization of microsatellite markers in two Neotropical Ficus species." <i>Genetics and Molecular Biology</i> 32.3 (2009): 568- 571.
Hancornia speciosa cuyabensis	7	Collevatti, Rosane G., et al. "Unravelling the genetic differentiation among varieties of the Neotropical savanna tree <i>Hancornia speciosa</i> Gomes." <i>Annals of botany</i> 122.6 (2018): 973-984.
Hancornia speciosa gardinerii	7	Collevatti, Rosane G., et al. "Unravelling the genetic differentiation among varieties of the Neotropical savanna tree <i>Hancornia speciosa</i> Gomes." <i>Annals of botany</i> 122.6 (2018): 973-984.
Hancornia speciosa pubescens	7	Collevatti, Rosane G., et al. "Unravelling the genetic differentiation among varieties of the Neotropical savanna tree <i>Hancornia speciosa</i> Gomes." <i>Annals of botany</i> 122.6 (2018): 973-984.
Hancornia speciosa speciosa	7	Collevatti, Rosane G., et al. "Unravelling the genetic differentiation among varieties of the Neotropical savanna tree <i>Hancornia speciosa</i> Gomes." <i>Annals of botany</i> 122.6 (2018): 973-984.
Handroanthus serratifolius	6	Collevatti, Rosane Garcia, et al. "High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species." <i>Plant systematics</i> <i>and evolution</i> 300.7 (2014): 1671-1681.
Handroanthus chrysotrichus	6	contrasting fine-scale spatial genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species." <i>Plant systematics</i> <i>and evolution</i> 300.7 (2014): 1671-1681.
Handroanthus impetiginosus	6	contrasting fine-scale spatial genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species." <i>Plant systematics</i> <i>and evolution</i> 300.7 (2014): 1671-1681.
Hymenaea courbaril	6	effective population size in a germplasm bank of <i>Hymenaea</i> courbaril var. stilbocarpa (Leguminosae), an endangered tropical tree: recommendations for conservation." <i>Genetic</i> resources and cron evolution 56 6 (2009): 797-807
Manihot esculenta	9	Siqueira, M. V. B. M., et al. "Microstellite polymorphisms in cassava landraces from the Cerrado biome, Mato Grosso do Sul, Brazil." <i>Biochemical Genetics</i> 48.9-10 (2010): 879-895.
Metrodorea nigra	9	(Rutaceae) from a small forest remnant in Brazil assessed with microsatellite markers." <i>Genetics and Molecular</i> <i>Research</i> 11.1 (2012): 10-16.

		Abreu, Aluana Gonçalves, et al. "SSR characterization of
Oryza glumaepatula	18	Oryza glumaepatula populations from the Brazilian Amazon
		and Cerrado biomes." Genetica 143.4 (2015): 413-423.
		Cruz, Mariana V., et al. "Isolation and characterization of
Plathymenia reticulata	9	microsatellite markers for Plathymenia reticulata
		(Fabaceae)." American Journal of Botany 99.5 (2012): e210-e212.
		Antiqueira, Lia Maris Orth Ritter, and Paulo Yoshio
	0	Kageyama. "Genetic diversity of four populations of Qualea
	0	grandiflora Mart. in fragments of the Brazilian
		Cerrado." Genetica 142.1 (2014): 11-21.
Qualea grandiflora		de Oliveira Buzatti, Renata Santiago, José Pires de Lemos-
		Filho, and Maria Bernadete Lovato. "Development of
	10	microsatellite markers in Qualea grandiflora (Vochysiaceae)
	10	and transferability to congeneric species, typical trees of the
		Brazilian savanna." Biochemical Systematics and Ecology 56
		(2014): 75-79.
		de Oliveira Buzatti, Renata Santiago, José Pires de Lemos-
		Filho, and Maria Bernadete Lovato. "Development of
Qualea multiflora	10	microsatellite markers in <i>Qualea grandiflora</i> (Vochysiaceae)
		and transferability to congeneric species, typical trees of the
		Brazilian savanna." Biochemical Systematics and Ecology 56
		(2014): 75-79.
		de Oliveira Buzatti, Renata Santiago, Jose Pires de Lemos-
		Fillo, and Maria Bernadete Lovato. Development of
Qualea parviflora	10	and transforzbility to congeneric enories tunical trace of the
		Brazilian sayanna" Biochamical Systematics and Ecology 56
		(2014): 75-79
		de Moura Tania Maria et al "Genetic diversity and spatial
		genetic structure in fragmented populations of <i>Solanum</i> spp
Solanum crinitum	5	from the Brazilian savannah, based on microsatellite
		loci." Scientia Forestalis 37.82 (2009): 143-150.
		de Moura, Tania Maria, et al. "Genetic diversity and spatial
Solanum lycocarpum 5	_	genetic structure in fragmented populations of <i>Solanum</i> spp.
	5	from the Brazilian savannah, based on microsatellite
		loci." Scientia Forestalis 37.82 (2009): 143-150.
		Braga, A. C., and R. G. Collevatti. "Temporal variation in
Tabebuia aurea	10	pollen dispersal and breeding structure in a bee-pollinated
		Neotropical tree." Heredity 106.6 (2011): 911-919.
		Collevatti, Rosane Garcia, et al. "High genetic diversity and
	6	contrasting fine-scale spatial genetic structure in four
Tabebuia roseoalba	0	seasonally dry tropical forest tree species." Plant systematics
		and evolution 300.7 (2014): 1671-1681.
		Feres, J. M., et al. "Mating system parameters at hierarchical
	8	levels of fruits, individuals and populations in the Brazilian
		insect-pollinated tropical tree, Tabebuia roseo-alba
		(Bignoniaceae)." Conservation Genetics 13.2 (2012): 393-405.
		Wartins, Ana Paula V., et al. Microsatellite markers for
Vellozia gigantea	6	to the Brazilian campos rupostres." Amarican Isured of
		Botany 00.7 (2012): o280 o201
		Dowing 79.7 (2012). 6209-6291.

Figure S1. Distribution of genetic diversity indices and the inbreeding coefficient for the *Campomanesia adamantium* populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S2. – Distribution of the genetic diversity indices and inbreeding coefficients of the *Copaifera langsdorffii* populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the Cerrado centroid. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S3. Distribution of the genetic diversity indices and inbreeding coefficients for the *Dimorphandra mollis* populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S4. Distribution of genetic diversity indices and inbreeding coefficients of the populations of *Dipteryx alata* sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S5. Distribution of the genetic diversity and inbreeding coefficients of the *Eugenia dysenterica* populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S6. Distribution of the genetic diversity indices and the inbreeding coefficients of the populations of *Hancornia speciosa cuyabensis, Hancornia speciosa gardinerii, Hancornia speciosa pubescens,* and *Hancornia speciosa sampled* in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S7. Distribution of the genetic diversity indices and inbreeding coefficients of the populations of *Handroanthus chrysotrichus*, *Handroanthus serratifolius*, *Handroanthus impetiginosus*, *Tabebuia aurea*, and *Tabebuia roseoalba* sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S8. Distribution of the genetic diversity indices and inbreeding coefficients of the of *Manihot esculenta* populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S9. Distribution of the genetic diversity indices and inbreeding coefficients of the *Oryza* glumaepatula populations sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S10. – Distribution of the genetic diversity indices and inbreeding coefficients off the populations of *Qualea grandflora, Qualea multiflora,* and *Qualea parviflora* sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S11. Distribution of the genetic diversity indices and inbreeding coefficients for the populations of *Solanum crinitum* and *Solanum lycocarpum* sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Figure S12. Distribution of the genetic diversity indices and inbreeding coefficients recorded in the populations of *Vellozia gigantea* sampled in the Cerrado biome (A). Quantile regression for the relationships between the Observed (Ho) and Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficient (*Fis*), and the distance from the centroid of the Cerrado. Figures B, C, D, and E show the triangle-shaped envelopes of the 0.05 (red line) and 0.99 (black line) quantile fits.

Table S2. Values referring to parameter β (b₁) and significance (*P*) obtained in quantile regressions (quantiles 0.05 and 0.99) relating genetic diversity data, Observed Heterozygosity (Ho), Expected Heterozygosity (HE), Allelic Richness (*AR*), and inbreeding coefficients (*Fis*) and distance (km) of plant species populations, in relation to the center of the Cerrado biome. Positive and significant β values indicate an increase in values, with an increase in distance, and negative and significant β values indicate a decrease in values, with an increase in distance.

Species or	Ho		HE		AR		Fis	
Subspecies	0.05	0.99	0.05	0.99	0.05	0.99	0.05	0.99
	<i>b</i> ₁ = -	<i>b</i> ¹ = -	$b_1 =$	$b_1 = -$	$b_1 = -$	$b_1 = -$	<i>b</i> ¹ =	$b_1 =$
Annona coriacea	0.00003,	0.02623,	0.00004,	0.03199,	0.00006,	0.00339,	0.04690,	0.00002,
and Annona	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =
crassiflora	0.04670	0.00764	0.05872	0.00224	0.00630	0.00114	0.00264	0.06780
	$b_1 =$	$b_1 =$	$b_1 =$	<i>b</i> ¹ =	$b_1 =$	$b_1 =$	$b_1 = -$	<i>b</i> ₁ = -
Campomanesia	0.00023,	0.00033,	0.00027,	0.00038,	0.00006,	0.00022,	0.00006,	0.00003,
adamantium	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =	P =	P =	P =
	0.00080	0.00008	0.00012	0.00025	0.02347	0.00134	0.00080	0.00274
	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 =$
Covaifera	0.00026,	0.00012.	0.00007,	0.00014.	0.00003,	0.00142.	0.00016,	0.00023,
langsdorffii	P =	P =	P =	<i>P</i> =	<i>P</i> =	P =	<i>P</i> =	P =
8))	0.00000	0.00044	0.03267	0.00236	0.00620	0.00000	0.00000	0.00074
	$b_1 =$	$b_1 = -$	$b_1 =$	$b_1 =$	$b_1 =$	$b_1 =$	$b_1 =$	$b_1 =$
Dimorphandra	0.00006,	0.00009,	0.00016,	0.00014,	0.00051,	0.00106,	0.00011,	0.00003,
mollis	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =
	0.05480	0.01774	0.01008	0.00000	0.03834	0.00000	0.00631	0.02571
	$b_1 = -$	$b_1 =$	$b_1 =$	<i>b</i> ¹ = -	$b_1 =$	0.00001	$b_1 =$	$b_1 =$
	0.00018,	0.00046,	0.00001,	0.00033,	0.00090,	-0.00301,	0.00000,	0.00000,
Dipteryx alata	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =
	0.02519	0.00002	0.91231	0.00017	0.00253	0.00121	1.00000	1.00000
	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 = -$
Eugenia	0.00134,	0.00068,	0.00129,	0.00114,	0.01103,	0.01463,	0.00073,	0.00051,
dysenterica	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =
0	0.00000	0.00000	0.00000	0.00000	0.00001	0.00000	0.00090	0.02568
	1	7	1	7	7	7	7	7
	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 =$
Hancornia	0.00020, D	0.00041, D	0.00021, D	0.00000, D	0.0005 <i>3</i> ,	0.00023, D	0.00014, D	0.00017,
	P =	P =	P =	P =	P = 0.00201	P =	P =	P = 0.00101
	0.00005	0.00000	0.00036	0.41288	0.00321	0.00036	0.00000	0.00101
	<i>b</i> ¹ = -	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 =$	$b_1 =$	$b_1 =$
Handroanthus	0.00018,	0.00043	0.00036,	0.00062,	0.00048,	0.00000,	0.00036,	0.00007,
and Tabebuia	P =	P =	P =	P =	<i>P</i> =	<i>P</i> =	P =	P =
	0.00000	0.00000	0.00012	0.00026	0.00031	0.31278	0.00000	0.00120
	$b_1 =$	$b_1 =$	<i>b</i> ¹ = -	<i>b</i> ¹ = -	$b_1 = -$	<i>b</i> ¹ = -	$b_1 = -$	$b_1 = -$
Manihot	0.00000,	0.00164,	0.00133,	0.00063,	0.01963,	0.01197,	0.00354,	0.00140,
esculenta	P =	P =	P =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =	P =
	1.00000	0.00008	0.00125	0.00127	0.00000	0.00012	0.00022	0.00132
	<i>b</i> ¹ = -	$b_1 = -$	$b_1 = -$	<i>b</i> ¹ = -	$b_1 = -$	<i>b</i> ¹ = -	$b_1 = -$	$b_1 =$
Oryza	0.00410,	0.00240,	0.00993,	0.00381,	0.02807,	0.01298,	0.00095,	0.00623,
glumaepatula	P =	P =	P =	P =	<i>P</i> =	P =	P =	P =
-	0.00218	0.00001	0.00014	0.00071	0.00036	0.00004	0.36452	0.00124

	<i>b</i> ¹ = -	<i>b</i> ¹ =	<i>b</i> ¹ =	<i>b</i> ¹ =	<i>b</i> ¹ = -	<i>b</i> ¹ =	<i>b</i> ¹ =	<i>b</i> ¹ =
Quality	0.00033,	0.00009,	0.00050,	0.00044,	0.00464,	0.00222,	0.00036,	0.00076,
Qualea	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =
	0.00487	0.02715	0.00039	0.00009	0.00530	0.00001	0.04584	0.00007
	$b_1 = -$	$b_1 =$	$b_1 = -$	$b_1 =$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$
Calanna	0.00034,	0.00021,	0.00067,	0.00013,	0.00038,	0.00021,	0.00052,	0.00012,
Solanum	P =	P =	<i>P</i> =	P =	<i>P</i> =	P =	P =	P =
	0.00576	0.00587	0.00321	0.00593	0.00000	0.00037	0.00324	0.00463
Vellozia gigantea	$b_1 =$	$b_1 =$	$b_1 = -$	$b_1 = -$	$b_1 = -$	$b_1 =$	$b_1 = -$	$b_1 =$
	0.00003,	0.00036,	0.00039,	0.00026,	0.05497,	0.01922,	0.00028,	0.00017,
	P =	P =	<i>P</i> =	<i>P</i> =	<i>P</i> =	<i>P</i> =	P =	P =
	0.10230	0.00000	0.00087	0.01735	0.00000	0.00001	0.00000	0.00012
	<i>b</i> ¹ =	<i>b</i> ¹ = -	$b_1 =$	<i>b</i> ¹ = -	$b_1 =$	<i>b</i> ¹ = -	<i>b</i> ¹ = -	<i>, b</i> ¹ = -
All species ±	0.00081,	0.00035,	0.00032,	0.00012,	0.00216,	0.03935,	0.00008,	0.00060,
SD	P =	P =	P =	P =	<i>P</i> =	P =	P =	P =
	0.00000	0.00000	0.00029	0.00000	0.06613	0.00000	0.67009	0.02590