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Abstract: The previously unknown cyclopropane spiro-fused with isoxazol-5-one ((1RS,3SR)-1-(4-
methylbenzyl)-7-phenyl-5-oxa-6-azaspiro[2.4]hept-6-en-4-one) was synthesized from benzylidenei-
soxazol-5-one in 34% yield via double methylene transfer from diazomethane. The structure of the
compound was established based on 1H, 13C, and 2D NMR spectroscopy and high-resolution mass
spectrometry, and confirmed by X-ray diffraction analysis.
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1. Introduction

The chemistry of donor-acceptor cyclopropanes (DACs) is an actively developing
area of research. These reactive strained compounds have been used for the synthesis of
carbo- [1,2] and heterocyclic [3,4] molecules including natural compounds [5]. Reliable
methods for the synthesis of DACs are available [6], which mainly include the Corey–
Chaykovsky reaction and cyclopropanation using diazo compounds.

Most widespread DACs are monocyclic, while DACs spiro-fused with heterocycles
are rare. Cyclopropanes spiro-fused with oxindole [7–9], imidazolone [10], oxazolone [11],
and pyrazolone [12] are known. Several types of cyclopropanes spiro-fused with isoxazol-
5-ones were obtained by the Corey–Chaykovsky reaction of benzylideneisoxazol-5-ones
with dimethylsulfonium phenacylide [13] or by the reaction of isoxazol-5-ones with ben-
zylidenemalononitrile [14].

In our previous works, we have used different isoxazole derivatives as starting ma-
terials for the synthesis of nitrogen heterocycles [15–18]. In search of new isoxazole sub-
strates, we became interested in isoxazol-5-ones spiro-fused with a cyclopropane ring.
Such compounds could be prepared by the cyclopropanation of the C=C bond of 4-
benzylideneisoxazol-5-ones. In this work, we report that the reaction of 4-(4-methylbenzyli-
dene)-3-phenylisoxazol-5-one with diazomethane proceeds as a double methylene transfer,
affording a benzyl-substituted cyclopropane spiro-fused with isoxazol-5-one. Note that
examples of the double methylene transfer are rarely found in the literature [19–22], and,
to the best of our knowledge, have never been observed in the cyclopropane formation.

2. Results and Discussion

Initially, the Corey–Chaykovsky reaction using dimethylsulfoxonium iodide and NaH
was tried for the cyclopropanation of (Z)-benzylideneisoxazolone 1 (Scheme 1). However,
even at low temperatures, only the tarring of the reaction mixture was observed, and no
cyclopropane 2 or other products were detected. Then, we turned to a diazomethane
method. Etherial diazomethane solution was prepared from N-nitroso-N-methylurea and
KOH pellets at 0 ◦C and added dropwise to a solution of benzylideneisoxazolone 1. To
our delight, several products were observed according to TLC. The reaction mixture was
subjected to flash chromatography on silica gel, and a major product 3 comprising two new
methylene groups was isolated. Additional recrystallization from the Et2O–hexane mixture
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afforded compound 3 in 34% yield in pure form as a single (1RS,3SR)-diastereomer. The
structure of compound 3 was established on the basis of 1H, 13C, and 2D NMR spectra, as
well as HRMS.
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it is unstable, and readily suffers the C–C bond cleavage to form 1,3-dipole 4 due to the 
effective stabilization of both a cationic center by a tolyl substituent and an anionic center 
in the isoxazole cycle. Further hydride shift leads to ethylideneisoxazol-5-one 5, which, in 
turn, undergoes cyclopropanation yielding the relatively stable benzyl-substituted cyclo-
propane 3. 

Scheme 1. Synthesis of spirocyclopropane 3.

Finally, the structure and stereochemistry of product 3 were confirmed by monocrystal
X-ray diffraction analysis (Figure 1). In the cyclopropane ring, a benzyl substituent is
trans-oriented to a phenyl substituent of the isoxazolone.
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Figure 1. Molecular structure of spirocyclopropane 3; thermal ellipsoids are drawn at a 50% probabil-
ity level.

The possible mechanism explaining the formation of cyclopropane 3 is depicted in
Scheme 2. We assume that, initially, tolyl-substituted cyclopropane 2 is formed. Probably,
it is unstable, and readily suffers the C–C bond cleavage to form 1,3-dipole 4 due to
the effective stabilization of both a cationic center by a tolyl substituent and an anionic
center in the isoxazole cycle. Further hydride shift leads to ethylideneisoxazol-5-one 5,
which, in turn, undergoes cyclopropanation yielding the relatively stable benzyl-substituted
cyclopropane 3.
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Scheme 2. Proposed mechanism for the formation of spirocyclopropane 3. 
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3. Materials and Methods
3.1. General Instrumentation

The melting point was determined on a Stuart SMP30 melting-point apparatus. NMR
spectra were recorded on a Bruker Avance 400 spectrometer in CDCl3. 1H and 13C{1H}
NMR spectra were calibrated according to the residual signal of CDCl3 (δ = 7.26 ppm)
and the carbon atom signal of CDCl3 (δ = 77.0 ppm), respectively. High-resolution mass
spectra were recorded with a Bruker maXis HRMS-QTOF, via electrospray ionization.
Thin-layer chromatography (TLC) was conducted on aluminum sheets precoated with
SiO2 ALUGRAM SIL G/UV254. Column chromatography was performed on silica gel
60 M (0.04–0.063 mm). Diethyl ether was distilled over sodium metal and stored over
it. 4-(4-Methylbenzyl)-3-phenylisoxazol-5(4H)-one 1 was prepared using the reported
procedure [23].

Single crystals of compound 3 were grown by the slow evaporation of its solution
in diethyl ether–hexane mixture. Crystallographic data were collected on a SuperNova,
single source at offset/far, HyPix3000 diffractometer using graphite monochromatic Cu–Kα

radiation (λ = 1.54184 Å). The crystal was kept at 99.97(16) K during data collection. Using
the Olex2 [24], the structure was solved with the ShelXT [25] structure solution program
using the Intrinsic Phasing method and refined with the ShelXL [26] refinement package
using Least Squares minimization. CCDC 2330024 contains crystallographic data for
compound 3. The data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures.

3.2. (1RS,3SR)-1-(4-Methylbenzyl)-7-phenyl-5-oxa-6-azaspiro[2.4]hept-6-en-4-one (3)

To a suspension of isoxazolone 1 (0.900 mmol, 237 mg) in diethyl ether (0.3 M, 3 mL),
a large excess of the ~0.3 M solution of CH2N2 in diethyl ether (30 mL), prepared from N-
nitroso-N-methylurea and KOH pellets at 0 ◦C (CAUTION! Diazomethane is carcinogenic
and potentially explosive), was added dropwise over 20 min. After full consumption of the
starting material (checked by TLC), the reaction was quenched with 10% aqueous acetic
acid and extracted with ethyl acetate. Combined organic layers were washed with water
and brine, and dried over Na2SO4. Evaporation of the solvent and flash column chromatog-
raphy (eluent petroleum ether–ethyl acetate, 5:1) followed by subsequent recrystallization
from the diethyl ether–hexane mixture gave 89 mg (34%) of product 3.

Mp: 110–112 ◦C. 1H NMR (400 MHz, CDCl3), δ, ppm: 7.55–7.51 (m, 1H), 7.48–7.44
(m, 4H), 7.14 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 3.16 (qd, J = 14.9, 7.1 Hz, 2H),
2.49–2.42 (m, 1H), 2.37–2.34 (m, 1H), 2.34 (s, 3H), 2.04 (dd, J = 8.8, 5.1 Hz, 1H). 13C{1H} NMR
(100 MHz, CDCl3), δ, ppm: 177.3, 167.0, 136.3, 135.8, 131.3, 129.5, 129.2, 128.2, 127.0, 126.8,
35.4, 31.8, 30.8, 26.2, 21.0. HRMS (ESI-TOF) calculated for C19H18NO2 [M + H]+ 292.1332;
found 292.1330.

4. Conclusions

The previously unknown cyclopropane spiro-fused with isoxazol-5-one ((1RS,3SR)-
1-(4-methylbenzyl)-7-phenyl-5-oxa-6-azaspiro[2.4]hept-6-en-4-one) was synthesized from
benzylideneisoxazol-5-one in 34% yield via double methylene transfer from diazomethane.
The structure of the compound was established based on NMR spectroscopy and high-
resolution mass spectrometry, and confirmed by X-ray diffraction analysis.

Supplementary Materials: The following supporting information can be downloaded online. 1H,
13C{1H}, 2D NMR spectra of compound 3; crystallographic data for compound 3.
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