Electronic Supplementary Information (ESI)

Three-Step Synthesis of N-(7-chloro-4-morpholinoquinolin-2-yl) benzamide from 4,7-Dichloroquinoline

Deiby F. Aparicio Acevedo, Marlyn C. Ortiz Villamizar, and Vladimir V. Kouznetsov *

Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A. 680006, Bucaramanga, Colombia.

Contents

1.	IR spectra of products	2
2.	ESI-MS spectra of products	4
3.	NMR spectra of products	7
4.	In silico prediction of physicochemical properties	16

Figure S1. FT-IR spectrum of compound 2.

Figure S2. FT-IR spectrum of compound 3.

Figure S3. FT-IR spectrum of compound 4.

2.ESI-MS spectra of synthesized compounds

Figure S4. ESI-MS spectrum of compound 2.

Figure S5. ESI-MS spectrum of compound 3.

Figure S6. ESI-MS spectrum of compound 4.

3. ¹H-NMR and ¹³C-NMR spectra of synthesized compounds

Figure S7. ¹H-NMR spectrum of compound 2 (Expansion of the aromatic zone of the spectrum)

Figure S8. ¹³C-NMR spectrum of compound 2: A) ¹³C-NMR spectrum. B) DEPT-135 spectrum

Figure S9. ¹H-NMR spectrum of compound 3 and its expansion of the aromatic zone

Figure S10. ¹³C-NMR spectrum of compound 3: A) ¹³C-NMR spectrum. B) DEPT-135 spectrum

Figure S11. ¹H-NMR spectrum of compound 4.

Figure S12. ¹³C-NMR spectrum of compound 4: A) ¹³C-NMR spectrum. B) DEPT-135 spectrum

Figure S13. Expansion of the aromatic zone of the COSY spectrum of compound 3

Figure S14. Expansion of the aromatic zone of the HSQC spectrum of compound 3

Figure S15. Expansion of the aromatic zone of the COSY spectrum of compound 4

Figure S16. Expansion of the aromatic zone of the HSQC spectrum of compound 4

Figure S17. HMBC spectrum of compound 4

4. In silico prediction of physicochemical properties

Table S1. Bioavailability radars, the calculated molecular descriptors for quinoline molecules **1,3-4** according to the online SwissADME database and Lipinski's rule analysis.

Comp.	MW ^a	cLogP⁵	HBA℃	HBD₫	RB ^e	TPSAf	Lipinski's rule violations
1	198.05	3.21	1	0	0	12.89	0
3	317.17	3.89	2	1	3	41.99	0
4	367.84	3.16	3	1	4	54.46	0

^a Molecular Weight (g/mol); ^b Logarithm of the partition coefficient between *n*-octanol and water; ^c Number of hydrogen-bond acceptors, ^d Number of hydrogen-bond donors; ^e Number of Rotatable Bonds ^f Polar Surface Area (Å²).

Figure S18. Overview of the BOILED-Egg construction for molecules **1,3-4** using the online SwissADME database. Brain or IntestinaL EstimateD permeation graph (BOILED-Egg), an accurate predictive model that combines the lipophilicity (cLogP) and polarity (TPSA) of the tested small molecules.

Figure S19. Estimation of the most probable macromolecular targets of small quinoline molecule **1,3-4**, according to the SwissTargetPrediction.