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Abstract: N,N’-dibutyloxamide (1) was prepared by reacting diethyloxalate with n-butylamine
in ethyl alcohol and characterized by microanalytical techniques, FT-IR, and NMR spectroscopy.
Crystals suitable for single crystal X-ray diffraction (SC-XRD) were obtained from an acetonitrile
solution of 1, and the structural characterization showed the presence of intermolecular hydrogen
bonding interactions.
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1. Introduction

Oxamic acid derivatives are an important class of compounds with applications
in fields as varied as medicine [1,2], organic synthesis [3,4], and cultural heritage [5-8].
In particular, the oxalamide fragment can be found in various compounds of synthetic
relevance, including biologically active compounds [9,10], precursors of widely used agents
such as ethylene glycol [11,12], and ligands [13,14].

In this context, N,N’-dibutyloxamide (1) was employed in recent years as a bridging
ligand in polynuclear rhenium, ruthenium, and manganese complexes [15-19], several
of which have been structurally characterized. Despite this, the crystal structure of N,N'-
dibutyloxamide has not been reported to date.

Herein, we report on the spectroscopic and structural characterization of N,N'-
dibutyloxamide (1), which was synthesized from diethyloxalate and n-butylamine.

2. Results and Discussion

N,N’-disubstituted oxalamides can be prepared through the reaction of oxalyl chloride
with the desired amine [20,21], and in more recent years, N,N-dibutyloxamide (1) and other
derivatives were also synthesized by other methods, such as the catalytic carbonylation
of amines [22,23]. In the present work, however, compound 1 was prepared through a
modification of the classical synthetic route developed by Rice and co-workers in the
1950s [24] by reacting diethyloxalate with n-butylamine in ethanol (Scheme 1).

0 OEt
EtOH > <
H s 2 N N, A + 2EtOH
~ U~ 0
EtO o

Scheme 1. Synthetic pathway for the preparation of compound 1.

Compound 1 was fully characterized by means of elemental analysis, melting point
determination, FT-IR, 1H-, and 13C-NMR spectroscopy.
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The middle infrared spectrum shows the characteristic peaks for the N-H stretching
mode at 3298 cm !, in agreement with previous reports [22,23,25], while a series of peaks
between 2850 and 3000 cm ™! can be assigned to the C—H stretching modes of the butyl
chain, and those of the carbonyl groups fall at 1659 cm ! (Figure S1).

The 'H-NMR spectrum in CDCl; (Figure S2) shows the NH signal as a broad singlet
falling at 7.46 ppm and the quadruplet signal of the -CH,— groups bound to the nitrogen
atoms at 3.31 ppm, while those of the remaining protons of the n-butyl chain fall between
0.9 and 1.6 ppm. The 3C{'H} spectrum in the same solvent features a signal at 160 ppm
assigned to the carbonyl moieties, while the remining four signals resonating between
13 and 40 ppm can be attributed to the alkyl carbon atoms (Figure S3).

The recrystallization of compound 1 from acetonitrile yielded colorless block-shaped
crystals that were structurally characterized by SC-XRD analysis.

Compound 1 crystallizes in the triclinic space group P-1 (Tables S1-54), with half a
molecule in the asymmetric unit (Figure 1). The two carbonyl groups are in the typical
antiperiplanar conformation, with an O=C-C=0 torsion angle of 180° (Table S4), the ox-
alamide core being perfectly planar. The C-C, C=0, and C-N bond lengths (1.542, 1.238,
and 1.327 A, respectively; Table S2) are very close to the corresponding average values
of 1.533, 1.226, and 1.328 A, respectively, found for the 258 differently substituted free
oxalamides retrieved from the Cambridge Crystallographic Data Centre (CCDC) [26]. The
two n-butyl groups lie on opposite sides of the oxalamide core and are oriented perpen-
dicularly to it in an extended conformation (C1-C2-C3—C4 dihedral angle: 179°; Figure 1,
Table S4). This is in analogy with the conformation adopted by compound 1 in metal
complex [{(CO)3Re(u-17*-1)Re(CO)3}2(i-pbin),] (pbin = phenyl-1,4-bisisonicotinate) [16].
In contrast, in [I(CO)3Ru(y-;y4-1)Ru(CO)3I], the n-butyl groups of 1 assume a folded con-
formation (dihedral angle within the alkyl chain: 67°) [18], and in the remaining com-
plexes [(CO)sM(u-7*-1)(u-bpp)M(CO)3] [M = Mn, Ru; bpp = bis-(4-pyridyl)propane] [17],
[L(CO)3Mn(u-1*-1)Mn(CO)3L] (L = 4-picoline, 4-phenylpyridine), and [{(CO);Mn(u-1*-
1)Mn(CO)3}2(p-pby)2] (pby = 4,4’-bipyridine) [19], the n-butyl chains are on the same side
of the oxalamide core. The conformational variability in the abovementioned complexes
can be ascribed to templating effects exerted by the metal ion, steric hindrance induced by
other ligands, and other packing effects.

H1
N1, w

Cl'

C4
C2

C3

c1 H1l

Figure 1. Molecular structure of 1 with the numbering scheme adopted. Displacement ellipsoids
were drawn at the 50% probability level; hydrogen atoms were omitted for clarity, except for those of
the N-H groups; To1x, 1-y, 1-z.

In the crystal packing of compound 1, N-H:--O hydrogen bonding interactions gener-
ating R3(10) motifs [27,28] can be observed between adjacent molecules whose oxalamide
cores are coplanar (Figure 2a and Figure 54, Table 1), forming ribbons running along the
b-axis. These interactions are similar to those observed for other oxalamides featuring
alkyl [25,29,30] or aryl [31-33] substituents. The ribbons formed through the N-H:---O
hydrogen bonds are held together by C-H---O interactions between the carbonyl oxygens
and the hydrogen atoms of the -CHj- groups bound to the nitrogen atoms (Figure 2b and
Figure 5S4, Table 1); they are thus approximately stacked along the a-axis (Figure 2c).
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Figure 2. Intermolecular N-H---O hydrogen bonding (a) and C-H---O (b) interactions found in the
crystal structure and partial view of the crystal packing of compound 1 (c); only hydrogen atoms
involved in intermolecular interactions are shown for clarity. Labeling according to Table 1.

Table 1. Intermolecular interactions of compound 1.

Interaction dp_u (A) dyg..a (A) dp..x (A) ap_p..a ()
N1ii_
a Hik...01 0.86(2) 2.12(2) 2.8727(9) 146.9(16)
b q4iii_ 0.99 2.61 3.499(1) 149.0
H4™...01

Symmetry operations: i =x, -1 +vy,z i =1+x,-1+y,z.

3. Materials and Methods
3.1. General Methods

Solvents and reagents were purchased from TCI (Chennai, India), FluoroChem (Had-
field, UK), and Merck (Rahway, NJ, USA) and were used without further purification.
Deuterated solvents were purchased from Eurisotop (Saint-Aubin-des-Bois, France) and
stored over molecular sieves prior to use. FT-IR measurements were recorded at room
temperature on a Thermo-Nicolet 5700 spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) using KBr pellets with a KBr beam splitter and KBr windows (4000—400 cm ™!,
resolution 4 cm™!). 'H and '3C NMR spectra were carried out in CDCl at room tempera-
ture using a Bruker Avance III HD 600 spectrometer (Bruker, Billerica, MA, USA). Chemical
shifts are reported in ppm (8) and were calibrated to the solvent residue. Elemental anal-
ysis was performed with a CHNS/O PE 2400 series II elemental analyzer (T = 925 °C).
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Uncorrected melting points were determined in capillaries on an FALC mod. C melting
point apparatus.

3.2. X-ray Diffraction Analysis

X-ray diffraction data for compound 1 were collected at 120(2) K on a Rigaku FRE+
diffractometer (Rigaku, Tokyo, Japan), equipped with VHF Varimax confocal mirrors,
an AFC12 goniometer, and a Saturn 724+ detector. The structure was solved with the
ShelXT [34] solution program using dual methods and the model was refined with ShelXL
2018/3 [35] using full-matrix least-squares minimization of F2. Olex2 1.5 [36] was used as
the graphical interface. All hydrogen atoms were included in the model at geometrically
calculated positions and refined using a riding model, except for those of the N-H groups,
which were refined freely.

3.3. Synthesis of N,N'-Dibutyloxamide (1)

Compound 1 was synthesized by a modification of a procedure described in the litera-
ture [24]: diethyloxalate (1.24 g; 8.50 mmol) in 5 mL of ethanol and n-butylamine (1.24 g;
17.0 mmol) in 5 mL of the same solvent were refluxed overnight. The mixture was cooled
at room temperature and the white solid obtained was isolated by filtration on a Gooch
funnel, washed with n-hexane, and air-dried. Colorless block-shaped crystals suitable
for SC-XRD analysis were grown via the slow evaporation of an acetonitrile solution of
the product (2.1 g; 10 mmol; yield = 63 %) M. p. = 152.8-153.5 °C (Lit.: 153-154 °C [24]).
Elemental analysis calculated (%) for C1gHpoN2O,: C 59.97, H 10.07, N 13.99. Found: C
59.61, H 10.38, N 13.52. FT-IR (KBr, 4000-400 cm~1): 3298 vs, 3062 w, 2955 s, 2930 m, 2873 m,
2862 m, 1650 vs, 1532 s, 1466 m, 1438 m, 1369 m, 1307 m, 1244 m, 1218 s, 1147 m, 1115 w,
977 w, 940 w, 759 vs, 557 s, 481 w, 465 w cm~ L. TH NMR (600 MHz, CDCl3) 6: 7.46 (s, br,
2H, NH), 3.31 (q, 4H, CH,CH,CH,CH3), 1.54 (quin, 4H, CH,CH,CH,CHj3), 1.37 (sex, 4H,
CH,CH,CH,CHj3), 0.93 (t, 6H, CH,CH,CH,CHj3) ppm. 3C{'H} NMR (151 MHz, CDCl3) &:
160.0, 39.5, 31.4, 20.1, 13.8 ppm.

4. Conclusions

The structural characterization of N,N’-dibutyloxamide (1), employed in recent years
as a bridging ligand in the field of coordination chemistry, is reported in this paper. Com-
pound 1 was synthesized by reacting diethyloxalate with n-butylamine and was fully
characterized. Crystals suitable for SC-XRD were obtained by the slow evaporation of an
acetonitrile solution of the compound, and the crystal structure shows two antiperiplanar
amide groups and the n-butyl substituents protruding on opposite sides of the oxalamide
plane. The crystal packing is governed by N-H:--O hydrogen bonding interactions leading
to the formation of ribbons, which are held together by C-H---O interactions.

Supplementary Materials: Figure S1: FT-IR spectrum; Figure S2: 'H-NMR spectrum; Figure S3:
I3C{TH}-NMR spectrum; Figure S4: Portion of the crystal packing. Table S1: Crystal data and
refinement parameters; Table S2: Bond lengths; Table S3: Bond ang]les; Table S4: Torsion angles.
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