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Abstract: Sn(IV)-porphyrin complex with trans-dihydroxo axial-ligands and 2-pyridyl peripheral
substituents, namely (trans-dihydroxo)[5,10,15,20-tetrakis(2-pyridyl)porphyrinato]tin(IV) was synthe-
sized and fully characterized by various techniques such as elemental analysis, 1H NMR spectroscopy,
ESI-MS spectrometry, UV-visible spectroscopy, and fluorescence spectroscopy.
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1. Introduction

Sn(IV)-porphyrins are attractive motifs for constructing self-assembled metallopor-
phyrin nanostructures because they can exhibit unique features by adopting functional
ligands in axial positions [1–3]. The role of hydroxo ligands in Sn(IV)-porphyrins has
been investigated and exploited from various chemical perspectives. The X-ray struc-
tural analysis of (trans-dihydroxo)[5,10,15,20-tetrakis(4-pyridyl)porphyrinato]tin(IV) re-
vealed that the hydroxo ligands act as a hydrogen bonding acceptor and the Sn(IV)-
porphyrins are supramolecularly assembled into a two-dimensional network through
hydrogen bonding [4]. The hydroxo ligand can be readily converted to alcoholic or car-
boxylic ligands by acidolysis, resulting in various hexacoordinate Sn(IV)-porphyrin com-
plexes that exhibit interesting functions [5–13]. Sn(IV)-porphyrins with additional binding
sites enable the creation of sophisticated multiporphyrin arrays [14–16] and nanostruc-
tures for application in photocatalysis [17–19]. Here, we report a tin(IV) porphyrin com-
plex with trans-dihydroxo axial-ligand and 2-pyridyl peripheral substituents, namely,
(trans-dihydroxo)[5,10,15,20-tetrakis(2-pyridyl)porphyrinato]tin(IV). Cooperativities be-
tween axial ligands and peripheral functional groups in six-coordinated Sn(IV)-porphyrins
can lead to various assembled structures for the development of interesting porphyrin
materials [20–30].

2. Results and Discussion

The synthetic route used for preparing free-base 5,10,15,20-tetrakis(2-pyridyl)porphyrin
(H2T(2-Py)P) and its Sn(IV) complex (1) is shown in Scheme 1. In brief, H2T(2-Py)P was
reacted with tin(II) chloride in pyridine under aerobic conditions followed by hydrolysis
to afford 1 in high yield. 1 was fully characterized using various techniques, including
elemental analysis, electrospray ionization mass (ESI-MS) spectrometry, 1H NMR, UV–vis
absorption, and fluorescence spectroscopy. The 1H NMR spectrum of 1 in CDCl3 is shown
in Figure S2. The resonance at −7.34 ppm of much higher field by the strong shielding of
porphyrin ring current obviously represents the proton at the axial Sn-OH. On the other
hand, the β-pyrrole and α-pyridyl protons of 1 are in the deshielding zone, and their
resonances appear at 9.05−9.15 ppm. The remaining protons of the pyridyl group appear
at 7.79, 8.17, and 8.35 ppm. 13C NMR confirmed the aromatic as well as porphyrinic carbon
centers present at 1 as shown in Figure S3. In the FT-IR spectra of 1, the absorption peaks
at 1025 cm−1 and 795 cm−1 belong to the bending vibration of C-H and the out-of-plane
bending vibration of C-H in the aromatic ring, respectively. The peaks at 3050 cm−1,
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1580 cm−1, and 1430 cm−1 are attributed to the stretching vibrations of C-H, C=C, and C-N
in the pyrrole ring, respectively. The peaks at 3605 cm−1 are assigned to the stretching
vibrations of the OH signal of the axial hydroxyl group present in 1. As shown in Figure S6,
a peak at 771.12 is observed in the ESI-MS spectrum of 1, corresponding to the molecular ion
peak [1 + H] +. The UV-vis absorption of 1 at 427 nm represents the strong Soret band, while
the Q-bands appear at 522, 560, and 600 nm (Figure S7). This UV-vis absorption spectral
pattern is quite similar to that of 4-pyridyl and 3-pyridyl analogues [5]. The fluorescence of
1 is observed as a two-band emission at 601 and 652 nm, as shown in Figure S8.
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3. Materials and Methods

All chemicals were purchased from TCI (Tokyo Chemical Industry Co. LTD, Tokyo, Japan)
and used without further purification. Elemental analysis was carried out using an EA
1110 Fisons analyzer (Used Lab Machines Limited, London, England). 1H NMR spectra
were obtained using a Bruker BIOSPIN/AVANCE III 400 spectrometer at 293 K (Bruker
BioSpin GmbH, Silberstreifen, Rheinstetten, Germany). Electrospray ionization mass (ESI-MS)
spectra were recorded using a Thermo Finnigan linear ion trap quadrupole mass spectrom-
eter (Thermo Fisher Scientific, Waltham, MA, USA). Steady-state UV–Vis and fluorescence
spectra were recorded using a Shimadzu UV-3600 and Shimadzu RF-5301PC fluorescence
spectrophotometer, respectively (Shimadzu, Tokyo, Japan). FT-IR (Fourier transform infrared
spectroscopy) spectra (KBr) were obtained using a Shimadzu FTIR-8400S spectrophotometer
(Shimadzu, Tokyo, Japan).

3.1. 5,10,15,20-tetrakis(2-pyridyl)porphyrin H2T(2-Py)P

Freshly distilled pyrrole (1.10 mL, 16 mmol) was added dropwise to a solution of
2-pyridinecarboxaldehyde (1.52 mL, 16 mmol) in propionic acid (300 mL) under reflux.
After 4 h, the solvent was evaporated to dryness under reduced pressure. Then, the
resulting oily residue was dissolved in 10 mL of N,N’-dimethylformamide (DMF) and
neutralized by adding 1 mL of triethylamine. Subsequently, the reaction mixture was kept
in a refrigerator for 12 h. The solid precipitate was filtered, washed with hot water, and then
dried in an oven. The crude compound was purified by column chromatography (SiO2,
eluent: CHCl3/EtOH = 95:5) to afford 5,10,15,20-tetra(2-pyridyl)porphyrin H2T(2-Py)P.
The product was recrystallized from CHCl3/n-hexane to give violet purple crystals. Yield:
0.544 g (22%). Anal. calculated for C40H26N8: C, 77.65; H, 4.24; N, 18.11. Found: C, 77.48;
H, 4.57; N, 17.95. 1H NMR (400 MHz, CDCl3, ppm): δ −2.84 (s, 2H, NH), 7.71 (m, 4H,
H4-Py), 7.89 (m, 4H, H3-Py), 8.21 (m, 4H, H5-Py), 8.85 (s, 8H, β-pyrrole), 9.14 (s, 4H, H2-Py).
UV-vis (CHCl3): λnm (log ε), 419 (5.73), 516 (4.60), 552 (4.43), 593 (4.15), 650 (4.07). Emission
(CHCl3): λnm 653, 712.

3.2. Synthesis of (trans-dihydroxo)[5,10,15,20-tetrakis(2-pyridyl)porphyrinato]tin(IV) (1)

H2T(2-Py)P (0.31 g, 0.5 mmol) was dissolved in 40 mL of pyridine, and SnCl2·2H2O
(0.225 g, 1 mmol) was added to the above solution and the mixture was refluxed for 12 h.
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After removal of all the volatiles in vacuo, the residue was dissolved in CHCl3 and filtered
through a celite pad to remove the excess SnCl2. The filtrate was evaporated, and the solid
residue was re-dissolved in a 3:1 mixture of THF and H2O (80 mL). K2CO3 (0.276 g, 2 mmol)
was added to the reaction mixture, which was then refluxed for 12 h. After removal of
THF under reduced pressure, the mixture was cooled to 10 ◦C until precipitation of a
reddish compound. The filtered solid compound was dried in an oven. The crude product
was recrystallized from CHCl3/CH3CN to give Sn(OH)2T(2-Py)P (1) as a red crystalline
compound. Yield: 0.27 g (70%). Anal. calculated for C40H26N8O2Sn: C, 62.44; H, 3.41; N,
14.56; R, 19.59. Found: C, 62.18; H, 3.76; N, 14.43; R, 19.63. 1H NMR (400 MHz, CDCl3,
ppm): δ−7.34 (s, 2H, Sn-OH), 7.79 (m, 4H, H4-Py), 8.17 (m, 4H, H3-Py), 8.38 (m, 4H, H5-Py),
9.05–9.15 (m, 12H, β-pyrrole + H2-Py). 13C NMR (400 MHz, CDCl3, ppm): δ 122.97, 123.02,
130,79, 132.68, 135.23, 146.60, 149.07, 159.31, 159.63. FT-IR (KBr): 3605, 3050, 1630, 1580,
1565, 1510, 1460, 1430, 1345, 1260, 1210, 1075, 1025, 990, 845, 795, 765, 725, 680, 555 cm−1.
UV-vis (CHCl3): λnm (log ε), 427 (5.70), 522 (3.65), 560 (4.30), 600 (4.10). Emission (CHCl3):
λnm 601, 652.

4. Conclusions

A tin(IV) porphyrin complex with trans-dihydroxo axial-ligands and 2-pyridyl pe-
ripheral substituents was synthesized and characterized by elemental analysis, 1H and
13C NMR spectroscopy, FT-IR spectroscopy, ESI-MS spectrometry, UV-visible spectroscopy,
and fluorescence spectroscopy. This work can contribute to the design and synthesis of
novel macrocyclic compounds for recognizing important biomolecules.

Supplementary Materials: Figures S1 and S2: 1H NMR spectra of free-base porphyrin and 1,
Figure S3: 13C NMR spectrum of 1, Figure S4: FTIR spectrum of 1, Figures S5 and S6: ESI-MS
spectra of free-base porphyrin and 1, Figure S7: UV-vis absorption spectra of free-base porphyrin and
1, Figure S8: Fluorescence spectra of free-base porphyrin and 1.
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