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Abstract: A two-stage synthesis of 5-aroyl-2-aryl-3-hydroxypyridin-4(1H)-ones (56–66% overall
yields) was carried out by refluxing 5-aroyl-3-(benzyloxy)-2-(het)aryl-4H-pyran-4-ones with ammo-
nium acetate in AcOH and subsequent debenzylation. The prepared N-unsubstituted 4-pyridones
exist in the pyridone tautomeric form.
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1. Introduction

3-Hydroxy-4-pyridones (3,4-HPOs) are well-known bidentate chelation agents for
many metals [1–3]. The first marketed drug possessing a 3,4-HPO scaffold, deferiprone
(Ferriprox), is an iron chelating agent for treating thalassemia approved in 1999 (Figure 1).
Since the pyridine ring offers great possibilities for functionalization, a number of new
3,4-HPO-based polydentate chelators [2,4] and also 3,4-HPO-grafted fabrics for filtering
uranium from wastewater [5] were developed afterward. Moreover, there are some natural
examples of 3,4-HPOs, such as rubrifacine [6] and mimosine (leucenol), an amitotic agent
first isolated from Mimosa pudica [7].
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Figure 1. Some important 3-hydroxy-4-pyridones. 

Additionally, 3-hydroxy-4-pyridones have recently received considerable attention 
as promising metal-binding pharmacophores, such as inhibitors of metalloenzymes, and 
thus are being now intensively investigated to design novel drugs, including antiviral 
ones [8]. As a result, approved HIV integrase strand transfer inhibitors (INSTI) dolute-
gravir, bictegravir, and cabotegravir, as well as several newly developed drug candidates 
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Figure 1. Some important 3-hydroxy-4-pyridones.

Additionally, 3-hydroxy-4-pyridones have recently received considerable attention
as promising metal-binding pharmacophores, such as inhibitors of metalloenzymes, and
thus are being now intensively investigated to design novel drugs, including antiviral
ones [8]. As a result, approved HIV integrase strand transfer inhibitors (INSTI) dolutegravir,
bictegravir, and cabotegravir, as well as several newly developed drug candidates (Figure 1),
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possess a 3,4-HPO structural motif designed to coordinate magnesium ions of HIV integrase
and thus prevent integration of the viral DNA [9–15]. Additionally, the inhibitors of
catechol-O-methyltransferase (contains Mg2+) [16], human cytomegalovirus pUL89 protein
(Mn2+) [17], and influenza cap-dependent endonuclease (Mn2+) [18] were discovered.

However, methods for preparing 3,4-HPOs can dramatically differ depending on the
substituent location and type and may require multi-stage synthetic schemes with restricted
reaction scope [12,19]. For some of them, there is still no efficient synthetic approach.

In this article, we focused our attention on the synthesis of hitherto unknown
N-unsubstituted 5-aroyl-2-(het)aryl-3-hydroxypyridin-4(1H)-ones.

2. Results and Discussion

Recently, we synthesized a series of 5-aroyl-3-(benzyloxy)-2-(het)aryl-4H-pyran-4-ones
1 by acylation of enaminodiones with acylbenzotriazoles via soft enolization [20]. To the
best of our knowledge, no examples of N-unsubstituted 3,4-HPOs 3 bearing 2-(het)aryl and
5-aroyl substituents have been described in the literature to date. Therefore, we decided
to employ the ANRORC reaction of pyrones 1a–c with ammonia to synthesize pyridones
2a–c and then reach desired 3-hydroxy-4-pyridones 3 by the debenzylation of the latter.

We found that pyrones 1a–c on heating at 100 ◦C for 3 h with ammonium acetate in
glacial AcOH afforded corresponding pyridones 2a–c in 61–72% yields (Scheme 1, Table 1).
Subsequent dilution with water and recrystallization from toluene made it possible to
isolate the products in pure form. In the reaction with ethanolic ammonia solution, however,
it turned out that two equivalents of ammonia were involved, and [4-amino-5-(benzyloxy)-
6-phenylpyridin-3-yl](phenyl)methanone was obtained from the corresponding pyrone [20].
Additionally, no reaction appeared when pyrones 1 were refluxed in an ethanolic solution
of ammonium chloride. The reaction mechanism includes the attack of the ammonia
molecule at the C-6 position, followed by the pyrone ring opening and intramolecular
cyclization [21].
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Table 1. Yields of products 2 and 3.

Entry Compounds 1–3 R1 R2 Yield of 2 Yield of 3

1 a Ph furan-2-yl 68 89
2 b 4-ClC6H4 furan-2-yl 72 92
3 c 4-ClC6H4 Ph 61 92

The debenzylation of products 2a–c under the action of TMSI generated in situ in an-
hydrous acetonitrile from TMSCl and NaI allowed us to obtain 5-acyl-2-hetaryl substituted
3,4-HPOs 3a–c in 89–92% yields. It is important to note that the purification of products 3
did not require chromatography and could be achieved by simple recrystallization.

The structures of all synthesized compounds were characterized based on 1H, 13C
NMR (see SM), and IR spectroscopy data and supported by HRMS values. Although
N-unsubstituted pyridones can undergo pyridinol/pyridone tautomerism [22,23], com-
pounds 2 and 3 exist in the pyridone form. The 1H NMR spectra of these compounds display
the presence of the characteristic pyridone H-6 singlet or doublet (JH-6,NH = 3.6–6.6 Hz) at
δ 7.78–7.90 ppm and the downfield singlet or doublet of the NH group at δ 12.14–12.30 ppm.
The 13C NMR spectra show the characteristic peaks of the acyl moiety and the pyridone
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carbonyl group at δ 192.6–194.1 and 168.6–171.6 ppm, respectively. For compound 2, the
NMR signals of the aliphatic methylene group appeared at δ 5.03–5.30 ppm (1H NMR) and
71.5–72.1 ppm (13C NMR).

In summary, we described a convenient two-step way (starting from pyrones) for
synthesizing new 5-aroyl-2-(het)aryl-3-hydroxypyridin-4(1H)-ones in 56–66% overall yields.
This will expand the design possibilities in the search for new inhibitors of metalloenzymes
with antiviral activity.

3. Materials and Methods

NMR spectra were recorded on Bruker Avance III-500 (1H—500 MHz and 13C—126 MHz)
spectrometers (Bruker BioSpin GmbH, Rheinstetten, Germany) in DMSO-d6. Chemical
shifts are reported relative to TMS as an internal standard in ppm, and J values are given
in Hz. IR spectra were recorded on a Shimadzu IRSpirit-T (QATR-S) instrument (FTIR
mode, diamond crystal, Shimadzu Corp., Kyoto, Japan). The mass spectra (ESI-MS) were
measured with a Waters Xevo QTof instrument (Waters Corp., Milford, MA, USA). All
solvents used were dried and distilled per standard procedures. Melting points were
determined on a Stuart SMP40 apparatus. Pyrones 1a–c were prepared according to the
literature data [20].

3.1. General Procedure for the Synthesis of 3-Benzyloxypyridin-4(1H)-ones 2

Pyrone 1 (0.27 mmol) was dissolved in glacial AcOH, and NH4OAc (83.2 mg, 1.08 mmol)
was added. The resulting mixture was stirred at 100 ◦C for 3 h, and then excess water was
added. The precipitate formed was filtered and recrystallized from toluene.

5-Benzoyl-3-(benzyloxy)-2-(furan-2-yl)pyridin-4(1H)-one (2a). Brown solid (68 mg, 68%), mp
190–191 ◦C. IR (ATR) ν 2879, 2854, 1655, 1614, 1540, 1314, 1255, 1188, 999, and 743 cm−1.
1H NMR (500 MHz, DMSO-d6) δ 5.30 (s, 2H, CH2), 6.74 (dd, J = 3.4, J = 1.7, 1H, H-4 furan),
7.17 (d, J = 3.4, 1H, H-3 furan), 7.31–7.39 (m, 3H, Ph), 7.41 (d, J = 7.0, 2H, H-2, H-6 Ph), 7.50
(t, J = 7.7, 2H, H-3, H-5 Ph), 7.61 (t, J = 7.4, 1H, H-4 Ph), 7.72 (d, J = 7.2, 2H, H-2, H-6 Ph),
7.79 (s, 1H, H-6 pyridone), 8.01 (d, J = 1.0, 1H, H-5 furan), and 12.14 (s, 1H, NH). 13C NMR
(126 MHz, DMSO-d6) δ 71.5 (CH2), 112.9, 114.1, 125.3, 126.4, 128.1, 128.16, 128.2, 128.6,
128.9, 129.1, 129.6, 132.7, 137.0, 137.6, 143.6, 144.6, 171.2 (C=O), and 194.1 (C=O). HRMS
(ESI): calculated for C23H18NO4 [M + H]+ 372.1236, found 372.1249.
3-(Benzyloxy)-5-(4-chlorobenzoyl)-2-(furan-2-yl)pyridin-4(1H)-one (2b). Brown solid (79 mg,
72%), mp 194–195 ◦C. IR (ATR) ν 2779, 2682, 1647, 1616, 1536, 1191, 1008, and 794 cm−1.
1H NMR (500 MHz, DMSO-d6) δ 5.28 (s, 2H, CH2), 6.75 (dd, J = 3.4, J = 1.8, 1H, H-4 furan),
7.16 (d, J = 3.4, 1H, H-3 furan), 7.33 (tt, J = 7.2, J = 1.4, 1H, H-4 Ph), 7.37 (t, J = 7.2, 2H,
H-3, H-5 Ph), 7.41 (d, J = 7.0, 2H, H-2, H-6 Ph), 7.56 (d, J = 8.5, 2H, H-3, H-5 Ar), 7.72 (d,
J = 8.5, 2H, H-2, H-6 Ar), 7.83 (s, 1H, H-6 pyridone), 8.01 (d, J = 1.0, 1H, H-5 furan), and
12.21 (s, 1H, NH). 13C NMR (126 MHz, DMSO-d6) δ 71.6 (CH2), 112.9, 114.1, 125.7, 128.1,
128.2, 128.2, 128.5, 130.9, 136.4, 137.0, 137.4, 138.2, 143.5, 143.7, 144.6, 171.2 (C=O), and 193.0
(C=O). HRMS (ESI): calculated for C23H17ClNO4 [M + H]+ 406.0846, found 406.0853.
3-(Benzyloxy)-5-(4-chlorobenzoyl)-2-phenylpyridin-4(1H)-one (2c). Brown solid (68 mg, 61%),
mp 160–161 ◦C. IR (ATR) ν 3019, 2866, 1657, 1613, 1535, 1190, and 752 cm−1. 1H NMR
(500 MHz, DMSO-d6) δ 5.03 (s, 2H, CH2), 7.10–7.19 (m, 2H, Ph), 7.21–7.26 (m, 3H, Ph),
7.49–7.53 (m, 3H, Ph), 7.54–7.57 (m, 2H, Ph), 7.58 (d, J = 8.5, 2H, H-3, H-5 Ar), 7.77 (d, J = 8.5,
2H, H-2, H-6 Ar), 7.90 (d, J = 6.2, 1H, H-6 pyridone), and 12.18 (d, J = 6.2, 1H, NH). 13C
NMR (126 MHz, DMSO-d6) δ 72.1 (CH2), 126.5, 127.7, 128.0, 128.1, 128.25, 128.33, 129.0,
129.6, 131.0, 136.4, 137.1, 138.0, 140.3, 145.5, 171.6 (C=O), and 193.3 (C=O). HRMS (ESI):
calculated for C25H18ClNO3 [M + H]+ 416.1053, found 416.1042.

3.2. General Procedure for the Synthesis of 3-Hydroxypyridin-4(1H)-ones 3

Corresponding pyridone 2 (0.25 mmol) and NaI (69 mg, 0.37 mmol) were dissolved
in anhydrous MeCN (3 mL), and Me3SiCl (53 mg, 0.49 mmol) was added. The solution
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was stirred at 80 ◦C for 1.5 h (TLC monitoring). Then, water (4 mL) was added, and the
precipitated product was filtered and recrystallized from toluene.

5-Benzoyl-2-(furan-2-yl)-3-hydroxypyridin-4(1H)-one (3a). Brown solid (63 mg, 89%), mp
234–235 ◦C. IR (ATR) ν 3334, 3054, 1600, 1482, 1233, and 746 cm−1. 1H NMR (500 MHz,
DMSO-d6) δ 6.77 (dd, J = 3.3, J = 1.3, 1H, H-4 furan), 7.13 (d, J = 3.3, 1H, H-3 furan), 7.46 (t,
J = 7.6, 2H, H-3, H-5 Ph), 7.59 (t, J = 7.3, 1H, H-4 Ph), 7.75 (d, J = 7.5, 2H, H-2, H-6 Ph), 7.78
(d, J = 3.6, 1H, H-6 pyridone), 7.99 (s, 1H, H-5 furan), and 12.24 (s, 1H, NH); the OH proton
was not observed. 13C NMR (126 MHz, DMSO-d6) δ 112.5, 112.8, 119.2, 121.2, 128.0, 129.2,
132.4, 136.6, 137.9, 143.8, 144.1, 144.5, 168.6 (C=O), and 193.7 (C=O). HRMS (ESI): calculated
for C16H12NO4 [M + H]+ 282.0766, found 282.0764.
5-(4-Chlorobenzoyl)-2-(furan-2-yl)-3-hydroxypyridin-4(1H)-one (3b). Brown solid (72 mg, 92%),
mp 298–299 ◦C. IR (ATR) ν 3311, 3060, 2958, 1648, 1523, 1405, 1273, and 736 cm−1. 1H NMR
(500 MHz, DMSO-d6) δ 6.77 (dd, J = 3.1, J = 1.6, 1H, H-4 furan), 7.13 (d, J = 3.3, 1H, H-3
furan), 7.53 (d, J = 8.4, 2H, H-3, H-5 Ar), 7.75 (d, J = 8.4, 2H, H-2, H-6 Ar), 7.81 (d, J = 6.6,
1H, H-6 pyridone), 7.99 (s, 1H, H-5 furan), and 12.30 (d, J = 6.6, 1H, NH); the OH proton
was not observed. 13C NMR (126 MHz, DMSO-d6) δ 112.6, 112.9, 119.3, 120.8, 128.1, 131.1,
136.7, 137.0, 137.2, 143.8, 144.1, 144.7, 168.7 (C=O), and 192.6 (C=O). HRMS (ESI): calculated
for C16H10ClNO4 [M + H]+ 316.0377, found 316.0376.
5-(4-Chlorobenzoyl)-3-hydroxy-2-phenylpyridin-4(1H)-one (3c). Brown solid (75 mg, 92%), mp
292–293 ◦C. IR (ATR) ν 3234, 3070, 1641, 1594, 1379, 1263, 1087, and 752 cm−1. 1H NMR
(500 MHz, DMSO-d6) δ 7.48 (tt, J = 7.3, J = 1.2, 1H, H-4 Ph), 7.52–7.57 (m, 4H, Ph, Ar),
7.75–7.79 (m, 4H, Ar, Ph), 7.88 (d, J = 6.1, 1H, H-6 pyridone), 8.40–9.40 (br s, 1H, OH), and
12.22 (d, J = 6.1, 1H, NH). 13C NMR (126 MHz, DMSO-d6) δ 120.8, 127.4, 128.1, 128.40,
128.43, 129.1, 131.16, 131.19, 136.6, 136.9, 137.3, 146.1, 169.0 (C=O), and 192.7 (C=O). HRMS
(ESI): calculated for C18H12ClNO3 [M + H]+ 326.0584, found 326.0599.

Supplementary Materials: The following supporting information can be downloaded online: Full
1H and 13C NMR spectra of all synthesized compounds.
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