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Abstract: N-(diisopropylphosphanyl)benzamide, PhC(O)NHPiPr2, has been synthesized in good
yield following two alternative procedures that employ benzamide as the starting material. The
first one is a two-step preparation, in which N-(trimetilsilyl)benzamide is reacted with PiPr2Cl
to give the title compound in good yield, whereas the second one is a straightforward synthesis
which converts benzamide into N-(diisopropylphosphanyl)benzamide by reaction with PiPr2Cl in
the presence of N,N-dimethylpyridin-4-amine (DMAP) and triethylamine. NMR spectroscopy and
X-ray diffraction analyses have been performed to characterize the new compound and elucidate
its molecular structure in the solid state. N-(diisopropylphosphanyl)benzamide adds to the limited
family of amido-substituted phosphines, RC(O)NHPR’2, which can be classified as bidentate hybrid
P,O-ligands, both in their neutral and anionic forms, the latter achievable by deprotonation of the
NH group.

Keywords: P ligands; P(III) compounds; sterically demanding ligands; hemilabile ligands

1. Introduction

Bidentate hybrid ligands usually combine donor atoms with intrinsically different
properties, which can be rationalized, in most cases, in terms of the well-known hard/soft
classification proposed by Pearson in the early 1960s [1]. In particular, P,O donor ligands
based on P(III) functionalities and O-containing organic groups, such as ketones, ethers,
carboxylates, or amides, are representative examples of hemilabile ligands [2], which is
easily recognizable when considering, for instance, the type of bonding, and consequent
fluxional behavior and reactivity that they are expected to establish with soft metal centers.
The interest of these systems in transition metal catalyzed processes is evident [3,4].

Besides perfectly fitting into the definition of hemilabile hybrid ligand [5], amido-
substituted phosphines, RC(O)NHPR’2, can straightforwardly be converted into the corre-
sponding monoanions by selective deprotonation of the C(O)NH group, thus enhancing
their versatility in coordination chemistry along with the tendency to act as chelating
ligands. Over the last decades, only a few examples of amido-substituted P(III) ligands,
generated from acetamide [6], picolinamide [7], benzamide, and nicotinamide [8], have
been described and used to prepare several transition metal complexes [6–17].

Herein, we report on the synthesis and spectroscopic and structural characterization of
the sterically demanding N-(diisopropylphosphanyl)benzamide, PhC(O)NHPiPr2, which
incorporates to the class of hemilabile P,O-ligands derived from organic amides.

2. Results and Discussion

Inspired by the reaction strategy reported by Braunstein for the preparation of acetamide-
substituted P,O ligands [6], benzamide was firstly converted into N-trimethylsilylbenzamide,
which was subsequently reacted with PiPr2Cl in toluene at 70 ◦C to obtain the title com-
pound, 1, as an air-sensitive colorless material in a ca. 80% yield (Scheme 1a). In order to
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optimize the synthesis of PhC(O)NHPiPr2 circumventing the first step of the aforementioned
procedure, benzamide was directly treated with an equimolar amount of PiPr2Cl in refluxing
toluene in the presence of DMPA and Net3 (Scheme 1b) [8]. Although the target compound
was actually obtained, the low reaction yield (less than 40%) clearly makes this alternative
procedure (b) less convenient than the two-step synthesis that involves the formation of
N-trimethylsilylbenzamide (a).
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Scheme 1. Two alternative syntheses of N-(diisopropylphosphanyl)benzamide (1) with the corre-
sponding yields based on N-trimethylsilylbenzamide (a) and benzamide (b).

PhC(O)NHPiPr2 was characterized by NMR spectroscopy in solution (CDCl3), with
corresponding informative data summarized as follows: (i) the 31P{1H} NMR spectrum
consists of a singlet at 48.2 ppm; (ii) in the 1H NMR spectrum, the isopropyl groups give
rise to a broad signal at ca. 2.0 ppm assigned to the methyne protons and a multiplet in the
range 1.2–1.0 ppm due to the diasterotopic methyl groups; (iii) the NH proton resonates as
a broad singlet at ca. 6.0 ppm; (iv) in the 13C{1H} NMR spectrum, the CH3 protons generate
two well-defined doublets at 18.8 and 17.9 ppm with 2JCP of 13 and 21 Hz, respectively. In
order to provide additional spectroscopic information, the IR spectrum of 1 was recorded
and two diagnostic absorptions due to the stretching vibrations of the N-H and C = O
bonds were found at 3288 at 1651 cm−1, respectively.

The molecular structure of 1 in the solid state was ascertained by X-ray diffraction analy-
ses on suitable single crystals, which were grown from toluene solutions by slow evaporation
of the solvent at room temperature. Figure 1 shows a representation of a single molecule of
compound 1 together with selected bond distances and angles, whereas views of the corre-
sponding packing diagrams are provided in Figure 2. Similarly to what was observed for
the related phosphanylamide CH3C(O)NHPPh2 [6], the P1, N1, C1, O1, and C2 atoms are
essentially coplanar, with the P lone pair pointing towards the oxygen atom with a deviation
of approximately 15◦ from the plane. This conformation is expected to enthalpically favor
the P,O chelating binding mode in metal complexes. As shown in Figure 2, intermolecular
hydrogen bonds involving the amide groups [N·O 3.025(5) Å, NH·O 2.10(3)] are responsible
for the chain disposition of the molecules of PhC(O)NHPiPr2 in the lattice.
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3. Materials and Methods

All manipulations were carried out using standard Schlenk and glove-box techniques
under an atmosphere of high-purity nitrogen. Solvents were rigorously dried and degassed
before use. N-(trimethylsilyl)benzamide was prepared by a modified version of a previously
reported procedure [18]. Other chemicals were purchased from Sigma-Aldrich and used as
received. NMR spectra were recorded on a Bruker DRX-400 spectrometer. Solvent peaks
were used as the internal reference for 1H and 13C spectra, whereas 31P NMR chemical
shifts were referenced to H3PO4. For elemental analyses, a LECO TruSpec CHN elementary
analyzer was utilized.

Synthesis of N-(diisopropylphosphanyl)benzamide, 1. Method (a): triethylamine
(0.35 mL, 2.5 mmol) and chlorotrimethylsilylane (0.38 mL, 3.0 mmol) were added to a solu-
tion of benzamide (0.30 g, 2.5 mmol) in toluene (20 mL) and allowed to react at room temper-
ature under stirring for 1 h. Solid materials were removed by filtration and the resulting so-
lution was taken to dryness under reduced pressure to afford N-(trimethylsilyl)benzamide
as a colorless solid, which can be stored, or entirely used, as the starting material for the fol-
lowing step of this synthesis. A solution of N-(trimethylsilyl)benzamide (0.10 g, 0.52 mmol)
in toluene (10 mL) was added with PiPr2Cl (0.083 mL, 0.52 mmol) and allowed to stir for
ca. 12 h at 70 ◦C. The volatiles were removed by evaporation under reduced pressure and
the resulting colorless solid substance was washed with pentane (2 × 3 mL) and dried
under vacuum (95 mg, 77%). Method (b): solid samples of benzamide (1.0 g, 8.3 mmol)
and DMAP (0.22 g, 1.8 mmol) were dissolved in toluene (20 mL), after which triethylamine
(1.2 mL, 8.3 mmol) and PiPr2Cl (1.3 mL, 8.3 mmol) were added. The reaction mixture was
heated overnight at 110 ◦C under stirring. The resulting suspension was filtered to obtain a
colorless solution, which was taken to dryness under reduced pressure. The colorless solid
residue was washed with pentane (2 × 5 mL) and dried under vacuum (0.70 g, 36%). 1H
NMR (400 MHz, CDCl3): δ 7.90–7.70 (m, 2H, o-Ph), 7.50–7.30 (m, 3H, m- and p-Ph), 6.06 (br
s, 1H, NH), 1.93 (br s, 2H, CH(CH3)2) 1.20–1.00 (m, 12H, CH(CH3)2) ppm. 31P{1H} NMR
(162 MHz, CDCl3): δ 48.2 (s) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 171.2 (s, C = O),
135.1 (s, C-C = O), 131.8 (br s, o-Ph), 128.8 (s, m-Ph), 127.3 (s, p-Ph), 25.9 (d, 1JCP = 13 Hz,
CH(CH3)2), 18.8 (d, 2JCP = 21 Hz, CH3), 17.9 (d, 2JCP = 8 Hz, CH3) ppm. IR (neat):
3288 (

∼
νN—H), 1651 (

∼
νC = O) cm−1. Anal. Calc. for C13H20NOP: C, 65.8; H, 8.50; N, 5.90.

Found: C, 65.9; H, 8.6; N, 5.9.
X-ray diffraction analyses. A summary of the crystallographic data and the structure

refinement results for compound 1 are given in Table S1 (Supplementary Materials). A
crystal of suitable size for X-ray diffraction analysis was coated with dry perfluoropolyether
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and mounted on glass fibers and fixed in a cold nitrogen stream (T = 213 K) to the goniome-
ter head. Data collection was carried out on a Bruker-Nonius X8kappa APEX II CCD area
detector, using monochromatic radiation λ(Mo Kα) = 0.71073 Å, by means of ω and ϕ
scans with a width of 0.50 degrees. The data were reduced (SAINT) [19] and corrected for
absorption effects by the multi-scan method (SADABS) [19,20]. The structures were solved
by direct methods (SIR-2002) [21] and refined against all F2 data by full-matrix least-squares
techniques (SHELXTL-2018/3) [22,23] minimizing w[Fo2-Fc2]2. All non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were included from calculated positions and
refined riding on their respective carbon atoms with isotropic displacement parameters.
CCDC 2263762 (1) contains the supplementary crystallographic data for this paper. The
data can be obtained free of charge from The Cambridge Crystallographic Data Centre
(https://www.ccdc.cam.ac.uk/structures/) with the number CCDC 2263762.

Supplementary Materials: The following supporting information can be downloaded, Table S1:
crystal data and structure refinement for compound 1; Figures S1–S3: NMR spectra of compound 1;
Figure S4: FT-IR spectrum of compound 1.
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