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Abstract

:

A six-coordinated indium(III) complex (APMe)(imSQMe)In(bipy) (1), bearing two types of redox-active ligands—mono- (imSQMe) and dianion (APMe) of 4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-iminobenzoquinone and 2,2′-bipyridyl—was synthesized and characterized in detail. The intense, well-resolved ESR spectrum of 1 in dichloromethane solution clearly indicates the spin density delocalization between both AP and imSQ ligands. The UV-vis spectrum of 1 possesses an absorption band in the NIR region. The molecular structure of compound 1 was established by single-crystal X-ray diffraction analysis.
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1. Introduction


Plenty of chromophore systems include rich classes of intramolecular charge transfer dyes represented by organic [1,2,3,4], polymer [5,6], organometallic [7], and coordination compounds [8]. A design of metal complexes, which contains both donor and acceptor organic parts coordinated to the metal center and can act as ligand-to-ligand charge-transfer (LL´CT) chromophores, is one of the actual trends in modern chemistry [9,10,11,12,13]. Since the structure and therefore absorption profile, redox potentials, and molecular polarity of LLCT complexes can be tuned easily, these compounds can find application in photochemical charge-transfer and nonlinear optics [14,15,16,17,18,19,20]. Currently, the donor–acceptor complexes of transition metals (Ni [21,22,23,24,25,26], Pd [25,27,28,29], Pt [20,25,28,29,30,31,32,33]) with redox-active ligands are the most studied and perspective compounds for application to dye-sensitized solar cells. The development of sibling LL´CT chromophores based on main-group metals seems exceedingly attractive since it would allow one to cheapen the potential production process. Recently, we have synthesized several LL´CT gallium complexes, bearing the quinone-type redox-active ligands as donor and 2,2′-bipyridyl as acceptor [34,35,36]. Furthermore, in the complexes with two differently charged o-quinone ligands, the absorption maximum shifts to the near IR region [35]. Here, we report the synthesis and characterization of a new indium(III) complex containing o-iminobenzoquinone ligands in different redox states (radical anion and dianion) along with neutral 2,2′-bipyridyl in the metal coordination sphere.




2. Results


The exchange reaction between equimolar quantities of anhydrous InI3, 2,2´-bipyridyl, and sodium salts of singly and doubly reduced 4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-iminobenzoquinone ((imSQMe)Na and ((APMe)Na2, respectively) leads to the formation of the hexacoordinated heteroleptic indium complex (APMe)(imSQMe)In(bipy) (1) (Scheme 1).



Complex 1 is extremely sensitive to atmospheric oxygen and moisture, both in solution and in the crystalline state. It is highly soluble in THF, has moderate solubility in dichloromethane, and is insoluble in toluene and saturated hydrocarbons. The composition and structure of 1 were established by spectroscopic methods (IR, ESR, UV-Vis-NIR spectroscopy) as well as by elemental and X-ray diffraction analyses (Supplementary Materials).



The IR spectrum of 1 is characterized by a set of lines due to the presence of two different charged o-iminobenzoquinone fragments along with the bipyridyl ligand. The presence of two differently charged o-iminobenzoquinone ligands in 1 was also detected by ESR spectroscopy. The hyperfine structure of the ESR spectrum of 1 (Figure 1) is caused by hyperfine coupling of unpaired electron with magnetic nuclei 115In (95.7%, I = 9/2, μN = 5.534) [37], two equivalent protons 1H (99.98%, I = 1/2, μN = 2.7928) [37] and two equivalent nitrogen atoms 14N (99.63%, I = 1, μN = 0.4037) [37] of both o-iminobenzoquinone ligands. The detected intense signal specifies the fast (on the ESR time scale) migration of the unpaired electron between radical anion and dianion redox-active ligands.



The electronic absorption spectrum of complex 1 was recorded in the range of 200–1100 nm in dichloromethane at 298 K (Figure 2). Besides high-intensity absorption bands in the near UV range (235 nm, ε = 25137; 289 nm, ε = 17443; 311 nm, ε = 15808) corresponding to the π—π* transitions in aromatic compounds, the visible and near-IR regions contain a broad low-intensity absorption band (765 nm, ε = 907), corresponding to the LL’CT between AP and imSQ redox-active ligands.



Despite the low reflectivity of crystalline samples 1 (see experimental section for details), we succeeded in selecting a crystal sample grown from CH2CL2/hexane solution and to carry out single-crystal X-ray diffraction (SC XRD) study. According to SC XRD data, 1 crystallizes in orthorhombic Pbca space group with unique complex molecule in asymmetric unit. The asymmetric unit also contains one solvent hexane molecule lying on the inversion center; thus, 1 crystallizes as a solvate 1∙½hexane.



Coordination environment of In3+ cation in 1 is represented by a distorted octahedron with nitrogen and oxygen atoms at its vertices (Figure 3). The arrangement of o-iminobenzoquinone ligands in 1 results in the trans position of the nitrogen atoms with aryl substi-tuents. The dihedral angle between mean planes of metallacycles InOCCN is 61.2(2)°.



The redox states of o-iminobenzoquinone ligands in 1 are of particular interest. The C(1)-O(1), C(2)-N(2), and C(1)-C(2) bond lengths are 1.376(10) Å, 1.386(9), and 1.427(11) Å, respectively, and comparable with those distances in indium(III) complexes with di-anionic o-iminobenzoquinone ligand (AP)InI(TMEDA) (C-O 1.351(2) Å; C-N 1.402(3) Å; C-C 1.425(3) Å) (CCDC 770657) [38] and [In(AP)2]-[Na(DME)3]+ (C-O 1.355(3), 1.364(3) Å; C-N 1.394(3), 1.397(3) Å; C-C 1.423(3), 1.432(3) Å) (CCDC 928221) [39]. The metallacycle In(1)O(1)C(1)C(2)N(1) is not planar; the dihedral angle between the O(1)In(1)N(1) and O(1)C(1)C(2)N(1) planes is 164.9(5)°. The In(1)-O(1) and In(1)-N(1) distances are 2.101(5) Å and 2.250(8) Å, respectively. While the In-O in 1 is slightly shorter than similar distances in previously reported six-coordinated In3+ complexes with radical anion o-iminobenzoquinone ligands (imSQ)2InSS (2.1700(10), 2.1688(10) Å), (imSQ)InCl2(TMEDA) (2.163(3) Å) (CCDC 1002475, 1002476) [40], (imSQ)InI2(TMEDA) (2.1459(17) Å), (CCDC 770659) [38], the In-N distances in 1 are comparable to analogues characteristics of these complexes (2.2517(12)-2.271(2) Å), which can be explained by the steric saturation of the In3+ cation coordination sphere in 1. Indeed, the geometry of the 2,2′-bipyridyl moiety in 1 is distorted (torsion angle N-C-C-N is 17.6(9)°) comparing to the related six-coordinated indium complex with o-quinone ligands (Cat)In(SQ)(bipy) (3.53(7)°) (CCDC 780470) [41], and the In-Nbipy bond lengths in 1 (2.283(7), 2.326(7) Å) are noticeably longer than in (Cat)In(SQ)(bipy) (2.276(2), 2.279(2) Å). Thus, the O(1)N(1)-ligand state is characterized as dianionic.



While the bond lengths N(2)-C(24) (1.386(10) Å) and C(23)-C(24) (1.422(12) Å) are comparable to the distances N(1)-C(2) and C(1)-C(2), the bond length O(2)-C(23) is 1.307(10) Å and noticeably shorter than O(1)-C(1). The metallacycle In(1)O(2)C(23)C(24)N(2) is more planar than in the other ligand; the dihedral angle between the O(2)In(1)N(2) and O(2)C(23)C(24)N(2) planes is 171.3(5)°. The In(1)-O(2) and In(1)-N(2) bond lengths are 2.090(5) Å and 2.300(8) Å, respectively. Despite distortions in the geometry of the metallocycle, this ligand can be characterized as a radical anion.



The analysis of bond lengths in o-iminobenzoquinone ligands in 1 was carried out using metrical oxidation state (MOS) approach [42] as well. The calculated MOS are −1.95 ± 0.21 for O(1)N(1)-ligand and −1.52 ± 0.19 for O(2)N(2)-ligand and match satisfactorily the formal oxidation state of ligands supposed for the electronic structure of 1.




3. Materials and Methods


All operations for the synthesis of (APMe)(imSQMe)In(bipy) (1) were carried out in the absence of atmospheric oxygen and moisture. Solvents were purified using standard methods [43]. Commercial reagents (sodium, indium, 2,2′-bipyridyl) were purchased from Aldrich. Anhydrous indium(III) iodide was obtained by stirring an excess of the metal with a stoichiometric amount of iodine in dry diethyl ether until the solution became colorless and used in situ. The sodium and disodium salts of 4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-iminobenzoquinone ((imSQMe)Na and (APMe)Na2, respectively) were synthesized from o-iminobenzoquinone (imQMe) [44] and used in situ. To obtain (APMe)Na2 imQMe (0.1 g, 0.31 mmol) was stirred with an excess of sodium dispersion (1.5 g, 65.2 mmol) in THF (20 ml) until solution color became light yellow. The oxidation of (APMe)Na2 (0.31 mmol) by the equivalent of imQMe (0.1 g, 0.31 mmol) leads to the formation of deep blue (imSQMe)Na (0.62 mmol). Elemental analysis was performed using the elemental analyzer Elementar Vario EL cube. The IR spectrum was recorded on an FSM 1201 spectrometer in a Nujol (range: 4000–400 cm–1). The ESR spectrum was obtained using a Bruker Magnettech ESR5000 spectrometer. The electronic spectrum of 1 was recorded on a Perkin–Elmer Lambda 25 UV/Vis spectrometer (range: 220–1100 nm) at room temperature.



3.1. Synthesis of 1


A freshly prepared bright-yellow solution of (APMe)Na2 (0.62 mmol) in THF (10 mL) was added to a colorless solution of InI3 (0.62 mmol) in the same solvent (5 mL), and herewith the reaction mixture became brownish-orange. After that, the deep blue solution of (imSQMe)Na (0.62 mmol) in THF was added thereto upon stirring, and the color of the reaction mixture transformed to deep-green one. Finally, after 2,2′-bipyridyl addition (97 mg, 0.62 mmol), the reaction was kept at room temperature for 30 min. Then solvent was evaporated under reduced pressure, dry residue dissolved in dichloromethane (30 mL), and the reaction mixture was separated from the NaI precipitate by filtration. The green filtrate was concentrated and mixed up with hexane (10 mL) to provide better product precipitation. The pale-green precipitate of 1 was collected by filtration and dried in a vacuum (yield 75%). Elemental analysis: Calculated (%) for C54H66InN4O2: C 70.66, H 7.25, N 6.10; Found (%): C 70.89, H 7.43, N 5.99. UV–vis (CH2Cl2) nm (ε, M−1 cm−1): 235 (25,137), 289 (17,443), 311sh (15,808), 418sh (1322), 765 (907). IR (Nujol, KBr) cm−1: 1605 (m), 1598 (s), 1580 (m), 1568 (m), 1547 (m), 1355 (s), 1331 (s), 1316 (m), 1284 (s), 1259 (s), 1247 (s), 1232 (s), 1204 (m), 1173 (m), 1159 (m), 1126 (w), 1116 (w), 1097 (m), 1061 (w), 1042 (w), 1020 (s), 989 (m), 918 (w), 913 (w), 887 (m), 868 (m), 858 (w), 842 (w), 830 (w), 817 (w), 760 (s), 735 (m), 650 (m), 631 (w), 621 (w), 603 (w), 541 (w), 529 (w), 494 (w), 480 (w).




3.2. Single-Crystal X-ray Structure Analysis


The SC XRD data for 1 were collected with Rigaku OD Xcalibur E diffractometer (MoKα-radiation, ω-scans technique, λ = 0.71073 Å, T = 298.0(2) K) using CrysAlisPro [45] software package. Analytical numeric absorption correction using a multifaceted crystal model was performed. The structures were solved via intrinsic phasing algorithm and were refined by full-matrix least squares on F2 for all data using SHELX [46,47]. All non-hydrogen atoms in 1 were found from Fourier syntheses of electron density and refined anisotropically. All hydrogen atoms were placed in calculated positions and refined isotropically in the “riding” model with U(H)iso = 1.2Ueq of their parent atoms (U(H)iso = 1.5Ueq for methyl groups).



Crystal data for 1: C54H66InN4O2∙½C6H14, M = 961.01, Pbca, a = 17.4861(16) Å, b = 23.472(2) Å, c = 26.342(4) Å, V = 10812(2) Å3, Z = 8, dcalc = 1.181 g/cm3. Green plate single crystal with dimensions 0.19 × 0.16 × 0.08 mm was selected and intensities of 55,759 reflections were collected (μ = 0.479 mm–1, θmax = 25.03°). After merging of equivalence reflections and absorption corrections, 9532 independent reflections (Rint = 0.2068) were used for the structure solution and refinement. Final R factors R1 = 0.0865 [for 3263 reflections with F2 > 2σ(F2)], wR2 = 0.2356 (for all reflections), S = 1.011, and largest diff. peak and hole are 0.52 and −0.38 e/Å3, respectively.
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Scheme 1. Synthesis of Complex 1. 
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Figure 1. ESR spectrum (gi = 2.0069, ai(115In) = 1.47 mT, ai(214N) = 0.34 mT, ai(21H) = 0.29 mT) of 1 in dichloromethane at 290 K. 
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Figure 2. Electronic absorption spectrum of 1 recorded at 298 K in CH2Cl2 at C = 10–4 mol L–1. 
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Figure 3. Molecular structure of 1 (anisotropic displacement ellipsoids of heteroatoms drawn at the 30% probability level; H atoms are omitted for clarity). 
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