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Abstract: Here, we first report the 2′-acyloxy-1,3-dicarbonyl compound construction in a three-
component oxidative reaction of alkyl ketene dimer with cyclic diacyl peroxide and trimethyl ortho-
formate. The discovered synthesis allows us to form 2′-functionalized 1,3-dicarbonyl compounds
instead of the common 2-functionalized moiety. The reaction between 4-butylidene-3-propyloxetan-2-
one and cyclopropyl malonoyl peroxide proceeds in the presence of trifluoroacetic acid and trimethyl
orthoformate at 120 ◦C for 1 h. The synthesized compound was characterized by NMR spectroscopy,
mass spectrometry, and IR spectroscopy.
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1. Introduction

Alkyl ketene dimers were first synthesized in 1901 [1] and their reactivity is mostly
determined by a strained oxetan-2-one ring, which readily reacts with various nucle-
ophiles [2–6] (Scheme 1). Also, alkyl ketene dimers can be regarded as acyl enolates.
However, there are only scattered reports on metal-catalyzed oxidation of diketene [7–9],
and there is only one example of metal-free oxidation by ozone [10,11]. So, further investi-
gation of oxidative transformations of ketene dimers would be desirable. Our idea is that
such a transformation is possible using cyclic diacyl peroxides as oxidants (Scheme 1).
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Scheme 1. The core fragment of alkyl ketene dimers and its reactivity.

Cyclic diacyl peroxides were first synthesized in the 1950s [12,13], and their chemical
properties are still being intensively studied [14,15]. A search for new interesting structures
based on cyclic diacyl peroxides continues as well, and recently a doubled cyclic diacyl

Molbank 2023, 2023, M1651. https://doi.org/10.3390/M1651 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1651
https://doi.org/10.3390/M1651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0002-3611-7492
https://orcid.org/0000-0002-6847-6035
https://orcid.org/0000-0001-8018-031X
https://doi.org/10.3390/M1651
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1651?type=check_update&version=1


Molbank 2023, 2023, M1651 2 of 6

peroxide has been reported that may be useful for polymer chemistry [16]. Cyclic diacyl
peroxides are utilized in dihydroxylation, dioxygenation [17–23], and oxyamination [24] of
alkenes. Oxyfunctionalization of arenes [25–31] as well as arene dearomatization [32] were
achieved using these peroxides. Oxidative acyloxylation of dicarbonyl compounds [33],
heterocycles [34], and the derivatives of monocarbonyl compounds [35,36] also were de-
veloped. Recently, our group reported on the reaction of enol acetates with cyclic diacyl
peroxides, which proceeds as a nucleophilic substitution of an oxygen atom (SN2@O) [37]
and Ni-catalyzed C(sp3)-H acyloxylation [38,39] with such reagents. Here, we report the
2′-acyloxy-1,3-dicarbonyl compound construction in a three-component oxidative reaction
of alkyl ketene dimer with cyclic diacyl peroxide and trimethyl orthoformate.

2. Results and Discussion

4-Butylidene-3-propyloxetan-2-one 1 and cyclopropyl malonoyl peroxide 2 were cho-
sen to study the oxidation of alkyl ketene dimers with cyclic diacyl peroxides. Moreover,
an important component of the reaction is a nucleophile, whose role is to intercept the
supposed unstable intermediate. Since cyclic diacyl peroxide 2 can react with the nucle-
ophile, the choice of nucleophile is not trivial. Alkyl ketene dimers, being acylating agents,
are also labile to a nucleophilic attack. Thus, the nucleophile must be inert towards the
peroxide and the alkyl ketene dimer, and it must be able to react with the intermediate at
the same time.

Surprisingly, when trimethyl orthoformate was used as the nucleophile, and TFA as
a source of protons, product 3 was obtained with the NMR yield of 43% (Scheme 2). The
reaction was completed in 1 hour in a sealed vessel at 120 ◦C.
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To our delight, there was no further oxidation of 3 by cyclopropyl malonoyl peroxide
2, despite the possibility of such a process, which was described in the literature [33].
Product 3 was isolated as a mixture of two diastereomers in a ratio of 50:50 using column
chromatography. Interestingly, one of the diastereomers predominates right after the
reaction, but during the work-up, the mixture is racemized, probably due to keto-enol
tautomerism. The mixture of diastereomers 3 was characterized by NMR, IR spectroscopy,
and mass spectrometry (Figures S5–S8, Supplementary Materials). The 1H NMR spectrum
of compound 3 showed signals for two methyne protons at δ 5.35, 5.21 (both dd, 1H,
C(O)CH(O)CH2) and δ 3.59 (dt, 1H, C(O)CHC(O)), signals of CH3O group at δ 3.75, 3.70
(both s, 3H), as well as three multiples related to CH2 and CH2CH3 protons at δ 1.98–1.69
(m, 8H), 1.40–1.23 (m, 4H), 0.97–0.88 (m, 6H). The 13C NMR spectra of compound 3 showed
double sets of signals for most of the atoms. The analysis of the carbon resonances revealed
the presence of two signals for C=O (δ 200.5, 199.8), signals for three ester fragments (δ
175.4; 170.3; 169.1, 168.9), two signals for one oxygenated tertiary carbon (δ 79.6, 79.0).
Additionally, the close signals of sp3 tertiary carbon and OCH3 group were detected (δ 55.4,
54.8; 52.9, 52.7).

The plausible mechanism for the three-component oxidative reaction of alkyl ketene
dimer with cyclic diacyl peroxide and trimethyl orthoformate was proposed based on the
above-mentioned results and the data (Scheme 3) [20–27,33–39]. Initially, the nucleophilic
attack of the C=C double bond of alkyl ketene dimer 1 to cyclic diacyl peroxide 2 leads to
the formation of intermediate I. Then, it can be assumed that either a direct interaction of
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trimethyl orthoformate with intermediate I occurs, or methanol is generated in situ and
then is added to intermediate I to form the final product 3.
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3. Materials and Methods
3.1. General Information

Caution: Peroxides are high-energy compounds. All reactions using these substances
should be conducted within a fume hood and behind a safety shield. These procedures
should be carried out by knowledgeable laboratory workers.

NMR spectra were recorded on commercial instruments (300.13 MHz for 1H, 75.48 MHz
for 13C) in CDCl3. The IR spectrum was recorded with a Bruker (Moscow, Russia) “Alpha-T”
instrument. High-resolution mass spectrum (HRMS) was measured using electrospray ion-
ization (ESI-TOF) [40]. The measurement was carried out in a positive ion mode (interface
capillary voltage—4500 V); mass range from m/z 50 to m/z 1600 Da; and external/internal
calibration was done with an electrospray calibrant solution. A syringe injection was used
for solutions in CH3CN (flow rate 3 µL/min). Nitrogen was applied as a dry gas; the
interface temperature was set at 180 ◦C. The TLC analysis was carried out on standard
silica gel chromatography plates. Silica gel was calcined in a vacuum oven at 200 ◦C for 2 h
before use.

3.2. Synthesis of 4-Butylidene-3-propyloxetan-2-one (1)

Compound 1 was synthesized according to the modified literature method [41].
A solution of triethylamine (2.13 g, 21.0 mmol) in 10 mL of diethyl ether was added

to a solution of valeroyl chloride (2.41 g, 20.0 mmol), whilst being stirred, in diethyl ether
(10 mL) over 1 hour at 0 ◦C. The resulting solution was stirred for 24 h at room temper-
ature. Then, the solution was filtered and a precipitate was washed with diethyl ether
(2 × 20 mL). A filtrate was concentrated under reduced pressure using a rotary evaporator
(15–20 mmHg, a water bath temperature ca. 20–25 ◦C). A residue was transferred on the
top of chromatographic column and product 1 was isolated by column chromatography on
SiO2 (see Section 3.1 General Information) (the gradient system PE:EtOAc = 40:1). Product
1 was obtained as a colorless liquid (0.91 g, 5.43 mmol, 54% yield).

1H NMR (300 MHz, CDCl3): δ 4.69 (t, J = 7.7 Hz, 1H), 3.94 (t, J = 7.2 Hz, 1H), 2.10 (q,
J = 7.2 Hz, 2H), 1.76 (q, J = 7.7, 7.2 Hz, 2H), 1.55–1.37 (m, 4H), 0.96 (t, J = 6.9 Hz, 3H), 0.91 (t,
J = 6.9 Hz, 3H).

13C NMR (75 MHz, CDCl3): δ 169.8, 145.9, 101.5, 53.7, 29.7, 26.8, 22.7, 19.9, 13.8, 13.7.
The data are fully consistent with those previously published [42].

3.3. Synthesis of Cyclopropyl Malonoyl Peroxide (2)

The cyclopropyl malonoyl peroxide (2) was synthesized according to the method in
the literature [27]. The data are fully consistent with those previously published [27].

1H NMR (300 MHz, CDCl3): δ 2.09 (s, 4H).
13C NMR (76 MHz, CDCl3); δ 172.3, 23.8, 19.9.
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3.4. Synthesis of 1-(((6-(Methoxycarbonyl)-5-oxononan-4-yl)oxy)carbonyl)cyclopropane-
1-carboxylic acid (3)

Trifluoroacetic acid (114.0 mg, 1.0 mmol) was added to a mixture of 4-butylidene-3-
propyloxetan-2-one (1) (168.0 mg, 1.0 mmol), cyclopropyl malonoyl peroxide (2) (179.0 mg,
1.4 mmol), and trimethyl orthoformate (530.0 mg, 5.0 mmol). The reaction mixture was
stirred in a sealed vessel for 1 hour at 120 ◦C. Then, the mixture was diluted with diethyl
ether (5 mL) and transferred to a flask to concentrate under reduced pressure using a
rotary evaporator (15–20 mmHg, a water bath temperature ca. 40 ◦C). A residue was
transferred on the top of chromatographic column and product 3 was isolated by column
chromatography on SiO2 (the gradient system PE:EtOAc from 8:1 to 2:1 with 0.5 % AcOH).
Product 3 was obtained as a colorless oil (124.0 mg, 0.38 mmol, 38% yield).

1H NMR (300 MHz, CDCl3): δ 5.35 (dd, J = 8.8, 3.7 Hz), 5.21 (dd, J = 8.5, 3.9 Hz) (total
1H), 3.79–3.70 (m, 3H), 3.59 (dt, J = 12.0, 7.5 Hz, 1H), 1.98–1.69 (m, 8H), 1.40–1.23 (m, 4H),
0.97–0.88 (m, 6H).

13C{1H} NMR (75 MHz, CDCl3): δ 200.5, 199.8, 175.4, 170.3, 169.1, 168.9, 79.6, 79.0,
55.4, 54.8, 52.9, 52.7, 31.8, 31.6, 31.1, 29.7, 25.41, 25.37, 23.3, 22.3, 22.0, 20.8, 20.6, 18.8, 18.6,
13.9, 13.7.

HRMS (ESI-TOF) m/z [M+Na]+. Calcd for [C16H24O7Na]+: 351.1414. Found: 351.1415.
IR (KBr), ν, cm−1: 3122 (COO-H), 2963 (C-H), 2876 (C-H), 1727 (C=O), 1437, 1381, 1332,

1269, 1240, 1194, 1159, 1048, 977, 865, 820, 737, 677, 519.

4. Conclusions

The 2′-acyloxy-1,3-dicarbonyl compound was obtained in a three-component ox-
idative reaction of alkyl ketene dimer with cyclic diacyl peroxide and trimethyl ortho-
formate in a 38% isolated yield. The reaction between 4-butylidene-3-propyloxetan-2-
one and cyclopropyl malonoyl peroxide to form 1-(((6-(methoxycarbonyl)-5-oxononan-4-
yl)oxy)carbonyl)cyclopropane-1-carboxylic acid proceeds in the presence of trifluoroacetic
acid and trimethyl orthoformate at 120 ◦C for 1 h. The chemistry of ketene dimers has been
extended by the use of cyclic diacyl peroxides.

Supplementary Materials: The following supporting information can be downloaded online: Figure S1.
1H NMR spectrum of 4-butylidene-3-propyloxetan-2-one (1); Figure S2. 13C NMR spectrum of 4-
butylidene-3-propyloxetan-2-one (1); Figure S3. 1H NMR spectrum of cyclopropyl malonoyl perox-
ide (2); Figure S4. 13C NMR spectrum of cyclopropyl malonoyl peroxide (2); Figure S5. 1H NMR spec-
trum of 1-(((6-(methoxycarbonyl)-5-oxononan-4-yl)oxy)carbonyl)cyclopropane-1-carboxylic acid (3);
Figure S6. 13C NMR spectrum of 1-(((6-(methoxycarbonyl)-5-oxononan-4-yl)oxy)carbonyl)cyclopropane-
1-carboxylic acid (3); Figure S7. IR spectrum of 1-(((6-(methoxycarbonyl)-5-oxononan-4-yl)oxy)carbonyl)
cyclopropane-1-carboxylic acid (3); Figure S8. HRMS spectrum of 1-(((6-(methoxycarbonyl)-5-oxononan-
4-yl)oxy)carbonyl)cyclopropane-1-carboxylic acid (3).
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