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Abstract: (R)-(+)-3,5-dinitro-N-(1-phenylethyl)benzothioamide 1 is a potential chiral solvating agent
(CSA) for the spectral resolution of enantiomers via 1H NMR spectroscopy. The single enantiomer
of 1 was synthesized from commercially available (R)-(+)-a-methylbenzylamine 2 in two steps with
85% yield.
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1. Introduction

Chiral solvating agents (CSAs) are a class of molecules utilized for the spectral reso-
lution of enantiomers via NMR spectroscopy (Figure 1) [1]. Such a resolution is possible
because the CSAs associate with analytes via non-covalent interactions (NCIs) to form
diastereomeric complexes resulting in chemical shift differences ∆∆δ of the enantiomers [2].
The scaffold of the CSA must possess some stereogenic features (atom, axis, plane) em-
bedded in its backbone along with functional groups capable of eliciting NCIs, including
hydrogen bond donation/acceptance and pi acidity/basicity [3,4].
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1. Introduction 
Chiral solvating agents (CSAs) are a class of molecules utilized for the spectral reso-

lution of enantiomers via NMR spectroscopy (Figure 1) [1]. Such a resolution is possible 
because the CSAs associate with analytes via non-covalent interactions (NCIs) to form 
diastereomeric complexes resulting in chemical shift differences ∆∆δ of the enantiomers 
[2]. The scaffold of the CSA must possess some stereogenic features (atom, axis, plane) 
embedded in its backbone along with functional groups capable of eliciting NCIs, includ-
ing hydrogen bond donation/acceptance and pi acidity/basicity [3,4]. 

 (R)-(−)-3,5-dinitro-N-(1-phenylethyl)benzamide 4, widely known as Kagan’s amide 
[5], is a validated CSA for the discrimination of a wide selection of analytes with functional 
groups including alcohols [6], amines/amides [7], carboxylic acids, phosphine oxides [8], 
phospholene oxides [9], and sulfoxides. To date, the thioamide variant 1 of the Kagan 
amide 4 has not been disclosed in the literature. However, the desnitro compound (R)-N-
(1-phenylethyl)benzothioamide has been prepared [10], characterized in the solid state by 
single-crystal X-ray diffraction [11], and utilized synthetically [12]. Given the broad utility  
of the thiocarbonyl functional group [13] in validated organocatalysts such as thioureas 
[14] and thiosquaramides [15] that enable asymmetric transformations through NCIs 
[16,17], we hypothesized that thioamide 1 would be a competent CSA analogous to 4. 
Since sulfur has a larger van der Waals radius than oxygen (S = 1.85 Å vs. O = 1.40 Å), the 
C=S bond is longer than the C=O bond (1.60 Å vs. 1.40 Å) [18]. Because of these physical 
properties, thioamides are less prone to self-aggregation than amides [19] since they are 
weaker hydrogen bond acceptors. Additionally, due to the increased acidity of the N–H 
bond of ∆pKa = −6 [20], thioamides are stronger hydrogen bond donors [21]. With these 
physical factors in mind, we set out to synthesize 1 for the purposes of using it as a CSA 
with the goal of using it as a tool for the determination of absolute configuration [22]. 

 
Figure 1. Kagan amide and thioamide chiral solvating agents. 
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Figure 1. Kagan amide and thioamide chiral solvating agents.

(R)-(−)-3,5-dinitro-N-(1-phenylethyl)benzamide 4, widely known as Kagan’s amide [5],
is a validated CSA for the discrimination of a wide selection of analytes with functional
groups including alcohols [6], amines/amides [7], carboxylic acids, phosphine oxides [8],
phospholene oxides [9], and sulfoxides. To date, the thioamide variant 1 of the Kagan
amide 4 has not been disclosed in the literature. However, the desnitro compound (R)-N-
(1-phenylethyl)benzothioamide has been prepared [10], characterized in the solid state by
single-crystal X-ray diffraction [11], and utilized synthetically [12]. Given the broad utility
of the thiocarbonyl functional group [13] in validated organocatalysts such as thioureas [14]
and thiosquaramides [15] that enable asymmetric transformations through NCIs [16,17],
we hypothesized that thioamide 1 would be a competent CSA analogous to 4. Since sulfur
has a larger van der Waals radius than oxygen (S = 1.85 Å vs. O = 1.40 Å), the C=S bond
is longer than the C=O bond (1.60 Å vs. 1.40 Å) [18]. Because of these physical proper-
ties, thioamides are less prone to self-aggregation than amides [19] since they are weaker
hydrogen bond acceptors. Additionally, due to the increased acidity of the N–H bond of
∆pKa = −6 [20], thioamides are stronger hydrogen bond donors [21]. With these physical
factors in mind, we set out to synthesize 1 for the purposes of using it as a CSA with the
goal of using it as a tool for the determination of absolute configuration [22].
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2. Results and Discussion

The title compound (R)-(+)-3,5-dinitro-N-(1-phenylethyl)benzothioamide 1 was pre-
pared in one step from (R)-(−)-3,5-dinitro-N-(1-phenylethyl)benzamide 4 (Scheme 1). The
Kagan amide 4 was readily prepared in quantitative yield as an off-white solid (mp
151–153 ◦C) in decagram quantities through the coupling of commercially available enan-
tiopure (R)-(+)-α-methylbenzylamine 2 and 3,5-dinitrobenzoyl chloride 3 under biphasic
conditions with dichloromethane in aqueous sodium carbonate. The specific rotation of 4
was measured in three different solvents to be [α] −46.781 (c 0.873, acetone), [α] −13.540 (c
1.090, ethanol) and [α] −2.986 (c 1.007, CHCl3).
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Scheme 1. Two-step chemical synthesis of (R)-(+)-3,5-dinitro-N-(1-phenylethyl)benzothioamide (1).

Amide (−)-4 was treated with Lawesson’s thionating reagent 5 [23,24], resulting in
complete conversion to the thioamide 1. The crude 1H NMR showed the presence of
residual aromatic impurities that mandated a relatively straightforward purification by
flash column chromatography over silica gel to yield the thioamide variant 1 as bright
yellow solid with mp 79–81 ◦C (Supplementary Material). The molecular formula of 1 was
confirmed by means of high-resolution mass spectrometry to be C15H13N3O4S with m/z
354.0520 of the sodium salt.

With the confirmation that the O→S carbonyl metathesis occurred, the structure of
1 was fully elucidated using infrared and nuclear magnetic resonance spectroscopy. The
thiocarbonyl stretch C=S of 1 was noticeably absent in the infrared spectrum from the
typical amide C=O stretching region as observed with 4 at 1642 cm–1. It is known that C=S
stretching lies in the 1200–1100 cm–1 region and is much weaker than C=O stretching [25].
While the 13C signal for the carbonyl carbon of 4 appeared at 161.8 ppm, the thioamide 1
shifted 29.9 ppm downfield to 191.7 ppm (Table 1). The positional assignments of carbon
and hydrogen were carried out using 1D and 2D NMR techniques. The specific rotation of
1 was measured to be [α] +22.91 (c 0.965, CHCl3).

Table 1. Structural assignments using 1H (400 MHz) and 13C (100 MHz) NMR data of (−)-4 and (+)-1
in CDCl3.
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13C NMR Data 1 1H NMR Data 2

Position 3 4 δC 1 δC 4 δH 1 δH

a 161.8 (s) 191.7 (s) - -
b 148.6 (s) 144.5 (s) - -
c 141.8 (s) 148.1 (s) - -
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Table 1. Cont.
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13C NMR Data 1 1H NMR Data 2

Position 3 4 δC 1 δC 4 δH 1 δH

d 137.9 (s) 140.4 (s) - -
e 129.0 (d) 129.0 (d) 7.41–7.35 (m, 2H) 7.43–7.29 (m, 2H)
f 128.0 (d) 128.3 (d) 7.33–7.28 (m, 1H) 7.43–7.29 (m, 1H)
g 127.1 (d) 126.7 (d) 8.93 (d, J = 2.04 Hz, 2H) 8.81 (d, J = 2.04 Hz, 2H)
h 126.3 (d) 126.8 (d) 7.41–7.35 (m, 2H) 7.43–7.29 (m, 2H)
i 121.1 (d) 119.9 (d) 9.14 (t, J = 2.08 Hz, 1H) 8.99 (t, J = 2.04 Hz, 1H)

j 50.3 (d) 56.2 (d) 5.34 (dq, J = 7.16,
7.12 Hz, 1H)

5.83 (dq, J = 7.20,
7.00 Hz, 1H)

k 21.4 (q) 19.9 (q) 1.67 (d, J = 6.92 Hz, 3H) 1.76 (d, J = 6.92 Hz, 3H)
l - - 6.64 (s, 1H) 8.12 (s, 1H)

1 13C NMR signal multiplicity determined by DEPT90, DEPT135 and 1H-13C HSQC. 2 Integration and multiplicity
determined by 1H NMR and J-value coupling analysis. 3 Positions assigned using 1H-1H COSY, 1H-13C HSQC,
and 1H-13C HMBC analysis.

3. Materials and Methods
3.1. Materials

Starting materials were purchased from commercial vendors and checked for identity
and purity using IR, NMR and HPLC and were used without purification unless noted.
(R)-(+)-1-phenylethylamine (CAS# 3886-69-9) was purchased from Oakwood Chemical
(Product # 037431, 99.9% ee). 3,5-Dinitrobenzoyl chloride (CAS# 99-33-2) was purchased
from Oakwood Chemical (Product # 493922). Lawesson’s reagent (CAS# 19172-47-5) was
purchased from Aldrich (Product # 227439).

3.2. Methods

Analytical thin-layer chromatography was performed using Sorbent Technologies
250 µm glass-backed UV254 silica gel plates. The plates were first visualized by means of
fluorescence upon 254 nm irradiation then using an iodine chamber and subsequently with
phosphomolybdic acid with heating. Flash column chromatography was performed using
Sorbent Technologies 40–63 µm, pore size 60 Å silica gel in Luknova columns on a Teledyne
ISCO CombiFlash Rf with solvent systems indicated. Solvent removal was effected using a
Buchi R3 rotary evaporator with a V900 diaphragm pump (~10 mmHg). Further drying of
samples was conducted using a Welch vacuum pump at <0 mmHg. All isolated yields refer
to material that is chromatographically (TLC or HPLC) and spectroscopically (1H NMR)
homogenous.

3.3. Instrumentation and Analysis

Melting points were measured on a Laboratory Devices Mel-temp with a Thermco
0–400 ◦C mercury thermometer (serial number 26296) using 1.5–1.8 mm O.D. tubes (Chem-
Glass part number CG-1841-01) and are uncorrected. Infrared spectra were recorded on a
Nicolet Nexus 470 FTIR spectrometer as neat liquids, oils, solids, or as thin films formed
from the evaporation of NMR solvent over the ATR plate. Nuclear magnetic resonance
spectra were measured at ambient temperature (~25 ◦C) on a Bruker UltraShield 400 MHz
with deuterated chloroform-d (D,99.8% + 0.05% v/v TMS) from Cambridge Isotope Labo-
ratories (Product # DLM-7TB). Proton nuclear magnetic resonance spectra were recorded
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at 400 MHz and were recorded in parts per million from internal residual protons on the
scale and were reported as follows: chemical shift [multiplicity (s = singlet, d = doublet,
t = triplet, q = quartet, m = multiplet), coupling constant(s) in hertz, integration, interpreta-
tion]. 13C NMR data were recorded at 100 MHz and were reported as follows: chemical
shift with multiplicity as determined from DEPT (CH, CH3 up and CH2 down) and/or
HSQC experiments. Structures were fully elucidated by assigning 1H peaks to their re-
spective 13C peaks using the 1D and 2D NMR experiments. High-resolution mass spectra
were recorded at the Old Dominion University College of Science Major Instrumentation
Center (COSMIC) on a Bruker 12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source.
Optical rotations were nominally measured between 24 and 26 ◦C on a Rudolph Autopol
polarimeter using a cell with a path length of 1.0 dm and a volume of 2.0 mL (part number
32-5-100-2.0). Solutions were generally prepared from approximately 0.0300 g of purified
material dissolved in 3.0 mL of HPLC-grade chloroform (CAS# 67-66-3, stabilized with
ethanol, Oakwood item number 101614) dispensed with a VWR Labmax solvent dispenser.

3.4. (R)-(+)-3,5-Dinitro-N-(1-phenylethyl)benzothioamide (1)

A 100 mL round bottom flask with a stir bar was charged with (R)-(−)-3,5-dinitro-N-
(1-phenylethyl)benzamide 4 (2.207 g, 7.0 mmol, 1 eq) and 1,4-dioxane (24 mL, 0.30 M) to
give a pale-yellow solution. Lawesson’s reagent 5 (1.55 g, 3.85 mmol, 0.55 eq) was added
resulting in a cloudy yellow mixture. The flask was equipped with a reflux condenser and
a drying tube filled with Drierite and heated to 110 ◦C for three hours. Upon heating, the
reaction became a clear dark gold color. In-process analysis via TLC (4:1 hexanes-ethyl
acetate) showed many spots that were not the starting material. The starting material at Rf
= 0.25 stained dark magenta-purple with PAA was no longer present. The solution was
poured into 20 mL of cold deionized water in a 100 mL round bottom flask that was chilled
in an ice water bath. The quench mixture was aged in the ice bath for 1 h. A darker gold oil
separated from the mixture, but no solid formed. The solvent was concentrated in vacuo
into an oil. The 1H NMR spectra of the crude material indicated complete conversion of the
starting amide to the desired product, but the presence of multiple aromatic by-products.
The material was purified by chromatography over 80 g of normal-phase silica gel using an
isocratic elution of 4:1 hexanes-ethyl acetate. The product-rich fractions were pooled and
concentrated to give 2.00 g (86% yield) of the title compound as a dark gold oily solid with
the characterization data: MP: 79–81 ◦C; Rf = 0.35 (4:1 hexanes-ethyl acetate; uv→ PAA, I2);

IR (thin film): cm−1 3342 (N-H), 1535 (NO2), 1340 (NO2); [α]
27.6
D

+22.91 (c 0.965 g/100 mL,

CHCl3; T 27.6 ◦C); 1H NMR (CDCl3, 400 MHz): δ 8.99 (t, 1H, J = 2.04 Hz), 8.81 (d, 2H,
J = 2.04 Hz), 8.12 (s, 1H), 7.29–7.43 (m, 5H), 5.83 (dq, 1H, J = 7.20, 7.00 Hz), 1.76 (d, 3H,
J = 6.92 Hz); 13C{1H} NMR (CDCl3, 100 MHz): δ 191.7 (s), 148.1 (s), 144.5 (s), 140.4 (s), 129.0
(d), 128.3 (d), 126.8 (d), 126.7 (d), 119.9 (d), 56.2 (d), 19.9 (q); HRMS (ESI): Exact mass calcd
for C15H13N3O4S [M+Na]+ m/z 354.0518. Found m/z 354.0520.

4. Conclusions

The treatment of the Kagan amide (−)-4 with Lawesson’s reagent 5 in 1,4-dioxane
effected the smooth transformation to the thioamide (+)-1 with 85% yield on a multi-gram
scale. Given the commercial availability of all of the reagents at relatively inexpensive
cost, this method is a viable route to obtain the sulfur derivative of the common chiral
solvating agent.

Supplementary Materials: Provides spectra data of 1 including IR, 1H, COSY, 13C, HSQC, HMBC
NMR and HRMS.
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