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Abstract: Polypyrroles attract significant attention as the promising class of conductive polymers for
the organic electronics, electrochemical energy-storage, photovoltaics, sensing and light-emitting de-
vices due to their electrochemical and electrical properties. The attachment of the charged fragments
to the pyrrole monomeric unit opens the route to a water-soluble polypyrrole for improved solution
processability. Here we report a scalable multigram synthesis of the N-substituted cationic pyrrole,
N,N,N-triethyl-4-(1H-pyrrol-1-yl)butan-1-aminium perchlorate, which can be used for the preparation
of the water-soluble cationic polypyrrole, in two steps with 81% overall yield. The resulting product
was characterized by the 1H and 13C, nuclear magnetic resonance (NMR), ESI-high-resolution mass
spectrometry (ESI-HRMS) and Fourier-transform infrared spectroscopy (FTIR).
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1. Introduction

Conductive polymers, combining the chemical and mechanical properties of polymers
with the electrical behavior of metals, attract attention as functional materials due to
their corrosion resistance, easy synthesis, highly tunable structure, good mechanical and
optical properties, high flexibility and electrical conductivity [1–5]. Conductive polymers
are beneficial due to the reach functionalization chemistry, which allows us to append
different active fragments to the main chain of the polymer [6,7]. Derivatives of the
polypyrrole, one of the most popular conducting polymers, meet their application in organic
electronics [8], electrochemical energy-storage [9], photovoltaics [10], sensing [11] and light-
emitting devices [12]. However, common conductive polymers including polypyrroles
are poorly processible due to their insolubility in water and organic solvents. One of the
ways to overcome this issue is to attach solubilizing fragments to the monomeric units
of the conductive polymers. For instance, a variety of water-soluble and easily solution-
processable polythiophenes [13], polyanilines [14] and polypyrroles [15] were obtained
using the monomers functionalized with charged fragments.

Here we report the synthesis of the novel cationic pyrrole, N,N,N-triethyl-4-(1H-pyrrol-
1-yl)butan-1-aminium perchlorate, which can serve as the monomer for the synthesis of
the water-soluble polypyrrole. The proposed synthetic procedure is economical and highly
scalable, affording the monomer with non-oxidizable counter-ion, which is crucial for
further oxidative polymerization. The obtained product was characterized by nuclear mag-
netic resonance (NMR), high-resolution mass spectrometry (HRMS) and Fourier-transform
infrared spectroscopy (FTIR) spectra.

2. Results

Starting 1-(4-bromobutyl)-1H-pyrrole 1 was prepared following the modified literary
procedure [16]. Bromide 1 was used for the alkylation of the triethylamine in refluxing
acetonitrile (Scheme 1), producing the N,N,N-triethyl-4-(1H-pyrrol-1-yl)butan-1-aminium
bromide 2 in 98% yield. The resulting product contained a water-soluble impurity which
cannot be separated by crystallization, so it proceeded to the next step without further
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purification. The bromide ion in the resulting tetraalkylammonium salt was replaced with
the perchlorate ion using the precipitation-aided ion exchange with NaClO4 in acetone
(Scheme 1). The crystallizations from CH2Cl2 and then from H2O produced the title
compound N,N,N-triethyl-4-(1H-pyrrol-1-yl)butan-1-aminium perchlorate 3 in 82% yield.
The reactions were carried out under an inert atmosphere or in sealed vessels to prevent
the oxidation of pyrrole.
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1 and ion exchange of the resulting bromide with sodium perchlorate.

The whole reaction sequence starting from 1H-pyrrole is chromatography free, atom-
economic and produces the title product in very high yield. Purification of 1 was carried out
by fraction distillation under reduced pressure, 2 was used after a simple extraction workup
without further purification and 3 was purified by dissolving in CH2Cl2, filtration and
evaporation, followed by recrystallization from aqueous ethanol. Compound 2 appears as
highly hygroscopic gum, while the 3 is crystalline material relatively insensitive to moisture.
The synthetic procedure was carried out on a multigram scale and may be easily scaled up,
which makes it highly suitable for the mass production of cationic pyrrole monomer.

In the 1H NMR spectrum of compound 2 in CDCl3 (Figure S1), the aromatic signals
appear as a pair of triplets at 6.70 and 6.11 ppm with the coupling constant of 2.1 Hz instead
of the anticipated pair of doublets, which is typical for N-alkylpyrroles [17]. The set of
signals of the butyl linker is situated at 4.02, 3.06–3.28, 1.93 and 1.66–1.77 ppm, and the pair
of ethyl signals, quartet at 3.39 and triplet at 1.30 ppm. The 13C NMR of the 2 in CDCl3
(Figure S2) contains the signals at 120.7, 108.5, 57.2, 53.5, 48.5, 28.2, 19.4 and 8.1 ppm. Both
spectra contain a set of minor signals which belongs to an unknown contaminant. The 1H
NMR spectrum of compound 3 in DMSO-d6 (Figure S3) contains a pair of triplets 6.77 and
6.00 ppm with the coupling constant of 2.1 Hz, set of butylene signals at 3.92, 3.03–3.13, 1.74
and 1.48–1.58 ppm, and the pair of ethyl signals, quartet at 3.19 and triplet at 1.15 ppm. The
13C NMR of the 3 in DMSO-d6 (Figure S4) contains the signals at 120.4, 107.6, 55.6, 52.0, 47.7,
27.9, 18.3 and 7.1 ppm. HRMS of both compounds (Figures S5 and S6) lies within 5 ppm
error from the calculated value of 223.2169 Da. The FTIR spectrum of 3 (Figure S8) shows
the presence of the strong band at 1090 cm−1, which is characteristic of the asymmetric
stretching of Cl=O bonds ClO4

− anion. At the same time, the spectrum of 2 (Figure S7)
contains the broad strong band around 3435 cm−1, while in the spectrum of 3, only a minor
band appears at the same position, indicating that the 3 is nearly non-hygroscopic when
compared to 2.

The resulting cationic pyrrole may be used for the preparation of the cationic polypyrroles,
which may be easily processed from aqueous solutions. This option allows the development
of green procedures for the fabrication of organic electronics, energy storage devices, sensors,
etc. A simple and scalable synthetic approach makes the resulting compound a promising
candidate for the implementation in industrial production of conductive polymers.

3. Materials and Methods
3.1. General Consideration

Reagents of “reagent grade” purity were purchased from Sigma–Aldrich (Europe).
The starting 1-(4-bromobutyl)-1H-pyrrole 1 was prepared following the modified literary
procedure [16]. The Fourier-transform infrared spectra were recorded on the Shimadzu
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IRaffinity-1 FTIR spectrophotometer (Shimadzu Europa GmbH, Kyoto, Japan) in KBr pellets.
1H and 13C-NMR spectra were acquired on a Bruker Avance 400 spectrometer (Bruker
Analytische Messtechnik GmbH, Rheinstetten, Germany) at 400 and 101 MHz, respectively,
in CDCl3 and DMSO-d6. The HRMS spectrum was recorded using electrospray ionization
on a Bruker microTOF apparatus (Bruker Analytische Messtechnik GmbH, Rheinstetten,
Germany) in positive mode.

3.2. Synthesis of 1-(4-Bromobutyl)-1H-pyrrole 1

Freshly distilled pyrrole (6.95 mL, 6.7 g, 100 mol) was added to an ice-cooled sus-
pension of NaH (4.2 g of 60% suspension in oil, 105 mmol) in dry THF (150 mL) under
Ar. Then, 1,4-dibromobutane (36 mL, 65 g, 300 mol) was added dropwise for 5 min. The
ice bath was removed, and the reaction mixture was stirred at RT for 16 h, isolated from
light. After the completion of the reaction was confirmed by TLC, the reaction mixture
was quenched with sat. NH4Cl solution, filtered, THF was removed in vacuo, and an
oily residue was fractionally distilled at 0.012 mbar. Excessive 1,4-dibromobutane was
isolated as a first fraction (b.p. 30 ◦C), and product 1 as a second fraction (b.p. 70–74 ◦C).
The fraction containing product 1 was distilled again at 0.012 mbar, producing pure 1 as
a slightly brownish oil (14.1 g, 70 mmol, 70%). The 1H NMR spectrum is consistent with
literary data [16].

3.3. Synthesis of N,N,N-Triethyl-4-(1H-pyrrol-1-yl)butan-1-aminium Bromide 2

A solution of 1 (5.7 g, 28.2 mmol) and Et3N (5.87 mL, 4.27 g, 42.3 mmol) in dry CH3CN
(140 mL) was heated at 80 ◦C for 48 h under Ar in a sealed vessel. After the completion
of the reaction monitored by TLC, the solvent was evaporated in vacuo, the residue was
dissolved in 70 mL DCM and extracted with 25 mL of H2O 4 times. The aqueous layer was
evaporated, and the orange oily residue was dried in vacuo to the constant mass in 98%
yield (8.46 g, 27.7 mmol).

1H NMR (400 MHz, CDCl3) δ, ppm: 6.70 (t, J = 2.1 Hz, 2H), 6.11 (t, J = 2.1 Hz, 2H),
4.02 (t, J = 6.5 Hz, 2H), 3.39 (q, J = 7.3 Hz, 6H), 3.28–3.06 (m, 2H), 1.93 (p, J = 6.9 Hz, 2H),
1.76–1.66 (m, 2H), 1.30 (t, J = 7.3 Hz, 9H). 13C NMR (101 MHz, CDCl3) δ, ppm: 120.7, 108.5,
57.2, 53.5, 48.5, 28.2, 19.4, 8.1. FTIR (KBr)
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Substance 2 (8.46 g, 27.7 mmol) was mixed with a saturated solution of NaClO4 (3.76 g,
30.7 mmol) in acetone (9.2 mL). The mixture was stirred for 1.5 h at RT under Ar, the precip-
itate was filtered off, the filtrate was evaporated in vacuo and the residue was redissolved
in 50 mL CH2Cl2, filtered again and evaporated in vacuo. The resulting brownish solid
was recrystallized from 80% aqueous ethanol, producing the desired product 3 as creamy
crystals in 82% yield (7.38 g, 22.9 mmol).
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Supplementary Materials: The following are available online, Figures S1–S8: 1H and 13C-NMR
spectra, HRMS and FTIR data for compounds 2 and 3.
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