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Abstract: The synthesis of methyl 3,3-bis[4-(dimethylamino)phenyl]-2,2-dimethylpropanoate is achieved by
means of the alkylation of methyl isobutyrate silyl enol ether with bis[4-(dimethylamino)phenyl]methanol,
facilitated by using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a solvent and reaction promoter. The
reaction proceeds smoothly to produce the mentioned compound in a good yield via a metal and
additive-free procedure. The corresponding ester is fully characterized.
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1. Introduction

The alkylation reaction of ketene silyl acetals with different electrophiles is a well-
established methodology in organic synthesis. However, this reaction normally requires
the use of an alcohol derivative, such as tosylates, carbonates, acetates, or halides, as a
substrate. Additionally, sometimes, a fluoride source and/or Brønsted or Lewis acid are
also necessary to activate the corresponding nucleophile and/or electrophile, respectively,
(Scheme 1). Thus, the overall process generates a stoichiometric amount of waste. Therefore,
a much more attractive strategy from practical and environmental points of view would be
the direct use of alcohols to carry out this transformation since they are readily available
compounds from raw materials and only generate water as a by-product [1].

 
 

 

 
Molbank 2023, 2023, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molbank 

Short Note 

Methyl 3,3-bis[4-(dimethylamino)phenyl]-2,2-dimethylpropanoate 
Lara Mollà-Guerola and Alejandro Baeza * 

Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias,  
Universidad de Alicante, Apdo. 99, 03690 Alicante, Spain; lmg123@gcloud.ua.es 
* Correspondence: alex.baeza@ua.es 

Abstract: The synthesis of methyl 3,3-bis[4-(dimethylamino)phenyl]-2,2-dimethylpropanoate is 
achieved by means of the alkylation of methyl isobutyrate silyl enol ether with bis[4-(dimethyla-
mino)phenyl]methanol, facilitated by using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a solvent 
and reaction promoter. The reaction proceeds smoothly to produce the mentioned compound in a 
good yield via a metal and additive-free procedure. The corresponding ester is fully characterized. 

Keywords: HFIP; ketene silyl acetals; alkylation; SN1; alcohol 
 

1. Introduction 
The alkylation reaction of ketene silyl acetals with different electrophiles is a well-

established methodology in organic synthesis. However, this reaction normally requires 
the use of an alcohol derivative, such as tosylates, carbonates, acetates, or halides, as a sub-
strate. Additionally, sometimes, a fluoride source and/or Brønsted or Lewis acid are also nec-
essary to activate the corresponding nucleophile and/or electrophile, respectively, (Scheme 1). 
Thus, the overall process generates a stoichiometric amount of waste. Therefore, a much more 
attractive strategy from practical and environmental points of view would be the direct use of 
alcohols to carry out this transformation since they are readily available compounds from 
raw materials and only generate water as a by-product [1]. 
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Scheme 1. Alkylation reaction of ketene silyl acetals. 

On the other hand, to continue our studies on the use of fluorinated alcohols as sol-
vents and promoters of chemical transformations [2–6], we used fluoroalkyl alcohols to 
accomplish the above-mentioned transformation (Scheme 1). This idea arose not only be-
cause of the unique chemical and physical properties (such as a high hydrogen bond do-
nor ability, low nucleophilicity, high polarity and ionizing power values and slight 
Brønsted acidity) of fluorinated alcohols [7–9], but also because they have both shown to 
promote nucleophilic substitution reactions onto the so-called activated alcohols (such as 
benzylic and allylic alcohols) [10] and activate silicon-based nucleophiles [11]. 
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Scheme 1. Alkylation reaction of ketene silyl acetals.

On the other hand, to continue our studies on the use of fluorinated alcohols as
solvents and promoters of chemical transformations [2–6], we used fluoroalkyl alcohols
to accomplish the above-mentioned transformation (Scheme 1). This idea arose not only
because of the unique chemical and physical properties (such as a high hydrogen bond
donor ability, low nucleophilicity, high polarity and ionizing power values and slight
Brønsted acidity) of fluorinated alcohols [7–9], but also because they have both shown to
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promote nucleophilic substitution reactions onto the so-called activated alcohols (such as
benzylic and allylic alcohols) [10] and activate silicon-based nucleophiles [11].

2. Results

The synthesis of the mentioned ester was accomplished following a previous method-
ology developed by our group [11]. Thus, benzhydrol 1 was allowed to react with silyl
enol ether 2 at 40 ◦C using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a solvent and reac-
tion promoter (Scheme 2). After 15 h, the solvent was evaporated, and after purification,
compound 3 was obtained in a 62% yield.

Molbank 2023, 2023, x FOR PEER REVIEW 2 of 4 
 

2. Results 
The synthesis of the mentioned ester was accomplished following a previous meth-

odology developed by our group [11]. Thus, benzhydrol 1 was allowed to react with silyl 
enol ether 2 at 40 °C using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a solvent and reac-
tion promoter (Scheme 2). After 15 h, the solvent was evaporated, and after purification, 
compound 3 was obtained in a 62% yield. 

Me2N

O

OMe

NMe2

Me2N

OH

NMe2

OMe

OTMS HFIP (1 M)

40 ºC, 15 h
+

1 2 3  
Scheme 2. Synthesis of ester 3. 

It is important to remark that other polar solvents, which are known to be substrates’ 
activators via hydrogen bonding, such as H2O or MeOH, failed to have the desired effect 
in this reaction, and unaltered benzhyrol 1 or other non-desired products were observed. 
The corresponding ester 3 was observed via GC-MS, although in low conversion, only 
when 2, 2, 2-trifluoroethanol (TFE) was used. 

Concerning the reaction mechanism (Scheme 3), an SN1-type process will seemingly 
occur. Firstly, the HFIP-mediated dehydroxylation of benzylic alcohol 1 will take place. 
This step is assumed from the fact that from as soon as HFIP was added to the reaction 
vessel containing compound 1, a deep blue solution was observed, indicating the for-
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poration, Karlsruhe, Germany) using CDCl3 as a solvent. Low-resolution mass spectra 
(MS) were recorded in the electron impact mode (EI, 70 eV, He as carrier phase) using 
Agilent GC/MS 5973 Network Mass Selective Detector spectrometer apparatus equipped 
with an HP-5MS column (Agilent technologies, 30 m × 0.25 mm) and giving fragment ions 
in m/z, with relative intensities (%) in parentheses. High-resolution mass spectra (HRMS) 
were obtained using Agilent 7200 Quadrupole-Time of Flight apparatus (Q-TOF) (Agilent 
Technologies, Palo Alto, CA, USA); the form of ionization employed was electron impact 
(EI). IRs were recorded on a JASCO FT-IR 4100 LE Pike Miracle ATR (Jasco Analítica 
Spain, Madrid, Spain), and only the most structurally relevant peaks are listed. Analytical 
TLC was performed on Merck silica gel plates, and the spots were visualized with UV 
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It is important to remark that other polar solvents, which are known to be substrates’
activators via hydrogen bonding, such as H2O or MeOH, failed to have the desired effect in
this reaction, and unaltered benzhyrol 1 or other non-desired products were observed. The
corresponding ester 3 was observed via GC-MS, although in low conversion, only when 2,
2, 2-trifluoroethanol (TFE) was used.

Concerning the reaction mechanism (Scheme 3), an SN1-type process will seemingly
occur. Firstly, the HFIP-mediated dehydroxylation of benzylic alcohol 1 will take place.
This step is assumed from the fact that from as soon as HFIP was added to the reaction
vessel containing compound 1, a deep blue solution was observed, indicating the formation
of the highly stable cation, known as Michler’s hydrol blue [12]. Then, the attack by
corresponding ketene silyl acetals, which can be also activated by means of HFIP, on this
intermediate will render the corresponding ester 3.
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3. Materials and Methods

All reagents and solvents were purchased from commercial suppliers and used without
further purification. NMR spectra were acquired with a Bruker AV-400 (Bruker Corporation,
Karlsruhe, Germany) using CDCl3 as a solvent. Low-resolution mass spectra (MS) were
recorded in the electron impact mode (EI, 70 eV, He as carrier phase) using Agilent GC/MS
5973 Network Mass Selective Detector spectrometer apparatus equipped with an HP-5MS
column (Agilent technologies, 30 m × 0.25 mm) and giving fragment ions in m/z, with
relative intensities (%) in parentheses. High-resolution mass spectra (HRMS) were obtained
using Agilent 7200 Quadrupole-Time of Flight apparatus (Q-TOF) (Agilent Technologies,
Palo Alto, CA, USA); the form of ionization employed was electron impact (EI). IRs were
recorded on a JASCO FT-IR 4100 LE Pike Miracle ATR (Jasco Analítica Spain, Madrid,
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Spain), and only the most structurally relevant peaks are listed. Analytical TLC was
performed on Merck silica gel plates, and the spots were visualized with UV light at
254 nm (Merck Millipore, Billerica, MA, USA). Flash chromatography was conducted using
Merck silica gel 60 (0.040–0.063 mm).

General Procedure for the HFIP-Promoted Synthesis of Ester 3

In a capped tube, HFIP (250 µL) was added in one portion onto a mixture of bis[4-
(dimethylamino)phenyl]methanol 1 (0.25 mmol) and ketene silyl acetal 2 (0.625 mmol,
2.5 equiv.). The reaction was then stirred at 40 ◦C for 15 h. After this time, the solvent
evaporated, and the crude material was directly purified via flash chromatography.

Methyl 3,3-bis[4-(dimethylamino)phenyl]-2,2-dimethylpropanoate (3):
Purple-blue sticky oil; purification via flash chromatography (hexane/EtOAc), 62%

yield; Rf = 0.67 (hexane/ethyl acetate 4/1); IR (ATR): ν = 1724, 1612, 1516, 1346, 1265, 1234,
1130, cm−1; 1H NMR (400 MHz, CDCl3): δH = 7.20 (d, J = 8.5 Hz, 4H), 6.71 (d, J = 8.5 Hz,
4H), 4.26 (s, 1H), 3.55 (s, 3H), 2.93 (s, 12H), 1.28 (s, 6H) ppm; 13C NMR (101 MHz, CDCl3):
δC = 178.6, 148.5, 130.4, 130.0, 112.7, 57.4, 51.7, 46.9, 41.0, 24.3 ppm; MS (EI): m/z 354 (M+,
3.6%), 254 (65), 253 (100), 237 (47), 165 (12), 126 (39), 118 (13); HRMS calcd for C22H30N2O2:
354,2307; found: 354.2285 (Supplementary Materials).

4. Conclusions

In conclusion, herein, we have described the synthesis of methyl 3,3-bis[4-(dimethylamino)phenyl]-
2,2-dimethylpropanoate (3) in a good yield using a metal- and additive-free strategy by
using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a solvent and promoter in the reaction
between methyl isobutyrate silyl enol ether (2) and bis[4-(dimethylamino)phenyl]methanol
(1). The corresponding ester was obtained in a good yield under smooth reaction conditions.
In addition, the implemented process possesses a high atom economy, generating water as
a by-product.

Supplementary Materials: The following materials are available online: 1H-NMR, 13C-NMR, IR,
GC-MS, and HRMS of compound 3.
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