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Abstract: A heteroleptic binuclear manganese complex was obtained and characterized by single-
crystal X-ray diffraction. Manganese ions coordinate with the target product and by-product of
the condensation reaction between 2-picolylamine and acenaphthenequinone are characterized by
different geometries in the resulting complex.

Keywords: alkyl-BIAN; picolylamine; manganese; condensation reaction; acenaphthenequinone;
X-ray structure

1. Introduction

Transition metal complexes with bis-iminoacenaphthenes (BIANs) are found in ap-
plication in different areas of modern chemistry [1]; for instance, they serve as catalysts
for many types of organic reactions [2–6] and act as magnetoactive [7,8] and optical [9]
materials. Manganese complexes are of special interest because of their potential activity in
small molecule activation [10].

The synthesis of alkyl-BIANs is often complicated by side reactions occurring between
alkyl-substituted primary amines and acenaphthenequinone (AQ) [11–16]. This is the
reason for a limited number of known, well-characterized alkyl-BIANs. Sometimes, the
reaction of primary alkyl amine with AQ leads to a large number of by-products, whereas
the desired product is practically absent. For example, as a result of the reaction of AQ with
benzylamine, the authors identified several by-products, as shown in Scheme 1 [11–16].
This behavior can be explained by a set of isomerization/tautomerization, oxidation, and
hydrolysis reactions during the treatment of primary aliphatic amine and AQ.
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because of air sensitivity and the formation of an insoluble resinous precipitate. Therefore,
we carried out an in situ chemical reduction of the crude reaction mixture obtained in the
previous step by metallic sodium (1.1 equiv. per 1 mol of initial AQ) in an inert nitrogen
atmosphere. After sodium was fully dissolved, manganese(II) bromide was added. The
resulting product was crystallized to give manganese complex 1. Isolated complex 1
demonstrated EPR silence at room temperature. The 1H NMR spectrum of complex 1
was also not informative because of the broadening of proton signals (see Supplementary
Materials). We managed to describe the molecular structure of 1 by single-crystal X-ray
diffraction. Thus, it was found that neutral binuclear complex 1 contained not only the
target mono-iminoacenaphthene ligand (L1) but also an unexpected 14-(pyridin-2-yl)-14H-
acenaphtho[1,2-b]naphtho[1,8-fg]quinoxalin-14-ol ligand (L2). The overall reaction scheme
and structural formula of the final product are shown in Scheme 2.
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Scheme 2. Synthesis of binuclear manganese complex 1.

Complex 1 crystallized in the triclinic space group P1 with tetrahydrofuran (THF)
solvent molecules. According to X-ray diffraction data, compound 1 was a neutral bin-
uclear complex with the Mn1···Mn2 internuclear distance of 3.2818(7) Å, indicating the
absence of metal–metal bonding, as shown in Figure 1. The manganese atoms differed
in their coordination geometry, namely, the atom Mn1 adopted distorted square pyrami-
dal coordination with geometry index [17] τ5 = 0.19, while the atom Mn2 was close to
octahedral one if the elongated coordination bond Mn2–N3 of 2.493(3) Å was taken into
account. The ligand L1 was coordinated by Mn1 via the atoms O1, N1, and N2, whereas
the ligand L2 bound Mn2 through the atoms N3, N5, and O2 as well as Mn1 through the
oxygen atom O2. Internuclear distances of the coordination sphere are listed in the figure
caption. The positions of the hydrogen atoms of 1 were confirmed by Fourier maps and
corresponded to the skeletal formula in Scheme 2. The analysis of bond lengths within
the ligand L1 in complex 1 showed the migration of double bond from N1–C102 (1.369(5)
Å) to N1–C21 (1.289(5) Å). The charge distribution analysis showed that L2 was an anion
with a formal negative charge of −1 on oxygen atom O2. The ligand L1 also demonstrated
anionic character.
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Figure 1. Molecular structure of 1 in the crystal with thermal ellipsoids at the 50% probability level
according to single-crystal X-ray diffraction. Hydrogen atoms and solvent molecules are omitted for
clarity. Selected interatomic distances [Å]: Br1–Mn1 2.4871(7), Mn1–O1 2.316(3), Mn1–O2 2.031(3),
Mn1–N1 2.191(3), Mn1–N2 2.265(3), Br2–Mn2 2.5335(7), Mn2–O1 2.208(3), Mn2–O2 2.139(3), Mn2–O3
2.199(3), Mn2–N3 2.493(3), Mn2–N5 2.264(4).

3. Materials and Methods

Preparation. All manipulations were carried out under nitrogen, using the standard
Schlenk technique or in a glove box. The solvents (THF and hexane) were distilled from
sodium/benzophenone and stored over 3 Å molecular sieves under nitrogen gas. Acenaph-
thenequinone (95%, CAS—82-86-0), 2-aminomethyl-pyridine (99%, CAS 3731-51-9), and
manganese(II) bromide MnBr2 (98%, CAS 13446-03-2) were purchased and used without
preliminary purification.

Synthesis of manganese complex 1. A solution of 1 equivalent of 2-aminomethyl-pyridine
(5 mmol, 0.54 g) in 3 mL of THF was dropwise added to a solution of 1 equivalent of
acenaphthenequinone (5 mmol, 0.91 g) in 30 mL of THF. The reaction mixture was stirred
at room temperature for about 24 h. Then, metallic sodium (1.1 equiv., 0.0023 g) was added
and the solution was stirred for another 24 h. After that, manganese(II) bromide was added
in one portion to the reaction mixture and, after 3 h of intense stirring, the solution was
filtered. The filtrate was concentrated under a vacuum.

Single-crystal X-ray diffraction. The monocrystal analyzed was obtained by slow
diffusion of n-hexane in THF at −35 ◦C. The diffraction data of 1 were registered on a
Bruker D8 QUEST diffractometer with a PHOTON III area detector and an IµS DIAMOND
microfocus X-ray tube using Mo Kα (0.71073 Å) radiation at 105(2) K. The data reduction
package APEX4 was used for data processing. The data collected were corrected for
systematic errors and absorption: empirical absorption correction based on spherical
harmonics according to the Laue symmetry 1 using equivalent reflections. The structure
was solved by the direct methods using SHELXT-2018/2 [18] and refined by the full-
matrix least-squares on F2 using SHELXL-2018/3 [19]. Non-hydrogen atoms were refined
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anisotropically. The hydrogen atoms were found by Fourier maps, inserted at the calculated
positions, and refined as riding atoms.

Crystallographic data for 1. C58H47Br2Mn2N5O4.5, plate (0.098 × 0.012 × 0.007 mm3),
formula weight 1155.70 g mol−1; triclinic, P1 (No. 2), a = 11.4754(3) Å, b = 13.0017(4) Å,
c = 16.9515(5) Å, α = 90.9576(10)◦, β = 103.9529(10)◦, γ = 90.4510(11)◦, V = 2454.01(12) Å3,
Z = 2, Z’ = 1, T = 105(2) K, dcalc = 1.564 g cm−3, µ(Mo Kα) = 2.199 mm−1, F(000) = 1172;
Tmax/min = 0.9281/0.8469; 64665 reflections were collected (1.945◦ ≤ θ ≤ 25.349◦, index
ranges: −13 ≤ h ≤ 13, −15 ≤ k ≤ 15, and −20 ≤ l ≤ 20), 8993 of which were unique,
Rint = 0.0749, Rσ = 0.0455; completeness to θ of 25.349◦ 100.0%. The refinement of 713 pa-
rameters with 324 restraints converged to R1 = 0.0430 and wR2 = 0.1065 for 6802 reflections
with I > 2σ(I) and R1 = 0.0636 and wR2 = 0.1180 for all data with goodness-of-fit S = 1.057
and residual electron density ρmax/min = 1.091 and−0.565 e Å−3, rms 0.091; max shift/e.s.d.
in the last cycle 0.001.

Deposition number CCDC 2244472 contains the supplementary crystallographic data
for this paper. These data are provided free of charge by the joint Cambridge Crystallo-
graphic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service
www.ccdc.cam.ac.uk/structures (accessed on 24 February 2023).

4. Conclusions

Thus, a new binuclear manganese complex with two different N,O-ligands was ob-
tained and structurally characterized by single-crystal X-ray diffraction. An interesting
ligand environment near two manganese centers possibly makes this complex promising
for further application in small molecule activation reactions.

Supplementary Materials: The following supporting information can be downloaded: EPR spec-
trum, 1H NMR spectrum, and crystallographic data in Crystallographic Information File (CIF) format.
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