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Abstract: The novel heteroleptic copper (I) complex [6-(thiophen-2-yl)-2,2′-bipyridine]bis
(triphenylphosphine) copper(I) tetrafluoroborate (1), formulated as [CuL(PPh3)2]BF4, was synthe-
sized in two steps, utilizing the diimine type ligand L = 6-(thiophen-2-yl)-2,2′-bipyridine and triph-
enylphosphine (PPh3). The compound was characterized both in the solid state and in solution
by employing single crystal X-ray diffraction, IR, UV, and NMR spectroscopies. The complex is an
orange emitter that demonstrates a photoluminescence quantum yield of 2.6% in the solid state.
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1. Introduction

Copper(I) heteroleptic complexes bearing phosphines and diimine-type ligands are of
great interest because of their attractive photophysical properties. These compounds could
be used as phosphorescent active materials in organic, light-emitting devices (OLEDs)
and light-emitting electrochemical cells (LECs) [1–4] as promising alternatives to their
already-known heavy metal analogues.

Chelating NˆN ligands based on 2,2′-bipyridine (bpy) and 1,10−phenanthroline cores
are the most widely used because of their rigidity and strong binding to Cu(I). On the
other hand, the phosphine ligand, which acts as a good σ-donor and π-acceptor, stabilizes
the metal oxidation state. The optimization of the photophysical properties of Cu(NN)(P)
complexes requires a careful choice of both the NˆN (sterically demanding, rigid, and
highly conjugated) and P (preferably bidentate, with a large bite angle) type ligands [5–9].

I. Andres-Tome et al. synthesized a series of [Cu(NˆN)(PPh3)2]+-type complexes
(in which NˆN stands for the 2,2′-bipyridine and methylated derivatives). Cu(I) is tetra-
coordinated, exhibiting moderate distortion from the ideal tetrahedral geometry. The
compounds were emissive in the solid state (polymer matrix) at room temperature, with
low to moderate quantum yields [10].

B. Bozic-Weber and co-workers have already studied the non-emissive homoleptic
complex [CuL2][PF6] that carries the ligand used in our work. Notably, one of the Cu-N
bonds is longer (2.20 Å) than the remaining ones (~2.00 Å). This elongation is associated
with a deformation of the corresponding bpy ligand away from planarity. The electronic
absorption spectrum exhibits high energy bands arising from ligand-centered π*← π tran-
sitions. The broad spectral features, observed at approximately 400–435 and 513–550 nm,
respectively, were assigned to MLCT transitions [11].

A heteroleptic complex of Cu(I) with this ligand and a phosphine has not yet been
reported. Keeping in mind the absorption properties of the homoleptic complex mentioned
above and the expected effect of the 2-2′-bpy 6-position substitution with a thiophenyl
moiety (i.e., a conjugation extension and redshift of the emission maximum), we decided to
synthesize and study the title compound.
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2. Results and Discussion
2.1. Characterization with NMR Spectroscopy

The 1H-NMR spectrum of the complex 1 (Figure 1) was recorded in acetone-d6. One set
of sharp signals was observed, which was indicative of the complex integrity in the solution.
The 1H chemical shifts of both the ligand and the complex are cited in Table 1. The proton
resonance assigned to H(6′) was most affected by complexation and was shifted by 1 ppm
upfield compared to that of the free ligand. Notably, upfield shifts were also observed for
the thiophene protons, implying the presence of intramolecular stacking possibly involving
the thiophene moiety and the phenyl rings of the phosphine ligands [12–14].
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Figure 1. 1HNMR spectrum of [CuL(PPh3)2][BF4] (1) in acetone-d6 (500 MHz, 298K).

Table 1. 1H NMR data (δ, ppm) for L and the complex 1 ([CuL(PPh3)2][BF4]).

H L Complex ∆δ = δcoml − δL

H6′ 8.71 7.71 −1.00
H5′ 7.45 7.31 −0.14
H4′ 7.99 8.12 0.13
H3′ 8.57 8.57 0.00
H3 8.38 8.49 0.11
H4 7.97 8.23 0.26
H5 7.90 7.80 −0.10

H3 (thiophene) 7.59 7.40 −0.19
H4 (thiophene) 7.20 6.93 −0.27
H5 (thiophene) 7.83 7.47 −0.36

2.2. Absorption Spectrum

The diffuse reflectance spectrum (DRS) of the [CuL(PPh3)2]BF4 (1) is shown in Figure 2.
The broad spectral features present from 250–480 nm are expected for complexes of this
type. More specifically, the ligand-centered (LC) π→ π* and n→ π* electronic transitions
appeared in the range of 230–350 nm, while lower energy bands (>350 nm) are ascribed to
MLCT transitions [15–17].
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Figure 2. The Kubelka–Munk spectrum of the solid [CuL(PPh3)2]BF4.

2.3. IR Spectroscopy

The ATR-IR spectrum of the Cu(I) complex 1, presented in Figure 3, reveals the
presence of both ligands and the counter ion. The most characteristic bands were located at
1594, 1460, and 1053 cm−1 and are assigned to C=N, =C-P, and B-F stretching vibrations,
respectively [16].
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2.4. Emission Spectrum–Quantum Yield Calculation

Complex 1 exhibited no luminescence in solution. Nevertheless, a broad emission band
located at 600 nm (orange), appeared upon excitation at λ = 350 nm at room temperature
(Figure 4). The large Stoke’s shift (~250 nm) implies a severe energy loss in the MLCT
excited state, most probably due to structural relaxation [15–17]. This also accounts for the
relatively low calculated absolute photoluminescence quantum yield of Φ = 2.6%.
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Figure 4. The emission spectrum of the solid [CuL(PPh3)2]BF4 (λexc = 350 nm).

2.5. Description of the Structure

The compound is formulated as [CuL(PPh3)2]BF4 (1), where L is 6-(thiophen-2-yl)-2,2′-
bipyridine, and is crystallized in the monoclinic space group P21/c. Its asymmetric unit
consists of a cation [CuL(PPh3)2]+ and the counter anion BF4

−. Selected bond distances (Å)
and angles (◦) for the coordination sphere of Cu(I) in the cation are presented in Table 2,
and the structure of the cation is depicted in Figure 5.

Table 2. Selected structural characteristics of compound 1.

Bond Distances (Å) Bond Angles (◦)

Cu(1)-N(1) 2.1127(19) N(1)-Cu(1)-N(2) 78.93(8)
Cu(1)-N(2) 2.1409(18) N(1)-Cu(1)-P(1) 104.06(5)
Cu(1)-P(1) 2.2747(5) N(2)-Cu(1)-P(1) 124.90(5)
Cu(1)-P(2) 2.2830(6) N(1)-Cu(1)-P(2) 112.20(5)

N(2)-Cu(1)-P(2) 107.64(5)
P(1)-Cu(1)-P(2) 120.46(2)

Compound 1 joins a small family of structurally characterized compounds formulated
as [Cu(N-N chelate)(unidentate phosphine)2](counter anion), and it is the first example
containing the ligand 6-(thiophen-2-yl)-2,2′-bipyridine [18]. In the cation, Cu(1) sits in the
center of a rather distorted tetrahedron built by two nitrogen atoms [N(1) and N(2)] that
belong to a chelated 6-(thiophen-2-yl)-2,2′-bipyridine ligand and two phosphorus atoms
[P(1) and P(2)] that belong to two coordinated PPh3 molecules. The distortions of the
tetrahedron can be easily seen from the wide P(1)-Cu(1)-P(2) angle [120.46(2)◦] due to the
large steric hindrance of the phenyl groups, and from the acute N(1)-Cu(1)-N(2) angle
[78.93(8)◦] due to the small bite of the chelation. The Cu-P and Cu-N bond distances agree
with literature values [19–21]. The heterocyclic ligand utilizes only the pyridyl moieties
for coordination. The two rings are not coplanar, forming a dihedral angle of 21.32◦.
The thiophenyl group is disordered, probably due to the lack of strong interactions with
the lattice constituents. The BF4

− is held in the crystal with non-conventional C-H· · · F
H-bonds. A packing diagram is shown in Figure 6.
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3. Materials and Methods
3.1. Materials

All solvents were of analytical grade and used without further purification. [Cu(CH3CN)4]
BF4, PPh3, and NH4OAc were purchased from Aldrich, while 2-acetylthiophene, 2-
acetylpyridine, and Me2NH.HCl were purchased from Alfa Aesar. I2 and paraformalde-
hyde were purchased from Riedel de Haen. The ligand L = 6-(thiophen-2-yl)-2,2′-bipyridine
was prepared according to a reported method [12].

3.2. Methods

The high-resolution electrospray ionization mass spectrum (HR-ESI-MS) of the com-
pound (Figure S2) was obtained on a Thermo Scientific, LTQ Orbitrap XL™ system. A C,
H, and N elemental analysis was performed on a Perkin-Elmer 2400 Series II analyzer. 1H
and 1H-1H-COSY NMR spectra (Figure S1) were recorded on Bruker Avance spectrometer
operating at proton frequencies of 400.13 and 500.13 MHz and processed using Topspin
4.07 (Bruker Biospin GmbH, Ettlingen, Germany). The IR spectrum of the complex was
acquired on an Agilent Cary 630 ATR-IR spectrometer. The DRS-absorbance spectrum of
the complex was recorded on an Agilent Cary 60 UV–vis spectrophotometer with a xenon
source lamp equipped equipped with an external reflectance probe (Barrelino™, Harrick



Molbank 2023, 2023, M1605 6 of 8

Scientific Products, Inc., New York, NY, USA). The emission study was carried out using a
Jasco FP-8300 fluorometer equipped with a xenon lamp source and an integrated sphere for
solid samples. The photoluminescence absolute quantum yield of the complex in the solid
state was calculated using the equation Q = S2/S0 − S1. S2 denotes the integrated emission
intensity of the sample, while S0 and S1 represent the integrated excitation intensities of the
standard and the sample, respectively.

3.3. Crystal Structure Determination

A suitable, prismatic yellow crystal of compound 1 with approximate dimensions
of 0.40 × 0.40 × 0.50 mm3 was glued to a thin glass fiber with a cyanoacrylate (super
glue) adhesive and placed on the goniometer head. Diffraction data were collected on a
Bruker D8 Quest Eco diffractometer equipped with a Photon II detector and a TRIUMPH
(curved graphite) monochromator utilizing Mo Ka radiation (λ = 0.71073 Å), using the
APEX 3 software package [22]. A total of 555 frames were collected with ϕ and ω scans.
The collected frames were integrated with the Bruker SAINT software using a wide-frame
algorithm. The integration of the data using a monoclinic unit cell yielded a total of
140,512 reflections to a maximum θ angle of 25.00◦ (0.84 Å resolution). Of these, 7632
were independent (average redundancy = 18.411, completeness = 99.8%, Rint = 4.60%,
and Rsig = 1.52%), and 6559 (85.94%) were greater than 2σ(F2). The final cell constants of
a = 13.0988(5), b = 16.1147(6), c = 20.7612(7) Å, β = 98.2330(10)◦, and V = 4337.2(3) Å3 are
based upon the refinement of the XYZ centroids of 9727 reflections above 20 σ(I) with 5.055◦

< 2θ < 59.67◦. The data were corrected for absorption effects using the multi-scan method
(SADABS) [23]. The ratio of the minimum to the maximum apparent transmission was
0.887. The P21/c space group was assigned, and the structure was solved using the Bruker
SHELXT Software Package. It was then refined by full-matrix least-squares techniques
on F2 (SHELXL 2018/3) [24] via the ShelXle interface [25] A few reflections below theta
(min.) were missing, probably because they were affected by the beam stop. Further
experimental crystallographic details for 1: Data/restraints/parameters, 7632/140/587;
(∆/σ)max = 0.001; (∆ρ)max/(∆ρ)min = 0.726/−0.379 eÅ−3; goodness of fit, 1.065; R in-
dices [I > 2σ(I)], Robs = 0.0336, wRobs = 0.0899; R indices [all data], Rall = 0.0430, and
wRall = 0.0951. The non-H atoms were treated anisotropically, while the organic H atoms
were placed in calculated, ideal positions and refined as riding on their respective carbon
atoms. PLATON [26] was used for geometric calculations, and X-Seed [27] was used for
the molecular graphics.

The thiophenyl group was treated as disordered in two positions, which were related
with an approximately 180◦ rotation about the pyridyl-thiophenyl ring bond, and partial
occupancies of 76 and 24%.

Full details on the structure can be found in the CIF file deposited with the CCDC.
CCDC 2241976 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (accessed on 15
February 2023).

3.4. Synthesis
Synthesis of the Complex [Cu(L)(PPh3)2][BF4] (1)

In a 25 mL round bottom flask, 5 mL of dichloromethane (Ar-degassed), 31.4 mg
of [Cu(CH3CN)4]+[BF4]− (0.1 mmol), and 52.5 mg of PPh3 (0.2 mmol) were added. The
solution was stirred for an hour. Then, 23.8 mg of L (0.1 mmol) was added, and the orange
solution was left to stir overnight. The solvent was removed under reduced pressure
up to 1ml, followed by the addition of diethyl ether. A yellow-color solid immediately
precipitated and was collected and dried under vacuum. Yield: 54.7% (m = 50 mg).
C50H40N2BSF4P2Cu: calc.% C, 65.76; H, 4.42; N, 3.07. Found C, 65.70; H, 4.44; N, 3.11. 1H
NMR (500 MHz, acetone-d6) δ (ppm) L: 8.57 (d, J = 8.2 Hz, 1H); 8.49 (dd, J = 8.0 Hz, 0.7 Hz,
1H); 8.23 (t, J = 7.9 Hz, 1H); 8.12 (td, J = 7.9 Hz, 1.6 Hz, 1H); 7.80 (dd, J = 7.9 Hz, 0.8 Hz, 1H);
7.71 (br, 1H); 7.46 (t, J = 7.1 Hz, 1H); 7.40 (dd, J = 5.0Hz, 1.1 Hz, 1H); 7.31 (t, J = 7.9 Hz, 1H);

www.ccdc.cam.ac.uk/data_request/cif
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6.93 (dd, J = 5.0 Hz, 3.6 Hz, 1H). PPh3: 7.46, 7.30, 7.07 (30H). ATR-IR (cm−1) 3053w (=C-H
aromatic), 1594m (C=N bipyridyl), 1563m (C=C aromatic), 1460m (=C-P, PPh3) 1053s (B-F
BF4). HR ESI MS: cal. m/z = 300.9855, found m/z = 300.9839 for C14H10CuN2S [Cu(L)]+; cal.
m/z = 563.0767, found m/z = 563.0736 for C32H25CuN2PS [Cu(L)(PPh3)]+.

4. Conclusions

In summary, we synthesized and structurally characterized a novel heteroleptic Cu(I)
complex bearing a 2,2′-bipyridine type ligand and triphenylphosphine. The compound is
emissive in the solid state at room temperature, showing a photoluminescence quantum
yield of 2.6%.

Supplementary Materials: The following supporting information can be downloaded online, Figure S1:
1H-1H-COSY NMR spectrum of the complex; Figure S2: HR ESI-MS spectrum of the complex in
acetone (top) and theoretical spectrum for the fragments [CuL2]+ (middle) and [CuLP]+ (bottom);
File S1: crystal structure of the compound (*.mol file). File GM5_22_0m.cif (*.cif file)
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