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Abstract: An 1,3-indanedione-derived donor–acceptor cyclopropane, bearing the ethoxymethyl-
protected phenolic group at the ortho-position of the donor aryl substituent, has been synthesized
using a reaction sequence involving the Knoevenagel condensation of 1,3-indanedione with the
corresponding protected salicylaldehyde followed by the Corey–Chaykovsky cyclopropanation of the
obtained adduct with dimethylsulfoxonium methylide. The structure of the synthesized cyclopropane
was unambiguously proved by single-crystal X-ray diffraction data.

Keywords: donor–acceptor cyclopropanes; Knoevenagel condensation; Corey–Chaykovsky
cyclopropanation

1. Introduction

Cyclopropanes, bearing donor and acceptor substituents at vicinal carbon atoms have
attracted considerable attention from organic chemists in recent decades due to their high
reactivity with respect to various classes of reagents, such as nucleophiles, electrophiles,
diverse compounds with multiple carbon–carbon, carbon–heteroatom, and heteroatom–
heteroatom bonds, 1,3-dipoles, 1,3-dienes, etc. Because of this unique reactivity, such
substrates have become known as donor–acceptor (DA) cyclopropanes [1–7]. Typically,
DA cyclopropanes react as synthetic equivalents of a 1,3-dipole, in which the carbon atom
connected to the donor group serves as the electrophile, while the carbon atom bonded to
the acceptor group(s) appears for the nucleophilic center. However, we and others have
shown that DA cyclopropanes, in which the donor is an electron-rich (hetero)aromatic
group, can also react with the involvement of the ortho-position of the aromatic group in
the process as the nucleophile, affording various annulation products [5,8–12].

Further extension of the multifaceted reactivity of DA cyclopropanes can be achieved
by using substrates in which the donor aryl substituent contains a reactive functional
group at the ortho-position to the three-membered ring [13–25]. For example, domino
transformations of 2-hydroxyaryl-derived DA cyclopropanes, including the small ring
opening and a new ring closure with the participation of phenolic oxygen, afforded various
heterocyclic products [13–15]. However, the study of the reactivity of such cyclopropanes
has usually been limited to the corresponding 2-(2-hydroxyaryl)cyclopropane-1,1-diesters.
Therefore, the synthesis of related substrates with other acceptor substituents should be
important for the development of original processes leading to new polycyclic products.
Herein, we describe a simple approach to 1,3-indanedione-derived DA cyclopropane
bearing a protected phenolic moiety at the ortho-position of the donor phenyl group.
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2. Results and Discussion

The title cyclopropane was synthesized from the commercial starting compound by
simple procedures. Salicylaldehyde 1 was protected with ethoxymethyl chloride (EOMCl)
according to the procedure previously described [14]. The Knoevenagel reaction of the
resulting product 2 with 1,3-indanedione was carried out similarly to related condensations
of other aldehydes, which were previously reported [26]. The cyclopropanation of the
synthesized alkene 3 to obtain the cyclopropane 4 was performed by adding dimethyl-
sulfoxonium methylide, generated by the treatment of trimethylsulfoxonium iodide with
sodium hydride, to the solution of 3 in DMF at 0 ◦C (Scheme 1). It is worth noting that
both the order of addition and the reaction temperature are crucial to the efficiency of this
process. The addition of the solution of alkene 3 to the generated ylide led to the formation
of the complex mixture of products. Similarly, the yield of the desired compound 4 was
much lower due to the formation of various side products when cyclopropanation was
performed at room temperature.
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Scheme 1. Synthesis of cyclopropane 4. DIPEA = N,N-diisopropylethylamine.

1H NMR spectrum of compound 4 contains three doublets of doublets in the upfield
region. These signals correspond to protons of the three-membered ring. Geminal coupling
constant 2J for CH2 protons is 4.2 Hz, which is typical (from 4 to 5 Hz) for the methy-
lene group of cyclopropane. The structure of indanedione-derived cyclopropane 4 was
unambiguously confirmed by single-crystal X-ray analysis (Figure 1). This structure closely
matches the structures of the related DA cyclopropane without ortho-substituent [26]. The
small difference is in some rotation of the phenyl group, providing the most efficient interac-
tion of ether oxygen with the closest carbonyl group. This interaction is possibly responsible
for some shortening of the C(1)–C(2) bond between the atoms linked to donor and acceptor
substituents in 4 (1.542 Å) compared to the analogue without the 2-ethoxymethoxy group
(1.561 Å, [26]). NMR and IR spectral data for compound 4 resemble the corresponding data
for other 1,3-indanedione-derived DA cyclopropanes [26–28]. For copies of spectra, see
Supplementary Materials.
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Figure 1. Molecular structure (ORTEP-3) from single-crystal X-ray study of 4.

3. Materials and Methods

NMR spectra were acquired on a Bruker Avance 400 spectrometer (Bruker, Billerica,
MA, USA) at room temperature; the chemical shifts δ were measured in ppm with respect
to the solvent (1H: CDCl3, δ = 7.26 ppm; 13C: CDCl3, δ = 77.00). The splitting patterns
were designated as s, singlet; d, doublet; m, multiplet; dd, double doublet; br., broad. The
coupling constants (J) were in Hertz. Infrared spectra were recorded on an Infralum FT-801
spectrometer (Simex, Novosibirsk, Russian Federation) and a Thermo Nicolet IR-200 FT-IR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). High resolution and accurate
mass measurements were carried out using a micrOTOF-QTM ESI-TOF (Electro Spray
Ionization/Time of Flight, Bruker, Billerica, MA, USA). The melting points (m.p.) were
determined using a 9100 capillary melting point apparatus (Electrothermal, Stone, UK).
Analytical thin layer chromatography (TLC) was carried out with silica gel plates (silica
gel 60, F254, supported on aluminum); the revelation was conducted by UV lamp (365 nm).
Column chromatography was performed on silica gel 60 (230–400 mesh, Merck, Darmstadt,
Germany). All reactions were carried out using freshly distilled and dry solvents. Com-
mercial reagents employed in the synthesis were analytical grade, obtained from Aldrich
(St. Louis, MI, USA) or Alfa Aesar (Ward Hill, MO, USA). CCDC 1889833 contains the sup-
plementary crystallographic data for this paper. These data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 9 September 2019) (or
from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk). Compound 2 was synthesized by the reported procedure [14].

3.1. 2-[2-(Ethoxymethoxy)benzylidene]indene-1,3(2H)-dione (3)

To the solution of 2-(ethoxymethoxy)benzaldehyde 2 (2.0 g, 11.1 mmol) and indane-
1,3-dione (1.76 g, 12.0 mmol) in benzene (12 mL), piperidine (0.11 mL, 1.1 mmol) and acetic
acid (126 µL, 2.2 mmol) were added. The mixture was refluxed with the Dean–Stark trap
until water separation was finished (4 h). Upon cooling, the precipitate was formed. It
was filtered and recrystallized by the dissolution of product in the minimal quantity of
the boiling mixture of petroleum ether and ethyl acetate (4:1) followed by cooling the
solution to between 0 and 5 ◦C. Product 3 was isolated as a brown solid in 68% yield
(2.33 g); m.p. = 105–106 ◦C.

1H NMR (CDCl3, 400 MHz): δ = 1.25 (t, 3J = 7.1 Hz, 3H, CH3), 3.80 (q, 3J = 7.1 Hz, 2H,
CH2), 5.38 (s, 2H, OCH2O), 7.13–7.16 (m, 1H, Ar), 7.25 (dd, 3J = 8.3 Hz, 4J = 0.8 Hz, 1H,
Ar), 7.49–7.53 (m, 1H, Ar), 7.80–7.82 (m, 2H, Ar), 8.00–8.03 (m, 2H, Ar), 8.51 (s, 1H, CH=),
8.89 (dd, 3J = 8.0 Hz, 4J = 1.6 Hz, 1H, Ar). 13C NMR (CDCl3, 100 MHz): δ = 15.3 (CH3),
65.0 (CH2O), 93.7 (OCH2O), 114.5 (CH), 121.6 (CH), 122.8 (C), 123.3 (CH), 123.4 (CH), 128.7
(C), 134.0 (CH), 135.2 (CH), 135.36 (CH), 135.38 (CH), 140.3 (C), 141.6 (CH), 142.6 (C), 158.8
(C), 189.3 (CO), 190.7 (CO). IR (KBr): ν = 3088, 2985, 2908, 1726, 1687, 1608, 1582, 1480,
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1459, 1373, 1347, 1216, 1199, 1171, 1150, 1114, 1075, 1017, 974 cm−1. HRMS ESI-TOF: m/z =
309.1126 [M + H]+ (309.1121 calculated for C19H17O4

+).

3.2. 2-[2-(Ethoxymethoxy)phenyl]spiro[cyclopropane-1,2′-indene]-1′,3′-dione (4)

To the suspension of NaH (60% suspension in mineral oil, 62 mg, 1.55 mmol) in dry
DMF (2 mL), trimethylsulfoxonium iodide (341 mg, 1.55 mmol) was added in a single
portion under argon atmosphere at room temperature. The reaction mixture was stirred
for 45 min. The obtained solution was added dropwise to the solution of alkene 3 (400 mg,
1.30 mmol) in DMF (4 mL) at 0 ◦C under argon atmosphere. The reaction mixture was
stirred at 0 ◦C for 50 min and poured into the mixture of the saturated aq. NH4Cl solu-
tion and ice (10 mL). The product was extracted with ethyl acetate (5 × 5 mL) and the
combined organic layers were dried with Na2SO4. The solvent was evaporated under
the reduced pressure. The residue was purified by column chromatography on silica gel
using the mixture of petroleum ether and ethyl acetate (1:1) as an eluent. Cyclopropane
4 was isolated as yellow crystals in 73% yield (305 mg). Rf = 0.44 (petroleum ether-ethyl
acetate, 4:1); m.p. = 85–86 ◦C. 1H NMR (CDCl3, 400 MHz): δ = 0.93 (t, 3J = 7.3 Hz, 3H,
CH3), 2.30 (dd, 2J = 4.2 Hz, 3J = 8.7 Hz, 1H, CH2), 2.37 (dd, 2J = 4.2 Hz, 3J = 9.0 Hz, 1H,
CH2), 3.11 (dq, 2J = 9.6 Hz, 3J = 7.3 Hz, 1H, CH2), 3.17 (dq, 2J = 9.6 Hz, 3J = 7.3 Hz, 1H,
CH2), 3.31 (dd, 3J = 9.0 Hz, 3J = 8.7 Hz, 1H, CH2), 4.76 (d, 2J = 7.0 Hz, 1H, OCH2O),
4.86 (d, 2J = 7.0 Hz, 1H, OCH2O), 6.98 (br. d, 3J = 8.3 Hz, 1H, Ar); 7.01–7.04 (m, 1H,
Ar), 7.22–7.26 (m, 1H, Ar), 7.36 (br. d, 3J = 7.3 Hz, 1H, Ar); 7.72–7.80 (m, 3H Ar),
7.99 (br. d, 3J = 7.4 Hz, 1H, Ar). 13C NMR (CDCl3, 100 MHz): δ = 14.9 (CH3), 21.7
(CH2), 36.9 (CH), 41.7 (CH), 63.8 (CH2O), 92.7 (OCH2O), 113.1 (CH), 121.3 (CH), 122.2
(CH), 122.4 (CH), 123.6 (C), 129.3 (CH), 130.0 (CH), 134.4 (CH), 134.6 (CH), 141.7 (C),
142.7 (C), 156.3 (C), 195.7 (CO), 198.9 (CO). IR (KBr): ν = 2970, 2904, 2864, 1732, 1703,
1599, 1491, 1454, 1429, 1379, 1335, 1313, 1234, 1163, 1120, 1097, 1051, 995 cm−1. HRMS
ESI-TOF: m/z = 323.1277 [M + H]+. (323.1278 calculated for C20H19O4

+). Crystal Data
for C20H18O4 (M = 322.34 g/mol): triclinic, space group P-1 (no. 2), a = 7.9274(4) Å,
b = 8.4765(4) Å, c = 14.3237(8) Å, α = 77.297(4)◦, β = 75.805(4)◦, γ = 63.850(4)◦, V = 830.66(8)
Å3, Z = 2, T = 295 K, µ(CuKα) = 0.729 mm−1, Dcalc = 1.289 g/cm3, 8,517 reflections mea-
sured (3.930◦ ≤ Θ ≤ 70.282◦), 2988 unique (Rint = 0.0315, Rsigma = 0.0252), which were used
in all calculations. The final R1 was 0.0355 (I > 2σ (I)) and wR2 was 0.0989 (all data).

4. Conclusions

Here, we have described the synthesis of donor–acceptor cyclopropane, which may
participate in various domino reactions due to the presence of the 1,3-indanedione moiety
as an acceptor group, the effect of spiro activation, as well as the possible participation
of an additional functionality in the donor substituent. The reactivity of this substrate is
under investigation.

Supplementary Materials: The following supporting information can be downloaded. Figure S1: 1H
NMR (CDCl3, 400 MHz) spectrum of compound 3; Figure S2: 13C NMR (CDCl3, 100 MHz) spectrum
of compound 3; Figure S3: HRMS spectrum of compound 3; Figure S4: IR spectrum of compound 3;
Figure S5: 1H NMR (CDCl3, 400 MHz) of compound 4; Figure S6: 13C NMR (CDCl3, 100 MHz) of
compound 4; Figure S7: HRMS spectrum of compound 4; Figure S8: IR spectrum of 4.
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