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Abstract: A novel α,β-unsaturated iminium salt (3) incorporated into a rigid dibenzobarrelene
backbone was synthesized by heating N-(anthracen-9-ylmethyl)-2,6-diisopropylaniline (2) and 3-
phenyl-2-propynal in THF in the presence of excess amounts of magnesium sulfate and 0.5 equivalents
of an HBF4-Et2O complex. The molecular structure of 3 was characterized unambiguously by NMR
spectroscopy and single-crystal X-ray diffraction (SCXRD) analyses. Compound 3 exhibits yellow
luminescence in CH2Cl2 (λem = 516 nm) and in the solid state (λem = 517 nm) with relatively high to
moderate quantum yields (ΦF(CH2Cl2) = 0.63; ΦF(solid) = 0.34).

Keywords: α,β-unsaturated iminium salt; dibenzobarrelene; luminescence; single-crystal X-ray
diffraction analysis

1. Introduction

The condensation of carbonyl compounds such as aldehydes or ketones with a pri-
mary amine typically results in an equilibrium where a substantial amount of imine is
present. In contrast, when a secondary amine is employed, the aldehyde may condense
to form an iminium ion, which, owing to the absence of a deprotonation step, can only
be isolated as a salt of a strong acid [1,2]. For example, cyanine derivatives containing
α,β-unsaturated iminium moieties are currently widely used not only as functional ma-
terials, such as dyes for optical recording media [3,4], but also as bio-imaging dyes [5–7].
However, the synthesis of an iminium salt that emits strongly both in solution and in the
solid state is extremely rare [8]. Meanwhile, we are conducting an investigation into the
synthesis of a series of 1,4-diaryl-1,3-butadiene derivatives that are incorporated into a
rigid dibenzobarrelene backbone, wherein both components share each ethene unit and
the 1 position of the 1,3-butadiene unit is linked to the bridgehead of the dibenzobarrelene
by a main group element (Figure 1) [9–13]. These derivatives exhibit high fluorescence
efficiency in solution and in the solid state due to the conformationally fixed 1,4-diaryl-1,3-
butadiene fluorophore and the sterically bulky dibenzobarrelene moiety, which prevent
intramolecular interactions. Herein, we present the synthesis, structure, and photophysical
properties of an α,β-unsaturated iminium salt fixed in a dibenzobarrelene skeleton.
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1. Introduction 
The condensation of carbonyl compounds such as aldehydes or ketones with a pri-

mary amine typically results in an equilibrium where a substantial amount of imine is 
present. In contrast, when a secondary amine is employed, the aldehyde may condense to 
form an iminium ion, which, owing to the absence of a deprotonation step, can only be 
isolated as a salt of a strong acid [1,2]. For example, cyanine derivatives containing α,β-
unsaturated iminium moieties are currently widely used not only as functional materials, 
such as dyes for optical recording media [3,4], but also as bio-imaging dyes [5–7]. How-
ever, the synthesis of an iminium salt that emits strongly both in solution and in the solid 
state is extremely rare [8]. Meanwhile, we are conducting an investigation into the syn-
thesis of a series of 1,4-diaryl-1,3-butadiene derivatives that are incorporated into a rigid 
dibenzobarrelene backbone, wherein both components share each ethene unit and the 1 
position of the 1,3-butadiene unit is linked to the bridgehead of the dibenzobarrelene by 
a main group element (Figure 1) [9–13]. These derivatives exhibit high fluorescence effi-
ciency in solution and in the solid state due to the conformationally fixed 1,4-diaryl-1,3-
butadiene fluorophore and the sterically bulky dibenzobarrelene moiety, which prevent 
intramolecular interactions. Herein, we present the synthesis, structure, and photophysi-
cal properties of an α,β-unsaturated iminium salt fixed in a dibenzobarrelene skeleton. 
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Figure 1. 1,4-diaryl-1,3-butadiene derivatives bearing a rigid dibenzobarrelene backbone.
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2. Results and Discussion

N-(Anthracen-9-ylmethyl)-2,6-diisopropylaniline (2) was prepared as yellow crystals
in 79% yield by the reduction of the starting imine N-(9-anthracenylmethylene)-2,6-bis(1-
methylethyl)benzenamine (1) [14] with LiAlH4 in THF at 0 ◦C (Scheme 1). The target
iminium salt (3) was successfully synthesized as yellow crystals in 31% yield by refluxing
a THF solution of 3-phenyl-2-propynal [15] and the amine (2) in the presence of excess
amounts of magnesium sulfate and 0.5 equivalents of an HBF4-Et2O complex (Scheme 1,
Path A). The structure of 3 was characterized through the following spectroscopic analy-
ses: In the 1H NMR spectrum of 3 in CDCl3, the methine and methylene protons at the
bridgehead positions were observed as a singlet signal at 6.08 and 5.49 ppm, respectively.
The methyl protons of the isopropyl groups on the Dip group showed doublet signals at
1.26 and 1.44 ppm, while a septet signal due to the methine proton resonated at 2.67 ppm.
The iminium proton (9.20 ppm) appeared in a characteristic low-field region, which is
comparable to that of the related five-membered iminium salt (9.48 ppm) [16]. In the
13C{1H} NMR spectrum of 3, the iminium carbon is observed at 172.1 ppm. Furthermore,
the 11B{1H} NMR spectrum of 3 displayed a signal at−1.14 ppm, suggesting that the [BF4]−

anion exists as a free counter anion in solution.
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Single crystals of 3 were obtained by slow evaporation of its CH2Cl2 solution at
room temperature, and the molecular structure was determined by a single-crystal X-ray
diffraction (SCXRD) analysis. The iminium salt (3) crystallizes in the monoclinic space
group P21/n with one H2O molecule and [BF4]− anion in the asymmetric unit. Given that
3 was recrystallized under atmospheric conditions, it is probable that the H2O molecule
was incorporated into the unit cell of 3 during crystallization. The ORTEP is shown in
Figure 2, and the relevant geometrical parameters are summarized in Table 1. The distance
between H3 . . . O1 is 2.1845(17) Å, which is shorter than the sum of the van der Waals
radii of the two atoms (2.60 Å) [17], indicating the presence of hydrogen bonding in the
unit cell. In contrast to the related 2H-pyrrolium salts [18–23], it is exceptional for the H2O
molecule to engage in hydrogen bonding with the C–H bond of the iminium fragment.
This is likely due to the steric hindrance surrounding the iminium fragment and the highly
acidic iminium proton, which serves as a donor to the H2O molecule. The intermolecular
hydrogen bonds involving lattice water molecules and BF4

− ions were also confirmed in
the crystal packing of 3. The non-bonded OH . . . F distances (H35* . . . F4 and H36* . . .
F4) are 1.88(2) and 2.12(2), which can be regarded as a relatively strong interaction [24].
The distance between the nitrogen atom (N1) in the iminium moiety and the counter
anion (B1 . . . N1) is 5.194(2) Å, which is considerably longer than the sum of the van der
Waals radii of the two atoms (3.84 Å) [17], suggesting that the iminium moiety exists as
a free cation in the crystalline state. The C=N [1.308(2) Å], C–N [1.484(2) Å], and C–C
bond lengths [1.409(2)–1.547(3) Å] in the five-membered ring are similar to those of the
reported 2H-pyrrolium salts [18–23]. Furthermore, the dihedral angle of the conjugated
moiety comprising N1–C3–C4–C5 is almost 180◦ as a result of its incorporation into a
rigid framework. The torsion angle (C4–C5–C31–C32) between the alkenyl moiety and the
benzene ring attached to the C5 carbon is −153.38(17)◦, which falls within the range of
values observed in related dibenzobarrelene-incorporated 1,3-butadiene derivatives [8],
thus forming an effective conjugated system. In contrast, the dihedral angle (C3–N1–C19–
C20) comprising the benzene ring in the Dip group and the imine moiety is −77.0(2)◦,
which is nearly perpendicular due to the bulkiness of the Dip group.

The formation of 3 can be explained by the intramolecular Diels–Alder reaction of
iminium intermediate 4. To verify this supposition, we attempted the direct synthesis
of 4. Upon reacting 2 with 3-phenyl-2-propynal in the presence of an excess amount of
magnesium sulfate and an HBF4-Et2O complex at 0 ◦C in Et2O, the corresponding (Z)-4
was obtained in an almost quantitative yield as red crystals (Scheme 1, Path B). In the 1H
NMR spectrum of (Z)-4, the iminium proton was observed at 9.86 ppm, which showed
a somewhat down-field shift compared to that of 3 (9.20 ppm). The molecular structure
of (Z)-4 was finally confirmed by SCXRD (see Supplementary Materials). Subsequently,
the intramolecular cyclization reaction, accompanied by the isomerization from (Z)-4 to
(E)-4, proceeded under refluxing conditions in THF, resulting in the formation of the
corresponding 3 in a 25% yield.

Interestingly, the iminium salt (3) exhibited yellow fluorescence in CH2Cl2 solution and
in the solid state. The UV–visible absorption spectrum of 3 in CH2Cl2 shows two absorption
bands, with the longest absorption maximum (λabs) at 423 nm and a molar absorption
coefficient ε of 9820 M−1 cm−1 (Figure 3a, Table 2). On the other hand, the fluorescence
spectrum of 3 in CH2Cl2 has a maximum wavelength (λem) of 516 nm with a Stokes shift
of 4300 cm−1 (152 nm). We reported the Stokes shifts of the 1,3-butadiene derivatives
incorporated into the dibenzobarrelene skeleton in the range of 4700–6100 cm−1 [9], which
are larger than those of 3. This result suggests that the structure change in the excited state
of 3 is small compared with those derivatives. The fluorescence quantum yield ΦF has a
relatively high value of 0.63. Furthermore, the λem of 3 in the solid state was observed at
517 nm, which is almost the same as that in the CH2Cl2 solution. The ΦF of 3 in the solid
state was 0.34, which was significantly lower than that in the solution.
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Figure 2. ORTEP of 3·H2O with thermal ellipsoids at 50% probability.

Table 1. Selected bond lengths [Å] and bond angles [◦].

Bond Lengths [Å] Bond Angles [◦]

C4–C5 1.355(2) N1–C3–C4 111.67(16)
C3–C4 1.409(2) C3–C4–C1 107.34(15)
C3–N1 1.308(2) C3–C4–C5 135.48(16)
C2–N1 1.484(2) C1–C4–C5 117.10(15)
C1–C2 1.521(2) C4–C5–C18 110.06(15)
C1–C4 1.547(3) C31–C5–C4 128.92(16)

H3 . . . O1 2.1845(17) C3–N1–C19–C20 −77.0(2)
B1 . . . N1 5.194(2) C4–C5–C31–C32 −153.38(17)

N1–C3–C4–C5 179.34(18)

Table 2. Photophysical data for 3 a.

λabs
[nm]

ε
[M−1cm−1]

λem (CH2Cl2)
[nm]

Stokes Shift
[cm−1] (nm)

ΦF
(CH2Cl2) b

λem (solid)
[nm]

ΦF
(Solid) b

423 9820 516 4300 (152) 0.63 517 0.34
a 1 × 10−5 M in CH2Cl2 at room temperature under argon. b The absolute fluorescence quantum yields were
determined using a calibrated integrating sphere system.
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3. Materials and Methods
3.1. General Considerations

Unless otherwise noted, all experiments were carried out under an argon atmosphere
using standard Schlenk-line techniques. The 1H and 13C spectra were recorded on a Bruker
AVANCE-400 (400 and 101 MHz, respectively) or a Bruker AVANCE-500 (500 and 126 MHz,
respectively) spectrometer using CDCl3 as the solvent at room temperature. The 11B and
19F NMR spectra were recorded on a Bruker AVANCE-500 (160 and 471 MHz, respectively)
spectrometer using CDCl3 as the solvent at room temperature. The UV–vis spectra were
recorded on a U-1900 spectrophotometer (HITACHI Co., Ltd., Hitachi, Japan). The flu-
orescence spectra were recorded on FP-6600 and FP-6300 spectrofluorometers (JASCO
Corp., Tokyo, Japan). The absolute photoluminescence quantum yields were measured
using the calibrated integrating sphere system C10027 (Hamamatsu Photonics Co. Ltd.,
Hamamatsu City, Japan). The elemental analyses were carried out at the Comprehensive
Analysis Center for Science, Saitama University. The thermogravimetry (TG) analysis
was carried out using an NETZSCH analyzer, the STA2500, as follows: under a helium
atmosphere with a temperature range of 25–300 ◦C and a heating rate of 10 ◦C /min. All
melting points were determined on a Mel-Temp capillary tube apparatus and are uncor-
rected. All solvents were dried over 4A molecular sieves or a potassium mirror before
use. All materials were obtained from commercial suppliers and used without further
purification, except for N-(9-anthracenylmethylene)-2,6-bis(1-methylethyl)benzenamine
(1) [14] and 3-phenyl-2-propynal [15], which were prepared according to their respective
literature procedures.

3.2. Synthesis of N-(Anthracen-9-ylmethyl)-2,6-diisopropylaniline (2)

A total of 321 mg of LiAlH4 (8.47 mmol) was added to a solution of 1 (2.05 g; 5.64 mmol)
in THF (50 mL) at 0 ◦C. Subsequently, the temperature was raised to room temperature
over a period of 4 h. After cooling the solution to 0 ◦C, 1 M NaOH aq. was added. The
suspension was filtered through a pad of Celite®. The mixture was extracted with Et2O,
and the extract was washed with water, dried over anhydrous Na2SO4, and evaporated to
dryness. The residue was washed with a small amount of hexane (ca. 10 mL) and dried
under reduced pressure to provide pure 2 (1.63 g; 79%) as yellow crystals. Mp. 147–148 ◦C.
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1H NMR (400 MHz; 25 ◦C; CDCl3): δ = 1.16 (d, J = 6.8 Hz, 12H), 3.25 (sept, J = 6.8 Hz, 2H),
3.32 (s, 1H), 5.04 (s, 2H), 7.09–7.13 (m, 3H, Ar), 7.46–7.51 (m, 4H, Ar), 8.03 (d, J = 8.4 Hz, 2H,
Ar), 8.30 (d, J = 8.4 Hz, 2H, Ar), 8.45 (s, 1H, Ar). 13C{1H} NMR (101 MHz, 25 ◦C, CDCl3):
δ = 24.2 (2 CH3), 28.0 (CH), 48.1 (CH2), 123.58 (CH), 123.68 (CH), 124.4 (CH), 126.0 (CH),
127.5 (CH), 129.0 (CH), 130.2 (C), 131.6 (2 C), 141.8 (C), 144.1 (C). Anal. Calcd. For C27H28N:
C, 88.48; H, 7.77; N, 3.82. Found: C, 88.22; H, 7.68; N, 3.77.

3.3. Synthesis of 2-[2,6-Diisopropylphenyl]-4-phenyl-5h-5,9b[1′,2′]-
benzonaphtho[1,2-b]pyrrol-2-ium Tetrafluoroborate (3)

A complex of HBF4-Et2O (0.0204 M; 0.13 mL; 0.75 mmol) was added dropwise to a
solution of 3-phenyl-2-propynal (0.179 mL; 193 mg; 1.51 mmol), 2 (554.4 mg; 1.51 mmol),
and MgSO4 (110 mg) in anhydrous THF (70 mL) at 0 ◦C. The mixture was heated under
reflux overnight. The suspension was filtered through a pad of Celite®. After evaporation,
the residue was reprecipitated from CH2Cl2/benzene to provide pure 3 as yellow crystals
(428 mg; 31%). Mp. 276–278 ◦C (dec.). 1H NMR (400 MHz; 25 ◦C; CDCl3): δ = 1.26
(d, J = 6.5 Hz, 6H), 1.44 (d, J = 6.5 Hz, 6H), 2.67 (sept, J = 6.5 Hz, 2H), 5.49 (s, 2H, CH2),
6.08 (s, 1H, CH), 7.21–7.29 (m, 4H, Ar), 7.38 (d, J = 7.5 Hz, 4H, Ar), 7.56–7.64 (m, 6H, Ar),
7.79 (d, J = 7.5 Hz, 2H, Ar), 9.20 (s, 1H). 13C{1H} NMR (126 MHz, 25 ◦C, CDCl3): δ = 19.2
(CH3), 24.3 (CH3), 24.8 (CH3), 27.3 (CH), 29.1 (CH3), 29.7 (CH), 58.3 (CH), 58.9 (C), 61.0
(CH2), 121.8 (CH), 125.3 (CH), 125.5 (CH), 127.2 (CH), 127.4 (CH), 127.6 (CH), 127.8 (CH),
128.1 (CH), 128.6 (CH), 130.3 (CH), 132.2 (CH), 132.9 (CH), 133.3 (CH), 133.8 (CH), 141.0
(C), 142.2 (C), 143.3 (C), 143.4 (C), 167.1 (CH), 172.1 (C). 11B{1H} NMR (160 MHz, 25 ◦C,
CDCl3): δ = −1.14 (s). 19F{1H} NMR (471 MHz, 25 ◦C, CDCl3): δ = −153.1 (s).

3.4. Synthesis of (Z)-Anthracenyl-9-methyl-(2,6-diisopropylphenyl)-
(3-phenylprop-2-ynylidene)ammonium Tetrafluoroborate [(Z)-4]

A complex of HBF4-Et2O (0.0204 M, 0.07 mL, 0.41 mmol) was added dropwise to a
solution of 3-phenyl-2-propynal (0.096 mL; 105.6 mg; 0.82 mmol), 2 (299.5 mg; 0.82 mmol),
and MgSO4 (60 mg) in anhydrous Et2O (30 mL) at 0 ◦C. The mixture was stirred for 4 h at
0 ◦C. The suspension was filtered through a pad of Celite®. After evaporation, the residue
was washed with hexane (ca. 10 mL) to provide pure (Z)-4 as red crystals (753 mg; 97%).
Mp. 150–151 ◦C (dec.). 1H NMR (500 MHz; 25 ◦C; CDCl3): δ = 0.45 (d, J = 6.7 Hz, 6H), 0.98
(d, J = 6.7 Hz, 6H), 2.39 (sept, J = 6.7 Hz, 2H), 6.50 (s, 2H), 7.11–7.12 (m, 2H, Ar), 7.20–7.21
(m, 2H, Ar), 7.32–7.35 (m, 2H, Ar), 7.42–7.55 (m, 6H, Ar), 7.87 (d, J = 7.7 Hz, 2H, Ar), 8.00 (d,
J = 7.7 Hz, 2H, Ar), 8.53 (s, 1H, Ar), 9.86 (s, 1H). 13C{1H} NMR (126 MHz, 25 ◦C, CDCl3):
δ = 22.4 (CH3), 25.5 (CH), 28.7 (CH), 59.9 (CH2), 85.3 (C), 117.4 (C), 118.7 (C), 121.9 (CH),
124.3 (C), 125.2 (CH), 125.4 (CH), 128.3 (CH), 129.3 (CH), 129.6 (CH), 131.3 (C), 131.7 (CH),
131.79 (CH), 131.83 (CH), 134.4 (CH), 135.0 (C), 143.7 (C), 159.0 (CH). 11B{1H} NMR (CDCl3,
160 MHz): δ = −0.49 (s). 19F{1H} NMR (CDCl3, 471 MHz): δ = −152.0 (s).

3.5. SCXRD Analysis of 3

Yellow single crystals of 3 were grown by slow evaporation of its CH2Cl2 solution at
room temperature. The intensity data were collected at 100 K on a Bruker SMART APEX
II diffractometer employing graphite-monochromated MoKα radiation (λ = 0.71073 Å).
The structure was solved by direct methods (SHELXT) [25] and refined by full-matrix
least-squares procedures on F2 for all reflections (SHELXL) [26]. The hydrogen atoms were
located by assuming ideal geometry and included in the structure calculations without
further refinement of the parameters.

The crystal data for C36H36BF4NO (3·H2O) are as follows: M = 585.47 g mol−1, mono-
clinic, P21/n, a = 10.5927(15), b = 16.799(2), c = 17.106(2) Å, β = 100.067(2)◦, V = 2997.2(7) Å3,
Z = 4, Dx = 1.297 g cm−3, F(000) = 1232, and µ = 0.094 mm−1. CCDC’s deposition number
is 2236656.
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4. Conclusions

We have demonstrated the synthesis and characterization of a novel α,β-unsaturated
iminium salt (3) incorporated into a rigid dibenzobarrelene skeleton. In CH2Cl2 solution
and in the solid state, 3 showed yellow emission with relatively high to moderate quantum
yields. Further applications using 3 are currently being investigated in our laboratory.

Supplementary Materials: The following are available online: All NMR spectra for 2 and 3 and
crystallographic data for 3 in the Crystallographic Information File (CIF) format. CCDC 2236656 also
contains the Supplementary Crystallographic Data for this paper.
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