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Abstract: 1,2,5-Oxadiazole oxides (furoxans) are well known nitric oxide donors; among them,
4-fluorofuroxans have recently been found to be important photoinduced nitric oxide donors. In this
research, it was shown that the reaction of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide with
fluoro-containing reagents (tetrabutylammonium fluoride or cesium fluoride) selectively gave the
bis-substitution product 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide. The structure of the
synthesized compound was established by elemental analysis, 13C, 19F-NMR and IR spectroscopy,
and mass-spectrometry.
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1. Introduction

Furoxans (1,2,5-oxadiazole oxides) have been intensively investigated [1–3] as com-
pounds that endogenously produce nitric oxide (NO), a gaseous signaling molecule, that
mediates a variety of biological effects, such as vasodilation, inhibition of platelet aggrega-
tion, cell apoptosis, and neurotransmission [4]. Although many derivatives of this class
are described in the literature, the furoxans with photoinduced nitric oxide donor ability
are rare [5,6]. Photoinduced nitric oxide donors (PINODs) are used for the spatiotemporal
control of the delivery of exogenous NO when light induces otherwise impossible reac-
tivity without remaining in the system after completion. It has been recently found that
fluorofuroxans exhibit PINOD character upon isomerization of thermodynamically stable
4-fluorine isomers to 3-isomers by UV irradiation. In the presence of a thiol cofactor as
well as in its absence, 3-fluorofuroxans moderately release NO [7,8]. Herein, we report the
selective synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1 by the reaction
of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 with tetrabutylammonium fluoride
or cesium fluoride.

2. Results and Discussion

Treatment of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 with two equivalents
of cesium fluoride in MeCN led to a bis-product 1 in a moderate yield of 64% (Scheme 1).
The employment of tetrabutylammonium fluoride in THF, according to the reported pro-
cedure for 4-nitrofuroxans [8] at room temperature, increased the yield of 4,4′-difluoro-
[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1 to almost quantitative (93%). We attempted to
synthesize monosubstituted 4-fluoro-4′-nitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide. Sur-
prisingly, when using one equivalent of tetrabutylammonium fluoride, a mixture of dis-
ubstituted derivative 1 and starting compound 2 is formed; our attempts to isolate the
monosubstituted derivative were unsuccessful.

The structure of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1 was fully con-
firmed by elemental analysis, 13C, 19F-NMR and IR spectroscopy, and mass-spectrometry.
Elemental analysis confirm the brutto formula of compound 1. The 13C and 19F-NMR
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spectra of 1 showed characteristic signals for 4-fluorofuroxanes: singlet of 19F (-114.2 ppm),
two doublets of 4-F carbon atom 159.5 (J = 265.5 Hz), and 3-C carbon atom 93.8 (J = 31.2) [8].
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Scheme 1. Synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1. 
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firmed by elemental analysis, 13C, 19F-NMR and IR spectroscopy, and mass-spectrometry. 
Elemental analysis confirm the brutto formula of compound 1. The 13C and 19F-NMR spec-
tra of 1 showed characteristic signals for 4-fluorofuroxanes: singlet of 19F (-114.2 ppm), two 
doublets of 4-F carbon atom 159.5 (J = 265.5 Hz), and 3-C carbon atom 93.8 (J = 31.2) [8].  

In conclusion, selective synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-diox-
ide 1 was developed by the reaction of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 
2 with tetrabutylammonium fluoride in THF or cesium fluoride in MeCN. The compound 
obtained may be considered as a potential photoinduced nitric oxide donor. 

3. Materials and Methods 
4,4′-Dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 was prepared according to the 

published method [9]. The solvents and reagents were purchased from commercial 
sources and used as received. Elemental analysis was performed on a 2400 elemental an-
alyzer (Perkin Elmer Inc., Waltham, MA, USA). Melting point was determined on a 
Kofler hot-stage apparatus and was uncorrected. 13C and 19F-NMR spectra were taken 
with a Bruker AM-300 machine (Bruker AXS Handheld Inc., Kennewick, WA, USA) at 
frequencies of 75 and 282.5 MHz, correspondingly. MS spectrum (EI, 70 eV) was obtained 
with a Finnigan MAT INCOS 50 instrument (Hazlet, NJ, USA). IR spectrum was meas-
ured with a Bruker “Alpha-T” instrument in KBr pellet.  

Synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1 (Supplementary 
Materials). 

A solution of tetrabutylammonium fluoride hydrate (560 mg, 2 mmol) in THF (5 mL) 
was added to a solution of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 (260 mg, 1 
mmol) in THF (5 mL). The reaction mixture was stirred for 3 h at room temperature. The 
solvent was distilled, the residue was extracted with CH2Cl2 (2 × 10 mL), washed with 
brine, and dried with MgSO4. The solvent was removed and the residue was purified by 
column chromatography on silica gel (Silica gel Merck 60, eluent CCl4/CHCl3, 2:1, v/v). 
Yield 161 mg (78%), colorless oil, Rf = 0.78 (CCl4/CHCl3 2:1). IR spectrum (KBr), ν, cm–1: 
1673 (C=N), 1619, 1556, 1456, 1380, 1178, 959, 819, 778, 674. 13C-NMR (CDCl3, ppm): 159.5 
(C-4, J = 265.5 Hz), 93.8 (C-3, J = 31.2 Hz). 19F-NMR (CDCl3, ppm): δ −114.2. MS (EI, 70 Ev), 
m/z (I, %): 206 (M+, 15), 176 (M+—NO, 10), 112 (10), 86 (7), 30 (NO, 100). Anal. calcd. for 
C6F2N4O4: C, 23.31; N, 27.19. Found: C, 23.42; N, 27.33%. 

A solution of cesium fluoride (304 mg, 2 mmol) in MeCN (3 mL) was added to a 
solution of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 (260 mg, 1 mmol) in MeCN 
(3 mL). The reaction mixture was stirred for 3 h at room temperature. The solvent was 
distilled, the residue was extracted with CH2Cl2 (2 × 10 mL), washed with brine, and dried 
with MgSO4. The solvent was removed and the residue was purified by silica gel column 
chromatography (Silica gel Merck 60, eluent CCl4/CHCl3, 2:1, v/v). Yield 132 mg (64%), 
colorless oil. 

Supplementary Materials: Copies of 13C, 19F-NMR, IR, and mass-spectra for the compound 1.  

Scheme 1. Synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1.

In conclusion, selective synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1
was developed by the reaction of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 with
tetrabutylammonium fluoride in THF or cesium fluoride in MeCN. The compound obtained
may be considered as a potential photoinduced nitric oxide donor.

3. Materials and Methods

4,4′-Dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 was prepared according to the
published method [9]. The solvents and reagents were purchased from commercial sources
and used as received. Elemental analysis was performed on a 2400 elemental analyzer
(Perkin Elmer Inc., Waltham, MA, USA). Melting point was determined on a Kofler hot-
stage apparatus and was uncorrected. 13C and 19F-NMR spectra were taken with a Bruker
AM-300 machine (Bruker AXS Handheld Inc., Kennewick, WA, USA) at frequencies of 75
and 282.5 MHz, correspondingly. MS spectrum (EI, 70 eV) was obtained with a Finnigan
MAT INCOS 50 instrument (Hazlet, NJ, USA). IR spectrum was measured with a Bruker
“Alpha-T” instrument in KBr pellet.

Synthesis of 4,4′-difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 1 (Supplementary Materials).
A solution of tetrabutylammonium fluoride hydrate (560 mg, 2 mmol) in THF (5 mL)

was added to a solution of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 (260 mg,
1 mmol) in THF (5 mL). The reaction mixture was stirred for 3 h at room temperature. The
solvent was distilled, the residue was extracted with CH2Cl2 (2 × 10 mL), washed with
brine, and dried with MgSO4. The solvent was removed and the residue was purified by
column chromatography on silica gel (Silica gel Merck 60, eluent CCl4/CHCl3, 2:1, v/v).
Yield 161 mg (78%), colorless oil, Rf = 0.78 (CCl4/CHCl3 2:1). IR spectrum (KBr), ν, cm–1:
1673 (C=N), 1619, 1556, 1456, 1380, 1178, 959, 819, 778, 674. 13C-NMR (CDCl3, ppm): 159.5
(C-4, J = 265.5 Hz), 93.8 (C-3, J = 31.2 Hz). 19F-NMR (CDCl3, ppm): δ−114.2. MS (EI, 70 Ev),
m/z (I, %): 206 (M+, 15), 176 (M+—NO, 10), 112 (10), 86 (7), 30 (NO, 100). Anal. calcd. for
C6F2N4O4: C, 23.31; N, 27.19. Found: C, 23.42; N, 27.33%.

A solution of cesium fluoride (304 mg, 2 mmol) in MeCN (3 mL) was added to a
solution of 4,4′-dinitro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-dioxide 2 (260 mg, 1 mmol) in MeCN
(3 mL). The reaction mixture was stirred for 3 h at room temperature. The solvent was
distilled, the residue was extracted with CH2Cl2 (2 × 10 mL), washed with brine, and dried
with MgSO4. The solvent was removed and the residue was purified by silica gel column
chromatography (Silica gel Merck 60, eluent CCl4/CHCl3, 2:1, v/v). Yield 132 mg (64%),
colorless oil.

Supplementary Materials: Copies of 13C, 19F-NMR, IR, and mass-spectra for the compound 1.
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