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Abstract: A novel synthesis approach for griseofulvin derivatives was developed. The presented
method is based on a two-stage process that includes preliminary acetylation of griseofulvic acid
followed by condensation with ammonium acetate. The advantages of this protocol include readily
available starting materials and a simple target product isolation procedure. The structure of the
synthesized polycyclic compound was approved by 1H, 13C-NMR spectroscopy, high-resolution
mass spectrometry with electrospray ionization (ESI-HRMS), and X-ray diffraction.
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1. Introduction

Griseofulvin is a well-known drug, first isolated from the soil fungus Penicillium
griseofulvum, which was used in medicine due to its wide range of biological activity [1–5]
(Figure 1). It was shown that griseofulvin possessed significant antifungal properties and
was employed for the treatment of various types of dermatophytosis [6–10]. However,
its remarkable side effects impede its broad use in medicinal practice [11]. At the same
time, the preparation of griseofulvin derivatives allows one to minimize negative action
and extend the area of pharmacological application of this compound. For example,
the antibacterial activity of griseofulvin analogs on a panel of Gram-positive and Gram-
negative microorganisms is described in the literature [12]. Thus, modification of the
griseofulvin core is of great interest and opens up access to a wide variety of biologically
active compounds. A convenient synthon for the preparation of numerous derivatives of
this class is griseofulvic acid (Figure 1), which can be easily obtained by acid hydrolysis of
commercially available griseofulvin [13]. In this case, the presence of a β-diketone fragment
in the structure creates opportunities for extensive synthetic applications.
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Figure 1. The structures of Griseofulvin and Griseofulvic acid. 

2. Results 
Previously, we elaborated a general route for the preparation of griseofulvin analogs 

based on a multicomponent reaction of griseofulvic acid with aldehydes and Meldrum’s 
acid [3]. In the present communication, we continue to employ the well-studied chemistry 
of cyclic 1,3-diketones for the modification of griseofulvic acid. Initially, we carried out C-
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Figure 1. The structures of Griseofulvin and Griseofulvic acid.

2. Results

Previously, we elaborated a general route for the preparation of griseofulvin analogs
based on a multicomponent reaction of griseofulvic acid with aldehydes and Meldrum’s
acid [3]. In the present communication, we continue to employ the well-studied chemistry
of cyclic 1,3-diketones for the modification of griseofulvic acid. Initially, we carried out
C-acetylation of the starting compound 1. It should be noted that similar acylation of cyclic
β-diketones is well documented in the literature [14–16]. In the considered case, acetic
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anhydride was used as an acylating agent. The process was performed at room temperature
for 24 h in the presence of DMAP, which was utilized as a base. At the same time, the
obtained acylated derivative 2 was applied at the next stage without additional purification.
Subsequent reactions with ammonia generated in situ from ammonium acetate made it
possible to synthesize the target enaminodiketone 3 in a 63% total yield. The process was
carried out by refluxing ethanol for 8 h (Scheme 1).
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Scheme 1. Synthesis of enaminodiketone 3.

The synthesized product 3 is the solid crystalline compound, whose structure was
confirmed by 1H, 13C-NMR spectroscopy, and high-resolution mass spectrometry (see Supple-
mentary Materials, Figures S1–S3). 1H NMR spectra of the product contain two broad signals
of the protons of the amino group in the region δ 11.63 and 9.60 ppm. The presence of
conjugation of the amino group with the unsaturated β-diketone moiety appears to cause
hindered rotation around the C–N bond and, as a consequence, nonequivalence of the protons
in the NH2 fragment. At the same time, the intramolecular hydrogen bond of one of the
protons with the oxygen atom results in a significant difference in chemical shifts. Note that
similar spectral data are described in the literature for other cyclic enaminodiketones [17]. The
structure of the synthesized compound was confirmed by X-ray diffraction (Figure 2 and see
Supplementary Materials, Tables S1–S7). The results of the X-ray analysis unambiguously
indicate the E-configuration of the enaminodiketone fragment.
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The plausible mechanism of the considered process is presented in Scheme 2. The
anion A is generated initially with griseofulvic acid 1. Next, the interaction of anion A
with acetic anhydride leads to acylated product 2, which, under the action of DMAP,
transforms into anion B. Further acidification results in acetylated griseofulvin derivative
2. Subsequent addition of ammonia to the acetyl group and elimination of water leads to
the target product 3. Note that the second stage of the process proceeds regiospecifically,
and the interaction with ammonia occurs exclusively with the participation of the acetyl
fragment. This appears to be due to the low steric availability of other carbonyl units in the
polycyclic spiro-system. It should be emphasized that similar results were described in the
literature for other acylated cyclic 1,3-diketones [17].
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3. Materials and Methods

Griseofulvic acid 1 was synthesized from griseofulvin by the known procedure [18].
All starting chemicals and solvents were commercially available and were used as received
NMR spectra were recorded with Bruker Avance 300 (300 MHz) spectrometer (Billerica, MA,
USA) in DMSO-d6. Chemical shifts (ppm) were given relative to solvent signals (DMSO-d6:
2.50 ppm (1H NMR) and 39.52 ppm (13C NMR)). High-resolution mass spectrum (HRMS)
was obtained on a Bruker microTOF II instrument (Bruker Daltonik Gmbh, Bremen, Ger-
many) using electrospray ionization (ESI). Optical rotations were measured on a polarime-
ter, JASCO P-2000 (JASCO Corporation, Tokyo, Japan), and calibrated with a pure solvent
as a blank. The melting point was determined on a Kofler hot stage (Dresden, Germany).
X-ray diffraction data were collected at 100K using graphite monochromatized Cu Kα-
radiation on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE
area-detector (kappa geometry, shutterless ω-scan technique) (See SI, Table S1–S7). The
intensity data were integrated and corrected for absorption and decay by the CrysAlisPro
program [19]. The structure was solved by direct methods using SHELXT [20] and refined
on F2 using SHELXL-2018 [21] in the OLEX2 program [22]. The Mercury program suite [23]
was used for molecular graphics.

Experimental Procedure for the Synthesis of the (2R,6′R,E)-3′-(1-Aminoethylidene)-7-chloro-4,6-
dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexane]-2′,3,4′-trione 3

Griseofulvic acid 1 (1 mmol, 0.34 g) and DMAP (2.2 mmol, 0. 27 g) were dissolved
in MeCN (4 mL). Then acetic anhydride (2.2 mmol, 0.22 g) was added and kept at room
temperature for 24 h. The resulting mixture was evaporated in vacuo. The obtained
residue was dissolved in MeOH (3 mL) and acidified with HClconc (0.4 mL). Then, 3 mL of
H2O was added, and the mixture was stirred for 3 h and left overnight. The precipitate
formed was filtered off and washed with 30% aqueous MeOH (3 × 6 mL). The obtained
crude acylated product 2 was dissolved in EtOH (3 mL), AcONH4 (5 mmol, 0.39 g) was
added, and the solution was refluxed for 8 h. Finally, 9 mL of H2O was added to the
mixture, and the precipitate formed was filtered off and washed with 20% aqueous EtOH
(3 × 5 mL). White powder; yield 63% (0.24 g); mp 159–161 ◦C, [α]D

25 = +11.9◦ (c 0.94,
CHCl3). 1H NMR (300 MHz, DMSO-d6) (Figure S1) δ 11.63 (br.s, 1H), 9.60 (br.s, 1H), 6.45 (s,
1H), 4.03 (s, 3H), 3.90 (s, 3H), 3.03–2.88 (m, 1H), 2.77–2.64 (m, 1H), 2.48–2.33 (m, 4H), 0.82
(d, J = 6.5 Hz, 3H). 13C {1H} NMR (75 MHz, DMSO-d6) (Figure S2) δ 195.12, 192.09, 186.32,
175.63, 169.09, 164.01, 157.38, 105.16, 104.64, 95.10, 94.88, 90.72, 57.45, 56.40, 40.33, 32.26,
24.29, 14.54. HRMS (ESI-TOF) (Figure S3) m/z: [M + H]+ Calcld for C18H18ClNO6 + H+:
380.0895; Found: 380.0881.
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4. Conclusions

In summary, a novel method for the preparation of a griseofulvin derivative was elab-
orated. The described approach consists of the preliminary acetylation of griseofulvic acid
and the final interaction with ammonium acetate. The advantages of this method are the
application of readily available starting materials and a simple isolation procedure, which
avoids chromatographic purification. The structure of the obtained griseofulvin derivative
was confirmed by 1H, 13C-NMR spectroscopy, high-resolution mass spectrometry with
electrospray ionization (ESI-HRMS), and X-ray diffraction analysis.

Supplementary Materials: The following supporting information can be downloaded online: copies
of 1H, 13C-NMR, mass spectra, and X-ray crystallographic data for compound 3. Figure S1: 1H NMR
spectrum (300 MHz) of compound 3 in DMSO-d6; Figure S2: 13C {1H} NMR spectrum (75 MHz) of
compound 3 in DMSO-d6; Figure S3: HRMS for compound 3; Tables S1–S7: X-ray crystallographic
data for compound 3.
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