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Abstract: In this work, we present an efficient one-pot method for the synthesis of three new
azo-isoxazoline derivatives (4a–c) from aromatic aldehydes, hydroxylamine hydrochloride and 4-
(allyloxy)azobenzene. Thus, the azo-isoxazoline derivatives (4a–c) were synthesized via 1,3-dipolar
cycloaddition using sodium dichloroisocyanurate (SDIC) as an eco-friendly and inexpensive oxidizing
agent under ultrasound cavitation in water as a green solvent. The desired compounds 4a–c were
obtained in high to excellent yields of 75–90%.
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1. Introduction

Azo dyes belong to the most important class of chromophores, which are characterized
by nitrogen–nitrogen double bonds «N=N», and have a wide range of applications in
industry and pharmaceutical sectors [1,2]. In addition, azo dyes containing heterocycles
have a wide spectrum of biological activities, which is mostly influenced by the nature of
the heterocycle and position of the substituents, such as antibacterial, antifungal, antiviral,
antitubercular, anticancer, anticonvulsant, antidiabetic, analgesic and anti-inflammatory,
and chemosensing activities [3,4], hence the interest to synthesize more heterocycles with
azo dyes.

On the other hand, isoxazolines are an important class of heterocyclic compounds that
contain nitrogen and oxygen heteroatoms, which are very important in medicinal chemistry
due to their various pharmacological properties, including anti-diabetic [5], anti-cancer [6],
anti-inflammatory [7], antimicrobial [8], anti-stress [9], anti-Alzheimer [10], analgesic [11]
and insecticidal properties [12].

Several approaches and methods for the synthesis of isoxazoline rings have been
reported in the literature [13–18]. However, most 1,3-dipolar cycloadditions of alkenes
with nitrile oxides are produced by the oxidation of aldoximes in organic solvents under
conventional conditions, including metal-catalyzed processes [14–18]. Numerous oxidants,
including Ni(ClO4)2 6H2O and NiBF4 6H2O as Lewis acid catalysts [14], Ru(acetone)(R,R)-
(BIPHOP-F)Cp][SbF6] [15], organo-hypervalent iodine reagents [16], CrO2 and MnO2 [17],
have been used to generate nitrile oxides from aldoximes. Other examples of the use of
rare earth elements as catalysts in 1,3-dipolar cycloaddition reactions of nitrile oxide have
also been described [18].
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However, in the context of the current green chemistry trend, the use of alternative,
non-toxic and renewable reaction media is attractive, such as water [19,20] and ionic liquids
(ILs) [21], as well as alternative activation conditions, such as microwave (MW) [22,23] and
ultrasound (US) activation [24,25].

As a part of our research into the use of selective, environmentally friendly and efficient
catalysts combined with ultrasound as an alternative source of energy for the synthesis
of bioactive aza-heterocycles [22,25–30], herein, we report a one-pot three-component
approach for the synthesis of novel azo-isoxazolines (4a–c) from aromatic aldehydes 1a–
c, hydroxylamine hydrochloride 2, and 4-(allyloxy)azobenzene 3, catalyzed by SDIC (or
NaDCC) in water under ultrasound cavitation at room temperature (Scheme 1).
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2. Results and Discussion

Recently, we reported a simple and environmentally friendly method for the synthesis
of 3,5-disubstituted isoxazoles under ultrasonic cavitation using SDIC as an eco-friendly
and inexpensive oxidant in water [25]. It is important to extend the application of this
method to the synthesis of other heterocycles. First, our investigations were initiated with
the condensation of aromatic aldehydes 1a–c with hydroxylamine, easily generated from
hydroxylamine hydrochloride 2 under basic conditions, to provide the appropriate nitrile
oxide in situ by oxidation of aromatic aldoximes by SDIC in water under ultrasonic cavita-
tion. Thus, the nitrile oxide was trapped by 4-(allyloxy)azobenzene 3 as a dipolarophile via
1,3-dipolar cycloaddition, to give novel azo-isoxazolines 4a–c. The reaction was completed
in 25–30 min via ultrasound cavitation, as attested by TLC monitoring, in good to excellent
yields of 75–90% (Scheme 1).

In order to examinate the scope and limitations of this ultrasound-assisted reaction,
we evaluated the reactivity of three aldehydes 1a–c. In general, we observed that both electron-
poor and electron-rich aldehydes can be used in this reaction, leading to azo-isoxazolines
isolated as pure products in good to excellent yields (75–90%), and high regioselectivity.

The azo-isoxazolines (4a–c) were fully characterized by 1H, 13C NMR, and LCMS
spectra (See Supplementary Materials). For example, the 1H NMR spectrum of 5-((4-
(phenyldiazenyl)phenoxy)methyl)-3-(p-tolyl)-isoxazoline 4a showed a multiplet at
δ = 5.22–5.11 ppm due to the H-isoxazolinic proton, and two doublets of doublets at
δ = 3.42 and 3.57 ppm for C4HaHb isoxazolinic protons. The N–CH2 protons appear as
two doublets of doublets at δ = 4.18 and 4.28 ppm. This compound also showed a singlet,
on average at δ = 2.42 ppm, which identifies the methyl group; thus, the presence of the
signals at δ = 7.06–7.99 ppm is attributable to the different aromatic protons. The 13C NMR
spectrum of 4a exhibited characteristic signals at δ = 21.5 ppm (CH3), 37.8 ppm (CH2-
isoxazoline), 68.9 ppm (N-CH2), 78.4 ppm (CH-isoxazoline), 156.40 ppm (C=N-isoxazoline),
and 160.97 ppm, 152.51 ppm, 147.2 ppm, 140.6 ppm, 130.6 ppm, 129.5 (2C) ppm, 129.1 (2C)
ppm, 126.8 (2C) ppm, 126.4 ppm, 124.9 (2C) ppm, 122.6 (2C) ppm, and 114.9 (2C) ppm,
attributable to aromatic carbons.
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3. Materials and Methods

All organic solvents and chemicals were bought from commercial sources (Merck,
Sigma-Aldrich, St. Louis, MO, USA). TLC was used to monitor the reaction on silica gel 60
F254 plates, visualized via UV light. 1H and 13C NMR spectra were recorded on a Bruker
AC 400 spectrometer in CDCl3. High-resolution mass spectra (HRMS) were obtained with
a LTQ Orbitrap hybrid mass spectrometer with an electrospray ionization probe (Thermo
Scientific, San Jose, CA, USA) by direct infusion from a pump syringe to confirm the correct
molar mass and high purity of compounds. The Munz Köfler Bench System was used to
measure the melting points. An “Elmasonic S 30/S 30 H UltraSonic Bath Cleaner” with
an effective ultrasonic power of 80 W and a frequency of 47 kHz was used to perform the
ultrasound-assisted reactions.

3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazoline 4a–c: To a solution of aromatic alde-
hyde 1a–c (1 mmol) and hydroxylamine hydrochloride 2 (1.2 mmol) in H2O (10 mL), SDIC
(0.5 mmol) was added. The reaction mixture was sonicated for 10 min at 25 ◦C (TLC
monitoring). 4-(Allyloxy)azobenzene 3 was then added sequentially, and the mixture was
sonicated using an ultrasonic bath (47 kHz) for 15 to 20 min (TLC monitoring). The mix-
ture was extracted using CH2Cl2 (2 × 15 mL) and washed with saturated brine solution
(15 mL × 2) and water (20 mL), dried over Na2SO4, and concentrated in vacuum. To ob-
tain the pure azo-isoxazolines 4a–c, the residue was purified by recrystallization in EtOH,
by dissolving the crude product in heated ethanol (10 mL). Then, the mixture was cooled
down and the pure azo-isoxazolines 4a–c were isolated by filtration.
3-(4-Methylphenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4a): Yellow solid, yield
90%, m.p. 124–125 ◦C, TLC (cyclohexane/AcOEt, 5/5, v/v) Rf = 0.48; 1H NMR (400 MHz,
CDCl3) δ 7.99–7.95 (m, 2H, HAr), 7.94–7.91 (m, 2H, HAr), 7.63 (d, J = 8.2 Hz, 2H, HAr),
7.56–7.50 (m, 2H, HAr), 7.49–7.45 (m, 1H, HAr), 7.28–7.24 (m, 2H, HAr), 7.06 (d, J = 9.0 Hz,
2H, HAr), 5.22–5.11 (m, 1H, C5H isoxazoline), 4.28 (dd, J = 9.8, 5.0 Hz, 1H, N-CH), 4.18
(dd, J = 9.9, 5.6 Hz, 1H, N-CH), 3.57 (dd, J = 16.7, 10.7 Hz, 1H, C4H isoxazoline), 3.42 (dd,
J = 16.7, 6.9 Hz, 1H, C4H isoxazoline), 2.42 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ
160.9, 156.4, 152.5, 147.2, 140.6, 130.6, 129.5 (2C), 129.1 (2C), 126.8 (2C), 126.4, 124.9 (2C),
122.6 (2C), 114.9 (2C), 78.4, 68.9, 37.8, 21.5; HRMS: Calcd. for C23H21N3O2H+ ([M + H]+):
372.1634, Found: 372.1692.
3-(4-Chlorophenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4b): Yellow solid, yield
80%, m.p. 130–132 ◦C, TLC (cyclohexane/AcOEt, 5/5, v/v) Rf = 0.5; 1H NMR (400 MHz,
CDCl3) δ 7.95 (d, J = 9.0 Hz, 2H, HAr), 7.93–7.89 (m, 2H, HAr), 7.67 (d, J = 8.6 Hz, 2H, HAr),
7.56–7.50 (m, 2H, HAr), 7.48 (d, J = 7.3 Hz, 1H, HAr), 7.43 (d, J = 8.6 Hz, 2H, HAr), 7.05
(d, J = 9.0 Hz, 2H, HAr), 5.24–5.15 (m, 1H, C5H isoxazoline), 4.29 (dd, J = 9.9, 4.8 Hz, 1H,
N-CH), 4.19 (dd, J = 9.9, 5.4 Hz, 1H, N-CH), 3.55 (dd, J = 16.8, 10.8 Hz, 1H, C4H isoxazoline),
3.42 (dd, J = 16.7, 7.1 Hz, 1H, C4H isoxazoline). 13C NMR (101 MHz, CDCl3) δ 160.8, 155.3,
152.6, 147.1, 136.0, 130.6, 129.1 (2C), 129.1 (2C), 128.0 (2C), 127.8, 124.8 (2C), 122.6 (2C),
114.9 (2C), 78.9, 68.7, 37.4; HRMS: Calcd. for C22H18ClN3O2H+: ([M + H]+): 392.1088,
Found: 392.1142.
3-(4-Fluorophenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4c): Yellow solid, yield
75%, m.p. 135–137 ◦C, TLC (cyclohexane/AcOEt, 6/4, v/v) Rf = 0.6; 1H NMR (400 MHz,
CDCl3) δ 7.95 (d, J = 9.0 Hz, 2H, HAr), 7.93–7.88 (m, 2H, HAr), 7.76–7.69 (m, 2H, HAr),
7.56–7.50 (m, 2H, HAr), 7.49–7.44 (m, 1H, HAr), 7.18–7.11 (m, 2H, HAr), 7.05 (d, J = 9.0 Hz,
2H, HAr), 5.23–5.14 (m, 1H, C5H isoxazoline), 4.28 (dd, J = 9.9, 4.9 Hz, 1H, N-CH), 4.18
(dd, J = 9.9, 5.6 Hz, 1H, N-CH), 3.56 (dd, J = 16.7, 10.7 Hz, 1H, C4H isoxazoline), 3.42 (dd,
J = 16.7, 7.0 Hz, 1H, C4H isoxazoline). 13C NMR (101 MHz, CDCl3) δ 163.89 (d, J = 250.9
Hz), 160.8, 155.5, 152.6, 147.4, 130.6, 129.1 (2C), 128.8, 128.7, 125.5 (d, J = 3.6 Hz), 124.8 (2C),
122.6 (2C), 116.1, 115.9, 114.9 (2C), 78.7, 68.7, 37.7.; HRMS: Calcd. for C22H18FN3O2H+:
([M + H]+): 376.1383, Found: 376.1440.
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4. Conclusions

In conclusion, a simple and green one-pot three-component approach was developed
for the synthesis of three novel azo-isoxazoline derivatives from aromatic aldehydes,
hydroxylamine hydrochloride, and 4-(allyloxy)azobenzene. The benefits of this approach
include the use of readily available raw materials, atom economy, a green solvent, process
simplification, and straightforward target product isolation. In addition, the chemical
structures of azo-isoxazolines (4a–c) were confirmed using spectroscopy techniques such
as 1H NMR, 13C NMR, and HRMS.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
1H NMR spectrum of 4a; Figure S2: 13C NMR spectrum of 4a; Figure S3: 1H NMR spectrum of 4b;
Figure S4: 13C NMR spectrum of 4b; Figure S5: 1H NMR spectrum of 4c; Figure S6: 13C NMR
spectrum of 4c; Figure S7: HRMS spectrum of 4a; Figure S8: HRMS spectrum of 4b; Figure S9: HRMS
spectrum of 4c.
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