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Abstract: (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate was syn-
thesized via the stereoselective NH-transfer to (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-
methylbenzenesulfinate. The reaction employed diacetoxyiodobenzene (DIB) and ammonium car-
bamate, and occurred in acetonitrile at room temperature. The imidation of sulfur proceeded with
complete stereocontrol, and the reaction afforded the desired product as a single diastereoisomer
and with high enantiocontrol (e.r. = 97:3) in 70% yield. The product was characterized by 1H-NMR,
13C-NMR, COSY, HSQC, IR spectroscopy, HRMS, and the enantiomeric ratio was established by
HPLC analysis at the chiral stationary phase.
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1. Introduction

Sulfonimidates, the mono-aza analogues of sulfonamides, are useful reagents in
organic synthesis. These compounds have been efficiently exploited as alkyl transfer
reagents and as precursors of other pharmaceutically relevant S(VI) motifs [1]. Moreover,
the stereogenic sulfur of sulfonimidates can be also harnessed as a template for asymmetric
synthesis. For example, the reaction of carbon nucleophiles with sulfonimidates, which
involves the formation of a new S-C bond with the concurrent loss of the alkoxy group,
proceeds with the inversion of the configuration of sulfur in a SN2 fashion (Scheme 1) [2].
Consequently, the reaction of the stereodefined sulfonimidates enabled the preparation
of valuable optically active sulfoximines, as was recently reported by Stockman and co-
workers [3]. Similarly, the reaction of sulfonimidates with amines produced relevant
sulfonimidamides, again, by using a formal nucleophilic substitution process [4].

 
 

 
 

 
Molbank 2022, 2022, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molbank 

Short Note 

(1R,2S,5R)-2-Isopropyl-5-Methylcyclohexyl  
(R)-4-Methylbenzenesulfonimidate 
Arianna Tota, Michael Andresini, Marco Colella, Roberta Savina Dibenedetto, Leonardo Degennaro *  
and Renzo Luisi * 

Flow Chemistry and Microreactor Technology FLAME-Lab, Department of Pharmacy—Drug Sciences,  
University of Bari “A. Moro”, 70125 Bari, Italy; arianna.tota26@gmail.com (A.T.);  
michael.andresini@uniba.it (M.A.); marco.colella@uniba.it (M.C.); r.dibenedetto15@studenti.uniba.it (R.S.D.) 
* Correspondence: leonardo.degennaro@uniba.it (L.D.); renzo.luisi@uniba.it (R.L.) 

Abstract: (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate was 
synthesized via the stereoselective NH-transfer to (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-
methylbenzenesulfinate. The reaction employed diacetoxyiodobenzene (DIB) and ammonium 
carbamate, and occurred in acetonitrile at room temperature. The imidation of sulfur proceeded 
with complete stereocontrol, and the reaction afforded the desired product as a single 
diastereoisomer and with high enantiocontrol (e.r. = 97:3) in 70% yield. The product was 
characterized by 1H-NMR, 13C-NMR, COSY, HSQC, IR spectroscopy, HRMS, and the enantiomeric 
ratio was established by HPLC analysis at the chiral stationary phase. 

Keywords: sulfonimidate; asymmetric synthesis; iodonitrene; sulfur imidation 
 

1. Introduction 
Sulfonimidates, the mono-aza analogues of sulfonamides, are useful reagents in 

organic synthesis. These compounds have been efficiently exploited as alkyl transfer 
reagents and as precursors of other pharmaceutically relevant S(VI) motifs [1]. Moreover, 
the stereogenic sulfur of sulfonimidates can be also harnessed as a template for 
asymmetric synthesis. For example, the reaction of carbon nucleophiles with 
sulfonimidates, which involves the formation of a new S-C bond with the concurrent loss 
of the alkoxy group, proceeds with the inversion of the configuration of sulfur in a SN2 
fashion (Scheme 1) [2]. Consequently, the reaction of the stereodefined sulfonimidates 
enabled the preparation of valuable optically active sulfoximines, as was recently 
reported by Stockman and co-workers [3]. Similarly, the reaction of sulfonimidates with 
amines produced relevant sulfonimidamides, again, by using a formal nucleophilic 
substitution process [4]. 

R1
S

OR3

OR2-N

R4-MgX 
or

HNR4R5

R1
S

R4

OR2-N
or

R1
S

N

OR2-N
R5

R4  
Scheme 1. Reaction of sulfonimidates with organomagnesium compounds and amines. 

The synthesis of chiral optically active sulfonimidates is highly valuable in an 
asymmetric synthesis, but it is still poorly explored. The preparation of enantioenriched 
sulfonimidates is essentially limited to cyclic compounds that are accessible by the 
intramolecular oxidative cyclization of sulfinamides derived from chiral amino alcohols 

Citation: Tota, A.; Andresini, M.; 

Colella, M.; Dibenedetto, R.S.;  

Degennaro, L. (1R,2S,5R)-2- 

Isopropyl-5-Methylcyclohexyl (R)- 

4-Methylbenzenesulfonimidate.  

Molbank 2022, 2022, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Hideto Miyabe 

Received: 31 October 2022 

Accepted: 30 November 2022 

Published:  

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

Scheme 1. Reaction of sulfonimidates with organomagnesium compounds and amines.

The synthesis of chiral optically active sulfonimidates is highly valuable in an asym-
metric synthesis, but it is still poorly explored. The preparation of enantioenriched sulfon-
imidates is essentially limited to cyclic compounds that are accessible by the intramolecular
oxidative cyclization of sulfinamides derived from chiral amino alcohols [2,5]. Alterna-
tively, optically active sulfonimidates can be prepared from chiral sulfonimidoyl halides
by using sodium alkoxides [6,7]. Hence, the preparation of acyclic optically active sulfon-
imidates is rather limited. Recently, in collaboration with Bull’s research group (Imperial
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College London), we have been involved in the development of new synthetic strategies
for the chemoselective transfer of electrophilic nitrogen to sulfur [8–10] and nitrogen [11]
atoms using hypervalent iodine reagents [12]. In this context, we recently reported the
synthesis of sulfinimidate esters from thiols, diacetoxyiodobenzene (DIB) and ammonium
carbamate [13]. This transformation is supposed to proceed thorough the generation of
sulfinate esters, through the oxidation of thiols, and the subsequent imidation of such
sulfinates by a transient iodonitrene. Based on the evidence that the sulfur imidation
via iodonitrene can occur on sulfinate ester, we report herein the synthesis of (1R,2S,5R)-
2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate from commercially
available (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-methylbenzenesulfinate, which
is known as the Andersen’s reagent [14].

2. Results

A solution of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-methylbenzenesulfinate
(0.2 M in MeCN) was treated with 4.0 equivalents of ammonium carbamate and 2.5 equiva-
lents of diacetoxyiodobenzene, and the mixture was stirred for 3 h at room temperature
(Scheme 2). The 1H NMR analysis of the crude evidenced the total consumption of the
starting sulfinate and the formation of the desired product as a single diastereoisomer. The
formation of sulfonimidate 2 was first assumed by the appearance of a broad proton signal
at 3.14 ppm which was assigned to the NH group (CDCl3). The product was obtained
in 70% yield (e.r. = 97:3) after column chromatography on neutral alumina. The HRMS
analysis confirmed the empirical formula for sulfonimidate 2. To assign the enantiomeric
ratio of sulfonimidate 2, the starting menthyl sulfinate (±)-1 was synthesized from racemic
menthol, obtaining a 1:1 mixture of diastereoisomer to sulfur, which was subsequently
transformed under the reported conditions into racemic sulfonimidate (±)-2. The HPLC
analysis at the chiral stationary phase of the product revealed the expected four peaks for
the four steroisomers used as the reference against the optically active compound 2 (see Sup-
plementary Materials). Although the X-ray analysis could not be performed because of the
waxy nature of sulfonimidate 2, the imidation step was performed stereoselectively towards
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate according
to precedent results observed in the imidation of chiral optically active sulfoxides [15,16].
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3. Materials and Methods

General. All of the chemicals were purchased from Fluorochem (Hadfield, UK) and
TCI Europe (Zwijndrecht, Belgium), and they were used without further purification. The
infrared spectrum was recorded in reciprocal centimeters (cm−1) using a PerkinElmer
283 Spectrometer (FT-IR, Waltham, MA, USA) with a KBr disc. The NMR spectra were
recorded using a Varian Mercury 300 spectrometer (300 MHz for 1H, 75 MHz for 13C,
Santa Clara, CA, USA). The peaks of the residual solvents were used as the internal
standards which were related to TMS at δ 7.26 ppm (1H in CDCl3) and δ 77.00 ppm
(13C in CDCl3). The NMR data are reported as follows: the chemical shift (multiplicity
(s = singlet, d = doublet, t = triplet and q = quartet)), the spin–spin coupling constants (J)
which are reported in Hertz, and the integration and signal assignment. High resolution
mass analysis was performed using an Agilent 6530 accurate mass Q-TOF (Santa Clara,
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CA, USA) with electrospray ion source (ESI) which was operated in a positive ion mode.
Flash column chromatography was performed using neutral alumina according to the
standard techniques. The solutions were concentrated under reduced pressure with a
rotary evaporator. For the thin layer chromatography (TLC), aluminium sheets precoated
with silica gel 60 F254 (Merck KGaA, Darmstadt, Germany) were used, and the spots were
visualized under UV light (λ = 254 nm) and/or from oxidation with KMnO4 (aq.).

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate. To a solution of
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-methylbenzenesulfinate (1 g, 3.4 mmol) in
MeCN (17 mL), ammonium carbamate (1.06 g, 13.6 mmol, 4.0 equiv.) and diacetoxyiodoben-
zene (2.74 g, 8.5 mmol, 2.5 equiv.) were added in one portion, and the mixture was stirred
at room temperature for 3 h. The solvent was evaporated under reduced pressure, then,
100 mL of NaHCO3 (aq.) solution was added and the mixture was extracted with 3 × 50 mL
of AcOEt. The organic layers were collected, dried over Na2SO4, and the solvent was
removed under reduced pressure. The reaction crude was purified by column chromatog-
raphy on neutral alumina (Rf = 0.5, 20% AcOEt in hexane) to afford the desired product as a
white waxy solid (740 mg, 70% yield). 1H NMR (300 MHz, CDCl3) δ 7.88 (d, J = 8.3 Hz, 2H,
Ar–H), 7.29 (d, J = 8.2 Hz, 2H, Ar–H), 4.21 (td, J = 10.8, 4.5 Hz, 1H, CH), 3.14 (s, 1H, NH),
2.41 (s, 3H, CH3), 2.13–2.03 (m, 1H, CHH), 1.85 (dtd, J = 13.7, 6.8, 2.1 Hz, 1H, CH), 1.66–1.55
(m, 2H, 2 × CHH), 1.41–1.21 (m, 2H, 2 × CH), 1.15–1.08 (m, 1H, CHH), 0.94–0.76 (m, 7H),
0.39 (d, J = 6.9 Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 143.7, 136.9, 129.5, 127.6, 82.2,
47.8, 42.4, 34.0, 31.8, 25.5, 23.1, 22.1, 21.6, 21.1, 15.3. IR (KBr) = 3271, 2923, 2851, 1454, 1328,
1158, 1093, 814. HRMS (ESITOF) m/z (2M + Na)+ calcd for C34H54N2NaO4S2 641.3423;
found 641.3416. [α]D

20 = −45.8◦ (CDCl3, c 0.1).

Supplementary Materials: Copies of 1H, 13C, COSY, HSQC spectra. HPLC analysis.
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