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Abstract: Allobetulin was synthesized at room temperature, starting from betulin by Wagner–
Meerwein rearrangement in the presence of tetrafluoroboric acid diethyl ether complex. The structure
of the compound obtained was confirmed by spectroscopic methods (1H, 13C NMR and IR).
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1. Introduction

The five-membered triterpene system of betulin 1 undergoes numerous, often un-
controlled, rearrangements under an acidic environment. Changes in the structure of
triterpenes most often consist of the formation of a carbocation and 1,2-migration of hy-
drogen atoms or alkyl groups (the Wagner–Meerwein rearrangement). For example, the
betulin E five-membered ring can be transformed into the E’ six-membered system, forming
19β,28-epoxy-18α-olean-3β-ol, called allobetulin 2 (Scheme 1) [1].
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1. Introduction 
The five-membered triterpene system of betulin 1 undergoes numerous, often 

uncontrolled, rearrangements under an acidic environment. Changes in the structure of 
triterpenes most often consist of the formation of a carbocation and 1,2-migration of 
hydrogen atoms or alkyl groups (the Wagner–Meerwein rearrangement). For example, 
the betulin E five-membered ring can be transformed into the E’ six-membered system, 
forming 19β,28-epoxy-18α-olean-3β-ol, called allobetulin 2 (Scheme 1) [1]. 
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Scheme 1. The Wagner–Meerwein rearrangement of betulin 1 within the E ring. 

The intramolecular etherification reaction between the isopropenyl group and the 
primary hydroxyl group of betulin 1, in trans configuration to each other, was first 
described by Schulze and Pieroh in 1922 [2]. It was catalyzed with hot, concentrated 
formic acid. However, the lack of appropriate analytical techniques allowed the 
researchers to identify the product only as a “monoalcohol containing an ether group”. 
The chemical structure of allobetulin 2 was elucidated and verified several years later 
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Scheme 1. The Wagner–Meerwein rearrangement of betulin 1 within the E ring.

The intramolecular etherification reaction between the isopropenyl group and the
primary hydroxyl group of betulin 1, in trans configuration to each other, was first described
by Schulze and Pieroh in 1922 [2]. It was catalyzed with hot, concentrated formic acid.
However, the lack of appropriate analytical techniques allowed the researchers to identify
the product only as a “monoalcohol containing an ether group”. The chemical structure
of allobetulin 2 was elucidated and verified several years later [3,4]. There are many
procedures in the literature for the intramolecular Wagner–Meerwein-type rearrangement
of betulin 1 into the constitutional isomer-allobetulin 2. Sulfuric acid in acetic acid [5],
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hydrogen chloride solution in ethanol [6], trifluoroacetic acid [7], or p-toluenesulfonic acid
in chloroform [8] may be the catalyst system for this transformation. It is also possible to use
a solid-supported acid catalyst, such as silica gel with p-toluenesulfonic acid, sulfuric acid,
iron(III) nitrate or iron(III) chloride, kaolinite, bentonite, KSF and K10 montmorillonites,
etc. Reactions of this type are carried out in boiling DCM for 0.5–6 h, and their yield ranges
from 91–99% [9]. The most important procedures are summarized in Table 1 [5–12].

Table 1. Selected, most important methods for the intramolecular Wagner–Meerwein-type rearrange-
ment of betulin 1 into allobetulin 2.

No. Catalyst System Temp. ◦C Solvent Time, h Yield, % Ref.

1 H2SO4 steam bath CH3COOH 3 >99% [5]
2 HCl reflux EtOH 22 - a [6]
3 H2SO4 on silica gel reflux DCM 0.5 95 [9]
4 Mont. KSF reflux DCM 5.0 99 [9]
5 Mont. K10 reflux DCM 0.6 96 [9]
6 Bleaching clays b reflux DCM 1.0 98 [9]
7 Expansive graphite reflux DCM 2.7 62 [9]
8 Kaolinite b reflux DCM 3.5 99 [9]
9 TsOH on silica gel reflux DCM 5.0 93 [9]

10 TsOH reflux DCM 5.0 93 [9]
11 Anhydrous FeSO4 reflux DCM 12.0 trace [9]
12 Fe(NO3)3/SiO2 reflux DCM 0.5 91 [10]
13 CF3COOH rt CHCl3 8 min 97 [7]
14 TsOH reflux CHCl3 1.0 85 [8]
15 Bi(OTf)3 reflux DCM 3.0 95 [11]
16 BiBr3 reflux DCM 3.0 97 [11]
17 Sc(OTf)3 reflux DCM 4.0 94 [11]
18 Bi(NO3)3·5H2O rt DCM 48.0 97 [11]
19 Amberlyst rt CHCl3 5.0 94 [12]

a the authors did not report the yield, b activated at 130 ◦C for 3 h prior to use.

In general, all of the methods described so far rely on dissolving betulin 1 in a suitable
medium and treatment with an acid catalyst. They often require elevated temperatures
and aqueous work-up of the reaction mixture (multiple washing with water to remove the
catalyst), which generates a large amount of waste. Therefore, we decided to develop a
new method aimed at using mild reaction conditions (room temperature, short reaction
time) and a simplified, non-aqueous work-up procedure.

2. Results and Discussion

Due to the fact that the Wagner-Meerwein-type rearrangement of betulin 1 to allo-
betulin 2 requires an acidic environment, we decided to use tetrafluoroboric acid diethyl
ether complex. The reaction was carried out in dichloromethane. It can be monitored
by spectroscopic methods (e.g., 1H NMR) as well as TLC (DCM/AcOEt, 8:1, v:v). As we
observed, it proceeds efficiently already at room temperature, and the minimum reaction
time is 1 h. Next, instead of the aqueous work-up of the reaction mixture, an acetone
washing was performed (room temperature, 2 times). During this procedure, allobetulin
was slurried in acetone (where it is insoluble), and then the acetone solution containing
the impurities was decanted with a Pasteur pipette. The measured melting point of the
obtained crystalline product was 266.5–268 ◦C (266–268 ◦C [9]).

The course of the reaction and the structure of the obtained compound were determined
by spectroscopic methods (1H, 13C NMR, and IR; Figure 1 and Supplementary Materials).
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Figure 1. Transformation of betulin 1 into allobetulin 2—changes in the spectroscopic characteristics.

In the 1H NMR spectrum, signals from the proton of the CHOH group at C3 (3.21 ppm,
dd, J1 = 4.8 Hz, J2 = 11.4 Hz, 1H) and protons of the CH2OC at position C28 (3.78 ppm, d,
J = 7.6 Hz and 3.43 ppm, d, J = 7.6 Hz) were observed. However, the doublet of triplets (dt)
characteristic for betulin at 2.39 ppm, corresponding to the protons at the C19 position, and
the signals of the isopropenyl group disappeared. At the same time, three new singlets
appeared: 3.53 ppm (1H, H-19), 0.93 ppm (3H, Me), and 0.77 ppm (3H, Me).

In turn, the absence (13C NMR spectrum) of signals at 47.78 ppm (C19), 150.46 ppm
(C20), 109.67 ppm (C29), and 19.08 ppm (C30) confirmed the disappearance of the iso-
propenyl group. There was also no signal from C28 at 60.57 ppm (it moves to 71.3 ppm).
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The presence of the signal at 79.14 ppm was evidence of the preservation of the hydroxyl
group at C3. In addition, a new signal (C19) appeared at 88.15 ppm, and it was noticed that
the arrangement of the peaks in the area of the triterpene rings had changed.

In the FT-IR spectrum, a decrease in the intensity of the extended absorption band
in the range of hydroxyl groups (3500–3200 cm−1, νO-H) was observed, which could be
evidence of the disappearance of one of the OH groups. Additionally, the disappearance of
the band corresponding to the stretching vibrations of the double bonds (1645 cm−1, νC=C)
suggests the absence of the isopropenyl group. The arrangement of absorption bands in
the fingerprint region (1300–900 cm−1) also changed.

Allobetulin obtained in this way can be used without any further purification (e.g.,
as a substrate in the synthesis of its analogs or derivatives showing anti-inflammatory,
immunotropic, antibacterial, or antifungal properties) [1].

3. Materials and Methods
3.1. General

All commercially available reagents and solvents were used without further purifica-
tion. Melting points were determined in capillaries and were uncorrected. 1H-, and 13C
NMR spectra were recorded at operating frequencies of 600 and 150 MHz, respectively,
using TMS as the resonance shift standard. All chemical shifts (δ) are reported in ppm
and coupling constants (J) in Hz. IR spectra were recorded using an FT-IR spectrometer
(ATR method).

3.2. Allobetulin (2)

Betulin (0.226 mmol, 100 mg) and 1.5 cm3 of DCM were placed in a 10 cm3 round-
bottom flask equipped with a CaCl2 tube and a magnetic stirrer. The suspension was cooled
in an ice-water bath for 10 min, then tetrafluoroboric acid diethyl ether complex (0.15 mmol,
0.02 cm3) was added dropwise. After a few minutes, from an initially clear solution, a
white precipitate separated. The reaction was carried out with continuous stirring at room
temperature for 1 h. The solvent was then evaporated and the residue, in the form of a
pale pink solid, was dried in vacuo for 1 h. The crude allobetulin was slurried in acetone
(1.5 cm3), and the mixture was stirred for 15 min at room temperature. Next, the acetone
solution containing the impurities was decanted with a Pasteur pipette. The operation
was repeated twice. The obtained residue (white solid) was dried under vacuum to give
allobetulin, m.p. 266.5–268.0 ◦C in 85% yield. 1H NMR (600 MHz, CDCl3): δ 0.77 (s, 3H,
CH3), 0.80 (s, 3H, CH3), 0.85 (s, 3H, CH3), 0.91 (s, 3H, CH3), 0.93 (s, 3H, CH3), 0.98 (s, 6H,
2 × CH3), 1.20-1.72 (m, 24H, CH, CH2), 3.20 (dd, J1 4.8 Hz, J2 11.4 Hz, 1H, H-3), 3.44 (d,
J 7.6 Hz, 1H, H-28a), 3.53 (s, 1H, H-19), 3.78 (d, J 7.6 Hz, 1H, H-28b); 13C NMR (150 MHz,
CDCl3): δ 13.48, 15.37, 15.68, 16.47, 18.25, 20.96, 24.52 (C-29 or C-30), 26.20, 26.42, 27.95
(C-2), 28.78 (C-29 or C-30), 32.15, 32.68, 33.91, 34.10, 35.12, 36.22, 36.68, 37.25, 38.86, 38.93,
40.71, 41.49, 43.29, 46.81, 51.09, 55.50, 71.26 (C-28), 79.14 (C-3), 88.15 (C-19). IR (ATR): 3423,
2927, 2860, 1751, 1448, 1384, 1375, 1033, 1007, 767, 730 cm−1. The spectroscopic data is in
agreement with the literature data [9,12,13].

4. Conclusions

A new and effective method for the synthesis of allobetulin from betulin by the
Wagner–Meerwein rearrangement was developed. The reaction proceeds smoothly at room
temperature in DCM in the presence of tetrafluoroboric acid diethyl ether complex, and the
isolation of allobetulin does not require an aqueous work-up.

Supplementary Materials: Copies of 1H NMR, 13C NMR, and IR spectra.
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