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Abstract: The present work describes the facile synthesis of 3-(phenylethynyl)-7H-benzo[de]anthracen-
7-one via a Sonogashira coupling reaction. The structure of the synthesized benzanthrone derivative
is characterized by 1H- and 13C-NMR spectroscopy and high-resolution mass spectrometry. The
photophysical properties of the title compound are investigated by means of UV-Vis and fluorescence
spectroscopy in various organic solvents.
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1. Introduction

Amongst anthraquinoid dyes, 7H-benzo[de]anthracen-7-one (benzanthrone) deriva-
tives have gained wide recognition lately due to their excellent luminescent properties,
such as photostability, sizable Stokes shifts, and noticeable solvatochromism, as well as
their tunable fluorescence emission (from green to red) that is dependent on the nature of
the substituents of the benzanthrone molecule and solvent properties [1–3] which enable
these organic chromophores for use in a vast number of applications, both for scientific and
technological needs. Namely, these compounds have reasonable potential to be used: as
lipophilic fluorescent probes for parasitic trematodes and nematodes; for the diagnostics of
several plant species’ callus embryos by confocal laser scanning microscopy imaging [4–7];
for the selective detection of amyloid fibrils of the enzyme lysozyme [8,9]; as luminophore
dyes in liquid crystal displays and polymeric materials [10–12]; for the production of
organic thin films; and as probes for chromium(III) cations and the pH of solutions [13–15].

Currently, amid many organic chromophores, π-conjugated luminescent molecules
have engrossed much attention owing to their high-fluorescence quantum yields, satisfac-
tory robustness, and biocompatibility, as well as capability to emit light in solutions, nanoag-
gregates and thin films, thus qualifying these compounds for use in sensing and imaging
applications [16]. Several theoretical and practical studies have shown that upon the direct
attachment of phenylacetylene moieties to luminescent molecules such as pyrene [17–19],
carbazole [20], anthraquinone [21], naphthalimide, and quninolylthiazole [22,23], pho-
tophysical parameters can be adjusted, enhancing fluorescent properties. Furthermore,
research indicates that fluorescence yields, the size of Stokes shifts, desired absorption,
and emission maxima can be modulated by the introduction of electron-withdrawing and
electron-donating groups onto the phenyl rings of phenylacetylene moieties as well as the
length of π-conjugation [24].

Besides being excellent fluorophores, phenylacetylene derivatives are useful precur-
sors to a wide range of other compounds and materials [25–27].

With all the above mentioned in mind, we have decided to provide our knowledge on
the as-yet unreported phenylacetylene derivative of benzanthrone. Herein, we report the
synthesis and photophysical properties of the newly obtained compound.
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2. Results and Discussion
2.1. Synthesis

As far as we know, in the scope of palladium-catalyzed reactions, only aryl cyanation
and Buchwald–Hartwig amination reactions have been used to obtain new benzanthrone
derivatives [13,28], while the Sonogashira coupling, which is employed for the synthesis of
3-(phenylethynyl)-7H-benzo[de]anthracen-7-one (2) (Scheme 1), has not yet been utilized.
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Scheme 1. Synthesis of 3-(phenylethynyl)-7H-benzo[de]anthracen-7-one (2).

The title compound 2 was synthesized under Sonogashira coupling reaction conditions
using 10 mol % PdCl2 as the pre-catalyst with 20 mol % PPh3 as the liganting species
and 10 mol % CuI as the co-catalyst in N,N-dimethylformamide (DMF) at 80 ◦C with
triethylamine as a base [29]. The structure of the obtained compound 2 was confirmed by
1H-NMR spectroscopy (see Supplementary Materials), with the corresponding doublets
(d), triplets (t), and multiplets (m) of aromatic protons (δ 8.62–7.33 ppm) typical for the
phenyl group and benzanthrone residue. In the APT NMR spectrum, the appropriate
peak of the benzanthrone carbonyl group carbon at 183.5 ppm, peaks of acetylene carbon
atoms at 87.1 and 97.0 ppm, and peaks of aromatic carbon atoms (122.9–135.6 ppm) were
found and the obtained data are in good correlation with the previously reported NMR
studies of other benzanthrone derivatives [30–32]. The obtained infrared spectrum shows a
carbon–hydrogen (C–H) stretching frequency band at 3057 cm−1, a peak of benzanthrone
carbonyl group (C=O) vibrations at 1654 cm−1, and a band of carbon–carbon triple-bond
(C≡C) vibrations at 2201 cm−1, characteristic for alkynes (see Supplementary Materials).

2.2. Photophysical Properties

Basic absorption and fluorescence characteristics are presented in Table 1. The photo-
physical properties of compound 2 were examined in organic solvents of varying polar-
ity (Figure 1).

Table 1. Photophysical parameters of 3-(phenylethynyl)-7H-benzo[de]anthracen-7-one in various
solvents (at a concentration of 1 × 10−5 mol L−1).

Solvent Dielectric Constant Absorption λabs, nm Fluorescence λem, nm Quantum Yield

Chloroform 4.89 422 492 0.38
Ethanol 24.55 426 535 0.68

Acetonitrile 35.94 416 496 0.22
Dimethyl sulfoxide 46.45 423 507 0.32
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Figure 1. The UV-Vis absorption and fluorescence emission spectra of 3-(phenylethynyl)-7H-
benzo[de]anthracen-7-one in various organic solvents.

The mechanisms responsible for the fluorescence phenomena (such as internal charge
transfer) have been thoroughly described in earlier publications [1,4]. The absorption
spectra of the obtained benzanthrone phenylacetylene derivative 2 exhibited a broad band
around 416–426 nm. In solution, substance 2 is fluorescent from 492 nm (chloroform) to
535 nm (ethanol), and hence the bathochromic shift reaches 43 nm. The quantum yields
depending on solvent varied from 22% in acetonitrile to 68% in ethanol. The highest
quantum yield is attained in ethanol most likely due to the protic nature of the solvent,
which is possibly because the stabilization of the excited states prevents non-radiative
decay. The polarity effect of the medium on fluorescence was pronounced to a greater
extent than on the absorption of compound 2, attaining a highest Stokes shift value of
109 nm (4782 cm−1) in ethanol.

3. Materials and Methods
3.1. Materials and Basic Measurements

All of the reagents and solvents were obtained commercially and used without any
additional purification. The progress of the reaction and the assessment of the purity of
the synthesized compound was performed by TLC on MERCK Silica gel F254 plates in
dichloromethane (DCM) as an eluent and visualized under UV light. Column chromatog-
raphy was carried out on silica gel (60 Å, 40–63 µm, UPAG-AG).

MP70 Melting Point System apparatus was used for the determination of the melting
point, and was uncorrected. 1H- and 13C-NMR spectra were recorded on a Bruker Avance
500 MHz (Bruker Corporation, Billerica, MA, USA) in CDCl3 at ambient temperature, using
solvent peaks as the internal reference. Chemical shift (δ) values are reported in ppm.
The high-resolution mass spectrum was recorded on an Agilent 1290 Infinity series UPLC
connected to an Agilent 6230 TOF mass spectrometer. The IR spectrum was recorded on a
Thermo Scientific Nicolet iS50 Spectrometer (ATR accessory; no. of scans: 64; resolution: 4;
data spacing: 0.482 cm−1).

UV-Vis absorption spectra were recorded with a PerkinElmer Lambda 35 spectrometer.
Emission spectra and quantum yields for solutions were recorded using a QuantaMaster
40 steady-state spectrofluorometer (Photon Technology International, Inc. (Birmingham,
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NJ, USA)) equipped with a 6-inch integrating sphere by LabSphere, utilizing the software
package provided by the manufacturer.

3.2. Synthesis and Characterization

3-(Phenylethynyl)-7H-benzo[de]anthracen-7-one (2).
3-Bromobenzanthrone (309 mg, 1 mmol), PdCl2 (18 mg, 0.1 mmol), PPh3 (53 mg,

0.2 mmol) and CuI (19 mg, 0.1 mmol) were placed in a 20 mL screw-cap vial under an
argon atmosphere followed by the addition of DMF (10 mL) and Et3N (5 mL). The reaction
mixture was heated to 80 ◦C and kept at this temperature for 12–14 h (TLC control). When
conversion was completed, the reaction mixture was then poured into a mixture of aqueous
ammonia sol. 27% (10 mL), water (20 mL), and ice. The resulting precipitate was well
mixed for 30 min, filtered, and dried in a desiccator over anhydrous CaCl2. Then, it was
purified by means of column chromatography (eluent: DCM) to obtain a yellow compound
in 74% yield with m.p. of 150–151 ◦C. Rf = 0.68 (DCM). IR, cm−1: 3057 (C–H), 2201 (C≡C),
1654 (C=O), 1597, 1574, 1509, 1480, 1443, 1385, 1312, 1275, 1204, 1169, 1128, 1082, 1042, 999,
956, 916, 837, 777, 744, 687, 656, 624, 600, 571, 526, 474. HRMS (ESI): m/z calculated for
[C25H14O + H+] 331.1117, found 331.1115.

1H-NMR (500 MHz, CDCl3) δ 8.65–8.58 (m, 2H), 8.34 (dd, J = 7.9, 1.5 Hz, 1H), 8.15
(d, J = 7.8 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.69 (t, J = 7.3 Hz, 2H), 7.61–7.54 (m, 3H), 7.41
(t, J = 7.5 Hz, 1H), 7.37–7.28 (m, 3H).

13C-NMR (126 MHz, CDCl3) δ 183.5 (C, C=O), 135.6 (C), 133.4 (CH), 133.3 (CH), 132.7
(C), 131.8 (CH), 130.8 (C), 130.6 (CH), 130.1 (CH), 128.9 (CH), 128.6 (C), 128.6 (CH), 128.5
(CH), 128.1 (CH), 127.7 (C), 127.1 (CH), 127.0 (C), 123.4 (CH), 123.3 (C), 123.2 (CH), 122.9
(C), 97.0 (C≡C), 87.1 (C≡C).

4. Conclusions

As a result, 3-(phenylethynyl)-7H-benzo[de]anthracen-7-one was obtained in good yield
via a Sonogashira coupling reaction. The structure of the acquired compound was confirmed
by means of 1H-NMR, APT, and IR spectroscopy and HRMS. UV-Vis and fluorescence
spectroscopy in various organic solvents was used to investigate the photophysical properties
of the title compound. The study revealed that the substance is fluorescent in different
solutions, attaining the highest quantum yield of 68% and the highest Stokes shift of 109 nm
in ethanol. Such notable luminescent properties allow this compound to be further studied
for the visualization of biological objects and use in other technological applications.

Supplementary Materials: The following are available online. Figure S1. 1H-NMR spectrum of
compound 2; Figure S2. 1H-NMR spectrum of compound 2 (aromatic region); Figure S3. APT
spectrum of compound 2; Figure S4. APT spectrum of compound 2 (120–140 ppm); Figure S5. HRMS
(ESI) data for compound 2. Figure S6. IR spectrum of compound 2.
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