Supporting Information

Synthesis of bisoxazole and bromo-substituted aryloxazoles

Sambasivarao Kotha^{*} and Subba Rao Cheekatla Department of Chemistry, Indian Institute of Technology-Bombay, Powai, India Fax: 022-25727152; Phone: +91(22)-2572 7160, E-mail: <u>srk@chem.iitb.ac.in</u>

Table of Contents

Entry	Entry Contents			
 Copies of NMR (¹H, ¹ Single X-ray crystal st 	³ C, DEPT and 135) spectra tructure and data for compound 12	S2-S11 S12-S17		

DEPT 135 NMR (125.7 MHz, CDCl₃) of compound 8

Page |S4

Page | S 5

X-ray crystal structure and data for compounds 12(CCDC-1984197)

1. X-ray single-crystal structure and refinement data for compound 12

Figure S1: ORTEP representation of the compound 12 with thermal ellipsoids drawn at 30% probability level.

The X-ray structure of compound **12** was determined by single-crystal X-ray diffraction studies. Single crystals of compound **12** were obtained from EtOAc in petroleum ether solvent at room temperature. Crystal data was collected with graphite monochromatized $M_0K\alpha$ radiation ($\lambda = 0.71073$) on a Rigaku Saturn 724¹ diffractometer using ω scans at temperature 293 K. The structures were solved by direct methods using Olex-2² and ShelXL- 97³ and refined by full-matrix least-square minimisation based on F^2 . ORTEPs were drawn using Mercury program⁴ and ORTEP-3.⁵ X-ray crystallographic data and refinement parameters for compound **12** provided in below tables and are deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC No: CCDC-1984197. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table S1. X-ray crystallographic data and refinement parameters for compound $\underline{12}$ (CCDC 1984197)						
Identification code	srk-sr-662-br_mo					
Empirical formula	$C_{11}H_8Br_3NO_3$					
Formula weight	441.91					
Temperature	150 K					
Crystal system	orthorhombic					
Space group	Pca2 ₁					
Hall group	P2c -2ac					
Unit cell dimensions	$a = 20.6267 (8) Å^3 \qquad \alpha = 90^{\circ}$					
	$b = 9.0594 (5) Å^3 \qquad \beta = 90^{\circ}$					
	$c = 7.1357 (3) \text{ Å}^3 \qquad \gamma = 90^{\circ}$					
Volume	1333.39 (11) Å ³					
Z	4					
Density (calculated)	2.201 Mg/m ³					
Absorption coefficient (μ)	9.074 mm ⁻¹					
Absorption correction	Multi-Scan					
Bond precision C–C	0.0094 A					
Max. and min. transmission	1.000 and 0.522					
F (000)	840.0					
Crystal size	$0.232\times0.182\times0.041~mm^3$					
Crystal colour, shape Index ranges	Colourless, Black -23 \leq h \leq 24, -10 \leq k \leq 10, -8 \leq l \leq 8					
Theta range for data collection	4.496 to 49.96°					
Reflections collected	6776					
Wavelength	0.71073 Å					
Independent reflections	2345 [$R_{(int)} = 0.0394$]					
Completeness to $\theta = 24.98^{\circ}$	100%					
Refinement method	Full-matrix least-squares on F^2					
Data/restraints/parameters	2345/1/165					

1 10 ---_

Goodness-of-fit on F^2	1.065
Final <i>R</i> indices [<i>I</i> >2sigma (<i>I</i>)]	$R1 = 0.0290, \omega R2 = 0.0560$
R indices (all data)	$R1 = 0.0340, \omega R2 = 0.0582$
Largest diff. peak and hole	0.45 and -0.36 e. $\text{\AA}^{\text{-3}}$
Flack parameter	0.011 (14)

 Table S2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement
 Parameters $(Å^2 \times 10^3)$ for srk-sr-662-s-br_mo. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
Br1	-1463.5(3)	-2632.1(8)	-5628.0(14)	24.79(19)
Br3	-4718.1(3)	-9505.0(9)	-1846.0(10)	29.6(2)
Br2	-4689.0(3)	-5783.9(10)	-8150.8(10)	33.6(2)
O3	-3945(2)	-7332(5)	-3340(7)	21.0(11)
O2	-2694(2)	-7657(6)	-4677(7)	23.2(12)
O1	-2848.2(18)	-1613(5)	-5836(8)	25.7(12)
N1	-4837(2)	-7717(7)	-5042(8)	20.4(15)
C10	-4514(3)	-8049(8)	-3575(10)	18.6(17)
C9	-4444(3)	-6662(8)	-5900(10)	15.7(15)
C1	-2832(3)	-3103(7)	-5596(11)	17.9(14)
C2	-3377(3)	-4000(8)	-5414(11)	17.0(15)
C11	-3469(3)	-910(8)	-5714(14)	29.1(17)
C3	-3318(3)	-5510(8)	-5102(8)	15.5(17)
C8	-3899(3)	-6432(8)	-4909(8)	16.2(16)
C5	-2156(3)	-5292(8)	-5176(9)	16.2(17)
C6	-2226(3)	-3774(8)	-5465(11)	17.5(15)
C7	-2074(3)	-8381(9)	-4622(11)	25.3(18)
C4	-2701(3)	-6167(8)	-4990(8)	16.9(17)

Table S3: Anisotropic Displacement Parameters (Å ² ×10 ³) for srk-sr-662-s-br_mo. The	
Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+akaa^*b^*U_{12}+akaa^*b^*U_{1$	•••

Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.								
Atom	U11	U22	U33	U23	U13	U 12		
Br1	20.7(3)	27.7(4)	25.9(3)	-0.5(4)	1.7(3)	-12.3(3)		
Br3	22.7(3)	31.8(5)	34.3(5)	12.4(4)	3.9(4)	-4.6(3)		
Br2	28.5(4)	41.7(5)	30.6(5)	15.6(4)	-11.4(4)	-6.6(4)		
O3	19(2)	25(3)	19(2)	5(2)	-2(2)	-8(2)		
O2	21(2)	14(3)	34(3)	3(2)	4(2)	-2(2)		
01	23(2)	15(3)	39(3)	2(3)	-1(3)	-7(2)		
N1	16(3)	16(4)	29(4)	2(3)	0(3)	-1(3)		
C10	14(3)	17(4)	25(4)	0(3)	3(3)	0(3)		

C9	17(3)	14(4)	16(4)	0(3)	-3(3)	0(3)
C1	22(3)	13(4)	18(3)	-1(4)	1(4)	0(3)
C2	16(3)	21(4)	14(3)	-2(4)	-1(3)	2(3)
C11	32(4)	17(4)	38(4)	3(5)	1(4)	4(3)
C3	14(3)	18(4)	15(4)	1(3)	-2(2)	-1(3)
C8	19(3)	11(4)	18(4)	-1(3)	5(3)	5(3)
C5	14(3)	21(4)	14(4)	1(3)	-1(3)	-2(3)
C6	20(3)	21(4)	11(3)	0(4)	1(3)	-8(3)
C7	20(4)	21(5)	35(4)	2(4)	-3(3)	6(4)
C4	20(4)	15(4)	16(4)	-3(3)	-1(3)	-2(3)

Table S4: Bond Lengths for srk-sr-662-s-br_mo.							
Atom	Atom	Length/Å	Ator	n Atom	Length/Å		
Br1	C6	1.886(6)	N1	C9	1.395(9)		
Br3	C10	1.855(7)	C9	C8	1.345(9)		
Br2	C9	1.862(7)	C1	C2	1.393(8)		
03	C10	1.352(8)	C1	C6	1.393(8)		
03	C8	1.388(8)	C2	C3	1.391(9)		
O2	C7	1.438(7)	C3	C8	1.467(9)		
O2	C4	1.369(9)	C3	C4	1.407(9)		
O1	C1	1.362(8)	C5	C6	1.398(10)		
01	C11	1.433(7)	C5	C4	1.382(9)		
N1	C10	1.277(9)					

Table	Fable S5: Bond Angles for srk-sr-662-s-br_mo.								
Atom	Atom	Atom	Angle/°	Ato	m Ator	n Atom	Angle/°		
C10	03	C8	104.0(5)	C2	C3	C8	120.3(6)		
C4	O2	C7	117.6(5)	C2	C3	C4	120.3(6)		
C1	01	C11	117.0(5)	C4	C3	C8	119.5(6)		
C10	N1	C9	102.5(5)	O3	C8	C3	117.8(5)		
03	C10	Br3	117.2(5)	C9	C8	03	106.0(6)		
N1	C10	Br3	126.4(5)	C9	C8	C3	136.2(6)		
N1	C10	O3	116.2(6)	C4	C5	C6	119.6(6)		
N1	C9	Br2	120.9(4)	C1	C6	Br1	120.3(5)		

C8	C9	Br2	127.9(5)	C1	C6	C5	122.1(6)
C8	C9	N1	111.2(6)	C5	C6	Br1	117.5(5)
01	C1	C2	124.8(5)	O2	C4	C3	115.8(6)
01	C1	C6	117.6(5)	O2	C4	C5	125.0(6)
C2	C1	C6	117.6(6)	C5	C4	C3	119.2(7)
C3	C2	C1	121.2(6)				

Table S6: Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for srk-sr-662-s-br_mo.

Atom	x	у	Z.	U(eq)
H2	-3796	-3573	-5504	20
H11A	-3746	-1254	-6742	44
H11B	-3414	163	-5804	44
H11C	-3672	-1157	-4512	44
H5	-1736	-5720	-5107	19
H7A	-1848	-8220	-5811	38
H7B	-2137	-9442	-4424	38
H7C	-1816	-7974	-3593	38