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Abstract: SN2 rection between 4-(tert-butyldimethylsilyl)hex-5-yn-1-yl 4-methylbenzenesulfonate
and NaN3 in DMF at 80 ◦C provided (6-azidohex-1-yn-3-yl)(tert-butyl)dimethylsilane intermediate,
which underwent in situ intramolecular thermal Huisgen azide–alkyne cycloaddition reaction. This
one-pot process gave 4-(tert-butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine in
78% yield.
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1. Introduction

The term triazolopyridine includes five types of heterocyclic systems with one subtype
being [1,2,3]triazolo[1,5-a]pyridine. The synthesis and applications of the fully aromatic
congeners have been reviewed in 2002 [1] and 2010 [2]. Their applications range from
fluorescent materials to building blocks in supramolecular chemistry, which are known to
form polynuclear complexes with different metal ions. However, they are less studied in
medicinal chemistry, although some examples include Ca2+ channel inhibitors, blockers of
α1-adrenoreceptors and neural nitric oxide synthase inhibitors [2].

On the other hand, partially saturated [1,2,3]triazolo[1,5-a]pyridine moiety has been
included as side chain in novel potassium channel modulators for the treatment and
prevention of disorders of the nervous system [3] (Figure 1). A similar substituent has also
been researched during the elaboration of selective cyclin dependent kinase-9 inhibitor,
which was developed for the treatment of hematological malignancies [4]. Recently, the
structural core of 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine has found application
in the construction of bicyclic fused triazolium ionic liquids, which were designed for
the chemoselective extraction of copper(II) ions and also histidine-containing peptides [5].
Other application fields of these low viscosity ionic liquids are dye-sensitized solar cells,
in which the bicyclic 1,2,3-triazolium derivatives serve as nonvolatile electrolytes. It has
been mentioned that 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine-derived ionic liquids
outperform the more traditional imidazolium congeners [6].
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Figure 1. Structure and atom numbering of 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine core. 
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From the synthetic chemistry point of view, the aromatic [1,2,3]triazolo[1,5-a]pyridines
are known to expel molecular nitrogen in the presence of transition metal catalysts and form
carbene metal complexes, which are valuable synthetic intermediates in the synthesis of various
heterocyclic systems [7]. The chemistry of partially hydrogenated [1,2,3]triazolo[1,5-a]pyridines
is far less explored. There are only few reports on their synthesis. Thus, partially saturated
systems can be prepared by hydrogenation of the pyridine part of the fused triazolopyri-
dine system, as has been described in the first reports of synthesis of 4,5,6,7-tetrahydro-
[1,2,3]triazolo[1,5-a]pyridines containing substituents in the triazole part [8,9]. The Yus
group has reported a one-pot SN2 reaction—the dipolar cycloaddition reaction sequence of
6-chlorohex-1-yne and NaN3 in the presence of the copper nanoparticles on activated car-
bon. This provided 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine in a copper(I)-catalyzed
azide–alkyne dipolar cycloaddition reaction [10,11]. The intramolecular cyclization of
6-azidohex-1-yne was also studied in the presence of sulfanyl radicals and unsubstituted
4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine was obtained in 45% yield [12]. In another
study, the latter partially saturated bicycle was obtained unexpectedly from N-acylated
6-amino-1-diazohexan-2-one by N-deprotection-induced imine formation followed by tau-
tomerization into the fused triazole [13]. It was shown that 6-azidohex-1-yne intermediate,
which in another report was obtained from the corresponding mesylate, can also be cyclized
in the thermal Huisgen cycloaddition reaction in the absence of copper(I) catalyst [5].

2. Results and Discussion

In our efforts to explore 1,2-silyl group shift in propargyl silanes [14–16], we envisaged
the synthesis of (6-azidohex-1-yn-3-yl)(tert-butyl)dimethylsilane 3 (Scheme 1). During the
SN2 process of tosylate–azide exchange the latter in situ underwent thermal Huisgen cycload-
dition in the absence of the copper(I) catalyst, similar to that reported by the Chu group [5].
Thus, the first silyl-functionalized 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine (4) was
obtained. The strategic starting material 1 was obtained by retro-Brook rearrangement of O-
silylated hex-5-yn-1-ol as described before [17]. Next, O-tosylation provided intermediate
2. It is important to note, that compound 2 appeared to be a rather unstable molecule, for
which the standard chromatographic purification on silica gel is not advisable. Instead, the
reaction 1→2 should be conducted to the maximum conversion and the product should be
isolated only by extractive methods and directly employed in the next transformation. The
obtained product 4 and its possible congeners with differently substituted silyl group can
be further applied in various reactions known for silane chemistry. Among others, these
include Hiyama couplings [18] and Fleming–Tamao oxidations [19,20].
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Scheme 1. Synthesis of 4-(tert-butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine 4.

The molecular structure of compound 4 was unambiguously established by spectro-
scopic methods. The analysis of the spin coupling constants and 2D NOESY spectrum
revealed that the TBS-group is situated in pseudo-equatorial position (Figure 2). It is
possible to state that such a conformational anchor can stabilize the overall conformation
of compound 4. The best constant analysis was possible for the 1H NMR spectrum in
deutero benzene. It should be mentioned that coupling constants between H-C(5) and
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H-C(6) were not attributed due to complex signal shape in all tested solvents (CDCl3, C6D6,
MeOD-d4, DMSO-d6, THF-d8) and at all tested temperatures (25→80 ◦C). On the other
hand, the chemical shifts of compound 4 in its 1H and 13C NMR were compared to those
previously reported for unsubstituted 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine core
(Table 1) [5,13]. They were practically identical with exception of H-C(4), which was shifted
upfield by 0.38 ppm due to the attached TBS-group.

Molbank 2022, 2022, x FOR PEER REVIEW 3 of 6 
 

NN
N

Si

OH
Si

OTs
Si

N3

Si

TsCl, NEt3 NaN3

1 2, 95%

3 4, 78%

MeCN DMF
0 oC RT RT 80 oC

 
Scheme 1. Synthesis of 4-(tert-butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine 4. 

The molecular structure of compound 4 was unambiguously established by spectro-
scopic methods. The analysis of the spin coupling constants and 2D NOESY spectrum 
revealed that the TBS-group is situated in pseudo-equatorial position (Figure 2). It is pos-
sible to state that such a conformational anchor can stabilize the overall conformation of 
compound 4. The best constant analysis was possible for the 1H NMR spectrum in deutero 
benzene. It should be mentioned that coupling constants between H-C(5) and H-C(6) were 
not attributed due to complex signal shape in all tested solvents (CDCl3, C6D6, MeOD-d4, 
DMSO-d6, THF-d8) and at all tested temperatures (25→80 °C). On the other hand, the 
chemical shifts of compound 4 in its 1H and 13C NMR were compared to those previously 
reported for unsubstituted 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine core (Table 1) 
[5,13]. They were practically identical with exception of H-C(4), which was shifted upfield 
by 0.38 ppm due to the attached TBS-group. 

 
Figure 2. Observed coupling constants (1H NMR, C6D6) and NOESY effects of compound 4. 

Table 1. Characteristic NMR shifts of the fused core of product 4 and their comparison with pub-
lished data [5,13] for unsubstituted 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine. 

Compound

Atoms  
This work: 

ppm, 1H and 13C-NMR (CDCl3) 

 

ppm, [5]  
1H-NMR (CDCl3), 

13C-NMR (DMSO-d6) 

ppm, [13] 
1H and  

13C-NMR 
(CDCl3) 

H-C(3) 7.37 7.44 7.43 
H-C(4) 2.46 2.84 2.84 
H-C(7) 4.52–4.44 4.37 4.36 

Figure 2. Observed coupling constants (1H NMR, C6D6) and NOESY effects of compound 4.

Table 1. Characteristic NMR shifts of the fused core of product 4 and their comparison with published
data [5,13] for unsubstituted 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine.
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Table 1. Characteristic NMR shifts of the fused core of product 4 and their comparison with pub-
lished data [5,13] for unsubstituted 4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine. 

Compound

Atoms  
This work: 

ppm, 1H and 13C-NMR (CDCl3) 

 

ppm, [5]  
1H-NMR (CDCl3), 

13C-NMR (DMSO-d6) 

ppm, [13] 
1H and  

13C-NMR 
(CDCl3) 

H-C(3) 7.37 7.44 7.43 
H-C(4) 2.46 2.84 2.84 
H-C(7) 4.52–4.44 4.37 4.36 

ppm, [5] ppm, [13]

This work:
ppm, 1H and

13C-NMR (CDCl3)

1H-NMR (CDCl3),
13C-NMR (DMSO-d6)

1H and
13C-NMR
(CDCl3)

H-C(3) 7.37 7.44 7.43

H-C(4) 2.46 2.84 2.84

H-C(7) 4.52–4.44
4.28–4.19 4.37 4.36

H-C(5) 2.15–2.06 2.02–2.14 2.13–2.00

and H-C(6) 1.95–1.82 1.86–1.97 1.99–1.86

C(4) 23.1 22.4 22.6

C(5) and C(6) 23.4, 19.3 19.80, 19.82 both at 19.9

C(7) 46.2 45.7 45.8

C(3) and C(3a) 135.8, 130.5 133.0, 130.3 133.1, 130.4

Also the FTIR analysis of compound 4 showed the expected absorption bands in the
regions that were previously reported for similar structures [8,21]: 2958, 2927, 1527, 1470,
1248, 1113, 1065, 993 cm−1. The absorption bands at 1470, 1113, 1065 and 993 cm−1 are, in
general, considered characteristic for 1,2,3-triazoles [21].

3. Materials and Methods

Reaction solvents (MeCN, DMF) were dried using standard drying agents and dis-
tilled prior to use. Commercially available reagents were used as received. All reactions
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were followed by TLC on E. Merck Kieselgel 60 F254 and visualized by using UV lamp or
developed using generic KMnO4 stain. Column chromatography was performed on silica
gel (60 Å, 40–63 µm, Upasil®). 1H and 13C-NMR spectra were recorded using a Bruker
Avance 500 MHz spectrometer. Chemical shifts (δ) are reported in ppm and coupling
constants (J) in Hz. Residual solvent or solvent peaks were used as internal reference
(CDCl3, δ 7.26 ppm for 1H-NMR; CDCl3, δ 77.16 ppm for 13C-NMR). Multiplicities are
indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet). Compound purity
assessments were performed by quantitative NMR, where 1,1′-methylenedibenzene was
used as internal standard. IR spectra were recorded as thin films on an FT-IR Perkin-Elmer
Spectrum 100 spectrometer (4000–450 cm−1). High-resolution mass spectra (ESI) were
recorded with an Agilent 1290 Infinity series UPLC connected to an Agilent 6230 TOF
mass spectrometer (calibration at m/z 121.050873 and m/z 922.009798). The starting
material 1 was prepared from tert-butyl(hex-5-yn-1-yloxy)dimethylsilane according to the
literature procedure [17].

4-(tert-Butyldimethylsilyl)hex-5-yn-1-yl 4-methylbenzenesulfonate 2. Triethylamine (27 mL,
0.19 mol, 5 eq.) was added to a solution of 4-(tert-butyldimethylsilyl)hex-5-yn-1-ol (1)
(7.889 g, 0.037 mmol, 1.0 eq.) in MeCN (50 mL) at 0 ◦C followed by 4-toluenesulfonyl
chloride (8.970 g, 0.05 mol, 1.3 eq.). The resulting reaction mixture was stirred for 1 h
at 0 ◦C. The solution gradually obtained an orange color and formation of precipitate
was observed. The resulting mixture was stirred for another 2 h at room temperature.
The solvent was removed under reduced pressure. The obtained residue was dissolved
in DCM (50 mL) and washed with a saturated aqueous solution of NH4Cl (3 × 50 mL),
brine (50 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced
pressure. The crude product was dissolved in hexanes (10–15 mL) and filtered through a
thin layer of silica gel. The filtrate was concentrated to obtain product 2 as a yellow-colored
oil (14.06 g, 92% 1H NMR purity; 95% yield) by NMR. Product 2 can be further purified
by silica gel column chromatography (45→100% DCM/hexanes) to obtain a colorless oil,
but the product undergoes partial degradation under such conditions. Rf = 0.63 (DCM).
1H-NMR (500 MHz, CDCl3): δ 7.79 (d, 3JH-H = 8.3 Hz, 2H, H-C(2′ ′)), 7.34 (d, 3JH-H = 8.3 Hz,
2H, H-C(3′ ′)), 4.17–4.00 (m, 2H, H2C(1)), 2.45 (s, 3H, H3C(5′ ′), 2.09–1.98 (m, 1H, HaC(2)),
1.95 (d, 4JH-H = 2.8 Hz, 1H, HC(6)), 1.79–1.68 (m, 1H, HbC(2)), 1.66 (dt, 3JH-H = 11.9 Hz,
4JH-H = 2.8 Hz, 1H, HC(4)), 1.59–1.48 (m, 1H, HaC(3)), 1.41–1.32 (m, 1H, HbC(3)), 0.93 (s, 9H,
H3C(1′)), 0.05 (s, 3H, H3C(2′)), −0.02 (s, 3H, H3C(2′)). 13C-NMR (126 MHz, CDCl3): δ 144.8,
133.4, 130.0, 128.1, 86.4, 70.3, 70.0, 28.5, 27.2, 25.7, 21.8, 17.7, 16.2, −7.1, −7.3. IR (FTIR): 3312,
2956, 2930, 2897, 2858, 2175, 2099, 1926, 1716, 1641, 1599, 1496, 1471, 1361, 1807, 1292, 1251,
1189, 1120, 1098, 1070 cm−1. HRMS (ESI): m/z calculated for [C19H30O3SSi + H]+ 367.1758,
found 367.1728. These spectra data can be downloaded in Supplementary Materials.

4-(tert-Butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine 4. The 4-(tert-
Butyldimethylsilyl)hex-5-yn-1-yl 4-methylbenzenesulfonate (2) (155 mg, 0.42 mmol, 1.0 eq.)
was added to a stirred solution of sodium azide (45 mg, 0.69 mmol, 1.6 eq.) in anhydrous
DMF (3 mL) under inert argon atmosphere. The resulting reaction mixture was stirred
for 20 min. at room temperature. The yellow-colored solution was then heated at 80 ◦C
for 66 h. A saturated aqueous solution of NaHCO3 was added to the reaction mixture
at room temperature. The product was then extracted with toluene (3 × 10 mL). The
organic phases were collected separately and concentrated under reduced pressure. The
obtained residue was dissolved in chloroform (10 mL) and washed with water (2 × 10 mL),
brine (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced
pressure. The crude product was purified by silica gel column chromatography (20→40%
EtOAc/hexanes) and product 4 (78 mg, 78%) was obtained as a colorless oil. Rf = 0.20
(40% EtOAc/Hex). 1H-NMR (500 MHz, CDCl3): δ 7.37 (s, 1H, H-C(3)), 4.52–4.44 (m, 1H,
HaC(7)), 4.28–4.19 (m, 1H, HbC(7)), 2.46 (dd, 3JH-H = 8.6, 6.4 Hz, 1H, HC(4)), 2.15–2.06 (m,
2H, H2C(5,6)), 1.95–1.82 (m, 2H, H2C(5,6)), 0.95 (s, 9H, H3C(1′)), 0.05 (s, 3H, H3C(2′)), 0.03
(s, 3H, H3C(2′)). 1H NMR (500 MHz, C6D6) δ 7.44 (s, 1H, H-C(3)), 3.96 (dt, 2JH-H = 13.1 Hz,
3JH-H = 5.2 Hz, 1H, HaC(7)), 3.62 (ddd, 2JH-H = 13.1 Hz, 3JH-H = 9.2, 4.7 Hz, 1H, HbC(7)), 1.91
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(dd, 3JH-H = 8.6, 6.4 Hz, 1H, HC(4)), 1.42–1.32 (m, 1H, HaC(5)), 1.29–1.14 (m, 2H, HbC(5),
HaC(6)), 1.07–0.95 (m, 1H, HbC(6)), 0.75 (s, 9H, H3C(1′)), −0.18 (s, 3H, H3C(2′)), −0.24 (s,
3H, H3C(2′)). 13C-NMR (126 MHz, CDCl3): δ 135.8, 130.5, 46.2, 27.4, 23.4, 23.1, 19.3, 17.7,
−5.3, −6.3. IR (FTIR): 2958, 2927, 2882, 2856, 1527, 1470, 1451, 1431, 1364, 1248, 1232, 1158,
1113, 1065, 1047, 993 cm−1. HRMS (ESI): m/z calculated for [C12H23N3Si + H]+ 238.1734,
found 238.1746. These spectra data can be downloaded in Supplementary Materials.

4. Conclusions

The 4-(tert-butyldimethylsilyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]pyridine can be ob-
tained with 78% yield in a one-pot process by heating a mixture of 4-(tert-butyldimethylsilyl)hex-
5-yn-1-yl 4-methylbenzenesulfonate and sodium azide. Its structural analysis by 1H NMR
revealed that the bulky tert-butyldimethylsilyl group is placed in the pseudo-equatorial position.

Supplementary Materials: 1H-NMR, 13C-NMR, IR spectra and HRMS (ESI) data can be downloaded.
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