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Abstract: We report the experimental results of unexpected aromatic nucleophilic substitution re-
action products on 2-amino-4,6-dichloropyrimidine-5-carbaldehyde. The isolated compounds are
products of amination, solvolysis, and condensation processes under mild and environmentally
friendly conditions, due to the influence of structural factors of the starting pyrimidine and a high
concentration of alkoxide ions. This method allows the building of pyrimidine-based compound
precursors of N-heterocyclic systems.
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1. Introduction

After the pyridine scaffold, the pyrimidine core is regarded as the second heteroaro-
matic ring present in pharmaceutically active compounds [1,2]. The main justification
for this work is researching and exploring synthetic methods to produce this signifi-
cant class of heterocyclic systems. In particular, functionalized pyrimidines with amino
and halogen groups become suitable precursors for a number of structural alterations
in the synthesis of pyrimidine-based compounds [3–7]. Halopyrimidines can be made
by the Vilsmeier–Haack reaction, which efficiently converts 4,6-dihydroxypyrimidines
to 4,6-dichloropyrimidines [8,9]. Another regioselective synthetic strategy is to obtain
2-chloropyrimidines from available 2,4-dichloropyrimidines through regioselective dechlo-
rination [10]. These synthetic protocols are complementary to the conventional synthesis
of pyrimidines and analogues through the reaction between β-dicarbonyl compounds
(and its synthons) and components with an N–C–N fragment (urea, thiourea, amidine,
or guanidine) [11,12]. The halogenated pyrimidines can incorporate nucleophiles regios-
electivity via SNAr reaction, unlike other nitrogen heterocycles such as pyridine and
imidazole [4]. Substitution reactions that include Grignard agents [13], cross-coupling
reactions to build aryl-heteroaryl or heteroaryl-heteroaryl bonds [4,14,15], and alkoxy
and amino groups [16–19]. In this work, we report a sequence of reactions of SNAr,
solvolysis, and Claisen–Schmidt condensation on symmetrically substituted 2-amino-4,6-
dichloropyrimidine-5-carbaldehyde.

2. Results
Chemistry

Unlike the reactions of SNAr on 2,4-dichloropyrimidine derivatives—in which Lewis
acid atoms, functional groups, or catalysts are required to enhance the ratio of isomers and
favor substitutions at the C-2 position when weak nucleophilic amines are used—SNAr
reactions on symmetrically substituted 4,6-dichloropyrimidine derivatives under conven-
tional conditions and stoichiometric control of reactants work well with different types of
nucleophilic amines [19]. However, by increasing the alkalinity on the medium in which
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the reaction takes place under stoichiometric control of reactants’ reactions, both SNAr
amination and solvolysis reactions are observed (Scheme 1).
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Scheme 1. Amination and solvolysis reactions on 2-amino-4,6-dichloropyrimidin-5-carbaldehyde.

Similar behavior was observed in derivatization reactions to produce heterocyclic
analogs of chalcones by the conventional Claisen–Schmidt condensation method between
pyrimidines mono-aminated (prepared following the reported methodology [19]) and
acetophenone (Scheme 2).
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Scheme 2. (i) Ethanol, TEA, HNR1R2, reflux for 3 h [19]; (ii) Ethanol, NaOH(s), reflux for 3 h.

3. Discussion

Conventional synthetic protocols without requiring regio- and chemoselective control
using 2-amino-4,6-dichloropyrimidine-5-carbaldehyde as starting material should generate
the expected products. In our study, exploring the conditions for incorporating complexity
and molecular diversity on 2-amino-4,6-dichloropyrimidine-5-carbaldehyde, several condi-
tions were tested—including changes in solvents, bases, and heating sources— to find the
best reaction conditions for the synthesis of pyrimidine derivatives. We found that using
triethylamine (TEA) in refluxing ethanol provides suitable conditions for SNAr amination
reactions with different amines (aliphatics, cyclic and alicyclic amines, aromatic, and het-
eroaromatic and benzylic amines) and to provide the mono-substituted compounds [19].
The increase in alkalinity on the reaction medium influences the isolated products (I–IV)
(Figure 1), unlike previously reported results [19]. The alcohols used as solvents favor
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the SNAr reaction and at the same time, with NaOH in the medium, the formation of
alkoxide ions.
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The 2-amino-4,6-dichloropyrimidine-5-carbaldehyde is a symmetric compound in
which all positions, except for the position at C–5, are α and/or γ to a nitrogen inside
the ring. Consequently, when undergoing SNAr amination reactions, the second nitrogen
atom of the ring decreases electron density and contributes to the stabilization of anionic
intermediates, increasing reactivity.

Based on these results, the structural characteristics of the compounds obtained mod-
erate yield and incorporation of alkoxide ions, the formation of compounds (I–IV) results
from competition between soft (amine) and hard (alkoxide) nucleophiles present. Equimo-
lar addition of the amine is expected to control the mono-substitution on the pyrimidine
ring, but the formation of alkoxide ions—which are stronger bases and better nucleophiles—
compete towards substitution even if they are not in equal proportions.

Compounds I–IV were isolated, purified by recrystallization from ethanol, and their
structures were ascertained by IR, MS, and NMR (1H and 13C) analysis. Copies of the
spectra are included in supporting information. In the 1H-NMR spectrum of the isolated
compounds I–IV, the inclusion of the respective alkoxide ions is evidenced. Low field sig-
nals, with displacement and multiplicity characteristics for groups –OCH3 and –OCH2CH3,
were observed. In compound I, the signal for the methoxy group appear as a singlet at
3.92 ppm; for compound II, the signals at 1.34 and 4.37 ppm associated with protons the
ethoxy group.

In the 1H-NMR spectrum for the pyrimidine-based chalcones, the signals for the
ethoxy groups appear at 1.13 and 4.37 ppm for compound III, and at 1.38 and 4.39 ppm
for compound IV. Additionally, the doublets associated with the α,β-vinyl protons in E
configuration of the new C=C bond formed at 7.17 ppm (J = 15 Hz, Hα) and 7.31 ppm
(J = 15.5 Hz, Hβ) for compound III; and at 7.15 (J = 15.5 Hz, Hα) and 7.35 (J = 15.5 Hz, Hβ)
for compound IV.

Compounds V–X were not isolated under these reaction conditions. The excess of
NaOH added increases the alkoxide ions and the solvolysis reactions, making it difficult to
direct towards the exclusive obtention of the SNAr amination product. No study was con-
ducted with equimolar, lesser, or catalytic quantities of NaOH. Pyrimidine-based chalcones
III–IV were prepared under the conventional method of cross-aldol condensation. The
Claisen–Schmidt condensation reaction uses excess solid basic catalyst and polar solvent,
generating conditions in which the 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under-
goes solvolysis and condensation via the ‘one pot’ process. These reaction conditions can
lead to byproduct formation due to Michael addition; although they were not identified, it
could be a factor that affects the low yield of the isolated products [20].
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4. Materials and Methods
4.1. General Remarks

The 2-amino-4,6-dichloropyrimidine-5-carboxaldehyde was prepared according to
Vilsmeier–Haack formylation methodology reported in the literature, starting from the
commercially acquired 2-amino-4,6-dihydroxypyrimidine [19]. The reagents and solvents
used in the SNAr and Claisen–Schmidt reactions were commercially purchased (Sigma-
Aldrich (St. Louis, MO, USA) or Merck (Kenilworth, NJ, USA)), without further purification.

Monitoring of the reactions was carried out with silica gel TLC plates (Merck (Kenil-
worth, NJ, USA) silica 60 F254). Spots were visualized with UV light at 254 and 365 nm.
Melting points (uncorrected) were determined with a Thermo Scientific melting point
apparatus, model IA 9100/Capillary. Infrared spectra (FT–IR) were collected at resolution
of 2 cm−1 and 16 scans, (transmission mode 4000–500 cm−1) using a Shimadzu FTIR 8400
spectrophotometer (Scientific Instruments Inc., Seattle, WA, USA) and KBr disks. NMR
spectra 1H and 13C (DEPT—135) were recorded on a Bruker Advance spectrophotometer
operating at 400 and 100 MHz, respectively, using TMS as internal standard (d, 0.0 ppm)
and DMSO–d6 as solvents. The NMR signals are reported in ppm and coupling constants (J)
are reported in Hertz. Mass spectra were recorded in a Thermo Fisher Scientific (Waltham,
MA, USA) GC–MS spectrometer model DSQII (Thermo Fisher Scientific Inc., Waltham, MA,
USA) using a direct insertion probe and the electron impact ionization technique (70 eV).
HRMS was recorded in an Agilent Technologies QTOF 6520B spectrometer coupled to
a HPLC Agilent–1200 equipped with an Agilent Zorbax extend C18 (2.1 × 50 × 1.8 mm)
PN 727700-902 column, via electrospray ionization (ESI) and analyzed in a positive mode.
HPLC method: 0,4 mL/min, gradient from acetonitrile/water (10%, with 0.1% of formic
acid) to acetonitrile (with 0.1% of formic acid). Microanalysis was performed on an Agilent
CHNS elemental analyzer (Thermo Fischer Scientific Inc., Madison, WI, USA) and the
values are within ±0.4% of the calculated values.

4.2. Synthesis and Characterization

Synthesis of 2-amino-4-(indolin-1-yl)-6-alkoxypyrimidine-5-carbaldehydes (I–II). To a
mixture between 2-amino-4,6-dichloropyrimidin-5-carbaldehyde and indoline—in equimo-
lar amounts (1 mmol)—in ethanol or methanol (5.0 mL), NaOH (0.2 g, 5 mmol) was added.
The reaction mixture was stirred at room temperature for 1 h. TLC was used to monitor the
progress of the reaction. The solid obtained was isolated by filtration and recrystallized
from ethanol. The purity of the product was confirmed by TLC test.

2-amino-4-(indolin-1-yl)-6-methoxypyrimidine-5-carbaldehyde I. White solid. M.p.
173–174 ◦C, 60% yield. 1H-NMR (400 MHz DMSO–d6) δ (ppm): 3.02 (t, 2H, CH2), 3.92 (m,
5H, NCH2, OCH3), 6.91 (t, 1H, CH, J = 7.4 Hz), 7.07 (t, 1H, CH, J = 7.5 Hz), 7.21 (d, 1H, CH,
J = 7.5 Hz), 7.27 (s, 2H, NH2), 7.40 (d, 1H, CH, J = 8.1 Hz), 9.84 (s, 1H, CHO). 13C-NMR δ

(ppm): 28.2 (CH2), 52.8 (CH2), 53.8 (CH3), 95.6 (C5), 116.8 (CH), 122.3 (CH), 124.6 (CH),
126.1 (CH), 132.8, 143.8, 160.1 (C6), 162.6 (C2), 172.7 (C4), 181.9 (CHO). IR, KBr (cm−1):
3486–3461 (NH2, st), 1663 (C=O, st). MS (70 eV) m/z (%): 270 (M+, 100), 252 (30), 253 (30),
227 (23), 118 (63), 117 (36), 91 (40), 77 (26), 68 (30), 43 (59). Anal. calcd. for C14H14N4O2
(270.11): C, 62.21; H, 5.22; N, 20.73. Found: C, 62.45; H, 5.12; N, 20.86.

2-amino-4-ethoxy-6-(indolin-1-yl)pyrimidine-5-carbaldehyde II. Yellow solid. M.p.
234–236 ◦C, 60% yield. 1H-NMR (400 MHz DMSO–d6 RT) δ (ppm): 1.34 (t, 3H, CH3), 3.03 (t,
2H, CH2), 3.91 (t, 2H, CH2), 4.37 (q, 2H OCH2), 6.91 (t, 1H, CH, J = 7.5 Hz), 7.08 (t, 1H, CH,
J = 7.5 Hz), 7.22 (s, 3H, CH, NH2), 7.42 (d, 1H, CH, J = 8.06 Hz), 9.86 (s, 1H, CHO). 13C-NMR
δ(ppm): 14.4 (CH3), 28.2 (CH2), 52.8 (CH2), 62.2 (OCH2), 95.5 (C5), 116.9 (CH), 122.3 (CH),
124.6 (CH), 126.1 (CH), 132.8, 143.7, 160.1 (C4), 162.7 (C2), 172.4 (C6), 182.1 (CHO). IR, KBr
(cm−1): 3429–3380 (NH2, st), 1632 (C=O, st). HR–MS calculated for C15H16N4O2: 284.1273,
found: 284.1263. Anal. calcd. for C15H16N4O2 (284.13): C, 63.37; H, 5.67; N, 19.71. Found:
C, 63.52; H, 5.52; N, 19.87.

Synthesis of (E)-3-(2-amino-4-ethoxy-6-(amino)pyrimidin-5-yl)-1-phenylprop-2-en-1-one
III–IV. (i) SNAr amination reactions: 2-amino-4,6-dichloropyrimidin-5-carbaldehyde (1 mmol),
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amine (1 mmol), and triethylamine (1 mmol) in EtOH (5.0 mL) was heated under reflux
for 3 h [19]. (ii) Pyrimidine-based chalcones are obtained under classical Claisen–Schmidt
conditions. To an equimolar mixture of 2-amino-4-chloro-6-(ethyl(phenyl)aminopyrimidine-
5-carbaldehyde (or 2-amino-4-ethoxy-6-((4-methoxy-phenyl)(methyl)amino)pyrimidin-5-
carbaldehyde) and acetophenone in ethanol (8,0 mL), NaOH (0.2 g, 5 mmol) was added.
Then, the reaction mixture was refluxed for 3 h. TLC was used to monitor the progress of
the reaction. The precipitate obtained was isolated by filtration and recrystallized from
ethanol to produce a yellow solid. The purity of the product was confirmed by TLC test.

(E)-3-(2-amino-4-ethoxy-6-(ethyl(phenyl)amino)pyrimidin-5-yl)-1-phenylprop-2-en-1-
one III. Yellow solid. M.p. 157–159 ◦C, 20% yield. 1H—NMR (400 MHz DMSO–d6 RT)
δ (ppm): 1.13 (t, 3H, CH3), 1.39 (t, 3H, CH3), 3.93 (q, 2H, NCH2), 4.37 (q, 2H, OCH2),
6.91–7.00 (m, 5H, CH), 7.17–7.23 (m, 3H, Ho, Hα J = 15 Hz), 7.31 (d, 1H, Hβ, J = 15.5 Hz),
7.45 (t, 2H, Hm, J = 7.2 Hz), 7.54 (t, 1H, Hp, J = 7.2 Hz), 7.62 (s, 2H, NH2). 13C–NMR δ

(ppm): 13.3 (CH3), 14.5 (CH3), 46.8 (NCH2), 62.2 (OCH2), 93.0 (C5), 118.0 (Cα), 123.1 (Co),
123.2 (Cp), 127.6 (Cm), 128.5 (Co), 129.3 (Cm), 131.9 (Cp), 137.7 (Cβ), 138.5 (Ci), 146.9 (Ci),
161.9 (C6), 166.1 (C2), 169.6 (C4), 189.4 (CHO). IR, KBr (cm−1): 3457–3407 (NH2, st), 1641
(C=O, st). MS (70 eV) m/z (%): 388 (M+, 7), 283 (49), 270 (13), 269 (64), 255 (21), 241 (28),
105 (79), 77 (100), 43 (30). Anal. calcd. for C23H24N4O2 (388.19): C, 71.11; H, 6.23; N, 14.42.
Found: C, 70.92; H, 6.11; N, 14.57.

(E)-3-(2-amino-4-ethoxy-6-((4-methoxyphenyl)(methyl)amino)pyrimidin-5-yl)-1- phen-
ylprop-2-en-1-one IV. Yellow solid. M.p. 154–156 ◦C, 20% yield. 1H-NMR (400 MHz
DMSO–d6 RT) δ (ppm): 1.38 (t, 3H, CH3), 3.31 (s, 3H, NCH3), 3.64 (s, 3H, OCH3), 4.39 (q,
2H, CH2), 6.77 (d, 2H, Hm, N-aryl, J = 8.9 Hz), 6.96–6.99 (m, 4H, Hp, NH2), 7.15 (d, 1H,
Hα, J = 15.5 Hz), 7.35 (d, 1H, Hβ, J = 15.5 Hz), 7.46 (t, 2H, Hm, J = 7.2 Hz), 7.55 (t, 1H,
Hp, J = 7.2 Hz), 7.64 (d, 2H, Ho, J = 8.1 Hz). 13C—NMR δ (ppm): 14.5 (CH3), 41.6 (NCH3),
55.2 (OCH3), 62.1 (CH2), 92.0 (C5), 114.6 (Cm, N-aryl), 117.9 (Cα), 124.8 (Co, N-aryl), 127.6
(Co), 128.5 (Cm), 131.8 (Cp), 137.8 (Cβ), 138.6 (Ci), 142.2 (Ci, N-aryl), 155.7 (Cp, N-aryl),
161.6 (C4), 166.7 (C6), 169.5 (C2), 189.5 (CHO). IR, KBr (cm−1): 3432–3322 (NH2, st), 1625
(C=O, st). HR–MS calculated for C23H24N4O3: 404.1848, found: 404.1832. Anal. calcd. for
C23H24N4O3 (404.18): C, 68.30; H, 5.98; N, 13.85. Found: C, 68.10; H, 5.81; N, 14.05.

5. Conclusions

The compounds obtained, despite being unexpected, follow the parameters of the
SNAr reactions and demonstrate how changes in any of the factors that govern these
reactions affect the expected result or product. These mild and environmentally friendly
SNAr reaction conditions on 2-amino-4,6-dichloropyrimidine-5-carbaldehyde represent
an alternative protocol to functionalize them through SNAr amination with a variety of
amines, an important intermediate for the investigation of N-heterocyclic compounds and
potential applications.

Supplementary Materials: Spectroscopic data of the isolated compounds I–IV are available online.
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