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Abstract: Functionally substituted 1,2,5-oxadiazole 2-oxides (furoxans) are important pharmaceutical
scaffolds used for the preparation of various pharmacologically active substances. Furoxans bearing
hydrazone functionality are considered as promising drug candidates for the treatment of neglected
diseases. However, pharmacologically oriented hydrazones derived from (furoxanyl)amidrazones and
acetylfuroxans have remained unknown so far. In this communication, a simple method for the synthesis
of 4-amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-
oxadiazole 2-oxide is described. The structure of the synthesized compound was established by
elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR and IR spectroscopy.
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1. Introduction

Hydrazones are versatile bioactive molecules displaying a wide range of pharmacolog-
ical activities, including antibacterial, antitubercular, antifungal, anticancer, etc. [1,2]. Such
compounds usually have acceptable hydrolytic stability, low toxicity and may serve various
biomedical applications [3,4]. In addition, hydrazones are useful synthons for the forma-
tion of carbon–nitrogen and nitrogen–heteroatom bonds, which is highly relevant for the
creation of new methods of constructing functionally substituted nitrogen heterocycles [5].

In a series of nitrogen heterocycles, 1,2,5-oxadiazoles N-oxides (furoxans) became
emergent scaffolds with strong application potential in various areas. Furoxans correspond
to an important subclass of heterocyclic pharmaceutical ingredients capable of exoge-
nous release of nitric oxide (NO) [6,7]. NO is a crucial gaseous signaling molecule that
mediates various physiological processes and may be useful for cancer treatment [8–11].
Due to described NO-releasing properties, furoxans have a wide range of pharmacologi-
cal activities including antiparasitic [12–15], antiaggregant [16–18] and anticancer [19,20]
types of activity. Recently, a potential application of arylazofuroxans as organic photo-
switchable NO-donors was proposed [21]. In addition, furoxan-based hydrazones are
considered as promising drug candidates for the treatment of various neglected diseases
including tuberculosis, leishmaniosis, schistosomiasis and Chagas’ disease [12–15,22].
Herein, we report the synthesis of 4-amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-
4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-oxide 1, which can be considered
as a promising pharmacologically active compound for the treatment of neglected diseases.

2. Results and Discussion

Hydrazones are usually prepared via condensation of substituted hydrazines with
carbonyl compounds. However, furoxanylhydrazines are unstable compounds that cannot
be isolated, only generated in situ under rather harsh conditions [23]. Therefore, we decided
to investigate the reactivity of more convenient and bench-stable (furoxanyl)amidrazones
for the preparation of the corresponding hydrazones. (3-Methylfuroxan-4-yl)amidrazone
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2 [24] and 3-acetyl-4-aminofuroxan 3 [25] were chosen as readily available compounds in
the series of functionally substituted furoxan derivatives, which can be synthesized on a
large scale. The condensation of substrates 2 and 3 was performed under mild reaction
conditions in MeCN at 25 ◦C and resulted in the formation of target product 1 in a good
yield (Scheme 1).

Scheme 1. Synthesis of hydrazone 1.

The structure of target product 1 was fully confirmed by elemental analysis, high-
resolution mass spectrometry and 1H, 13C NMR and IR spectroscopy (see Supplementary
Materials). HRMS and elemental analysis confirm the chemical formula of compound 1.
The 1H NMR spectrum of 1 showed signals of both methyl groups at 2.36 ppm (methyl
group at the furoxan ring) and 2.41 ppm (methyl group of the hydrazone functionality)
and of both amino groups at 6.55 ppm (amino group at the furoxan ring) and 7.52 ppm
(amino group of the amidrazone functionality). Characteristic signals of C-3 furoxan carbon
atoms were observed in the 13C NMR spectrum at 109.8 and 113.3 ppm. The IR spectrum
demonstrated characteristic bands of amino groups (3501 and 3386 cm−1), C=N double
bonds (1633 cm−1) and furoxan rings (1598 and 1566 cm−1).

In conclusion, we synthesized a new furoxan-based hydrazone representative, namely 4-
amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-
1,2,5-oxadiazole 2-oxide 1, which is a promising pharmacologically oriented substance and
a useful precursor of various polynitrogen heterocyclic systems.

3. Materials and Methods

General. All reactions were carried out in well-cleaned, oven-dried glassware with
magnetic stirring. 1H and 13C NMR spectra were recorded on a Bruker AM-300 (300.13
and 75.47 MHz, respectively) spectrometer (Billerica, MA, USA) and referenced to residual
solvent peaks. The chemical shifts are reported in ppm (δ); coupling constants, J, are re-
ported in Hertz. The IR spectra were recorded on a Bruker “Alpha” spectrometer (Münich,
Germany) in the range 400–4000 cm−1 (resolution 2 cm−1). Elemental analyses were per-
formed by the CHN Analyzer Perkin-Elmer 2400 (Waltham, MA, USA). High-resolution
mass spectra were recorded on a Bruker microTOF spectrometer (Münich, Germany) with
electrospray ionization (ESI). All measurements were performed in a positive (+MS) ion
mode (interface capillary voltage: 4500 V) with scan range m/z: 50–3000. External cal-
ibration of the mass spectrometer was performed with Electrospray Calibrant Solution
(Fluka). A direct syringe injection was used for all analyzed solutions in MeCN (flow rate:
3 µL min−1). Nitrogen was used as a nebulizer gas (0.4 bar) and dry gas (4.0 L min−1); the
interface temperature was set at 180 ◦C. All spectra were processed using the Bruker Data-
Analysis 4.0 software package (Billerica, MA, USA). Analytical and preparative thin-layer
chromatography (TLC) was carried out on Merck 25 TLC silica gel 60 F254 aluminum sheets.
The visualization of the TLC plates was accomplished with a UV light. All solvents were pu-
rified and dried using standard methods prior to use. All standard reagents were purchased
from Aldrich or Acros Organics and used without further purification. Amidrazone 2 [24]
and 3-acetyl-4-aminofuroxan 3 [25] were prepared according to published procedures.
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Synthesis of 4-amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]
hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-oxide 1. 3-Acetyl-4-aminofuroxan 3 (286 mg, 2 mmol)
was added to a magnetically stirred solution of amidrazone 2 (314 mg, 2 mmol) in MeCN
(5 mL) at 25 ◦C. The reaction mixture was stirred at 25 ◦C for 10 h until full consumption of
the starting material according to TLC data (eluent CHCl3-EtOAc, 75:25). Then, the solvent
was evaporated, and the crude product was purified by preparative TLC (eluent CHCl3-
EtOAc, 80:20). Yield 412 mg (73%), yellow needles, mp. 229–230 ◦C (recrystallized from
MeCN). Rf 0.12 (CH2Cl2-EtOAc, 90:10), 0.30 (CHCl3-EtOAc, 80:20), 0.55 (CHCl3-EtOAc,
50:50). IR spectrum (KBr), ν, cm−1: 3501 (NH), 3386 (NH), 2958 (CH), 2931 (CH), 1633
(C=N), 1598 (furoxan), 1566 (furoxan), 1502, 1457, 1349, 1108, 1040, 858. 1H NMR (DMSO-
d6, ppm): 2.36 (s, 3H), 2.41 (s, 3H), 6.55 (s, 2H), 7.52 (s, 2H). 13C NMR (DMSO-d6, ppm):
10.4, 14.4, 109.8, 113.3, 148.8, 153.0, 153.1, 156.9. HRMS (ESI) Calcd. for C8H10N8NaO4
[M + Na]+: 305.0717, found: 305.0721. Anal. calcd. for C8H10N8O4 (%): C, 34.05; H, 3.57; N,
39.71. Found (%): C, 33.92; H, 3.65; N, 39.53.

Supplementary Materials: The following are available online: copies of 1H and 13C NMR, IR, HRMS
for the compound 3.
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