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Abstract: The synthesis and spectroscopic investigation of an acidochromic phenylenevinylene dye
with two ferrocene groups is presented.
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1. Introduction

Conjugated oligomers and polymers of the arylenevinylene type are in the focus of
functional materials for organic electronics [1–6]. In addition to the typical units composed
of vinylene groups, benzene rings and heterocycles such as thiophene of pyridine, building
blocks with heavier atoms [7–9] and even transition metals [10] are used to alter the
optical and electronic properties. Especially for redox-active materials, ferrocene is a prime
candidate and has been incorporated into larger π-conjugated materials [11–14]. Several
methods are useful for the synthesis of oligo (arylenevinylene)s containing ferrocene, e.g.,
metathesis reactions or Wittig olefination [15–17]. In addition to the exchange of building
blocks in order to change electrical and optical properties, and the incorporation of acidic
or basic sites into the π-system to allow tuning, these materials may also be used as sensors
for environmental properties. Especially, pyridine-type heterocycles and aniline units are
of prime interest [18–23]. This paper presents the synthesis and some optical and electrical
properties of an acidochromic dye with two ferrocene units. Furthermore, structural and
theoretical investigations are added.

2. Synthesis

Among the different methods to synthesize 1,2-diarylethenes, the Horner olefina-
tion [23] has received broad attention due to the ease of performance in combination with
high yields and high E-selectivity, especially in the field of conjugated oligomers [24–26].
The synthesis of the title compound was performed from a central aminoaniline with
two phosphonate groups 2 and two ferrocene carboxaldehyde 1 as shown in Scheme 1.
Bisphosphonate 2 was prepared from the corresponding diol [27] via chlorination with
thionyl chloride and the Michaelis–Arbuzov reaction [28].
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Compound 3 was prepared from 2 (80 mg, 0.14 mmol) and 72 mg (0.34 mmol) of
ferrocene carbaldehyde in 3 mL of dry DMF. The compounds were mixed under nitrogen
in a Schlenk flask and freshly sublimed potassium t-butylate (47 mg) was added in small
portions while stirring in an ice-water bath. Thereafter, the mixture was allowed to reach
ambient temperature. Stirring was continued for 48 h and 0.5 mL water and 10 mL of
acetonitrile were added. Suction filtration and washing of the filter cake with acetonitrile
(20 mL) gave a red crystalline solid (27 mg, 44%). Melting point: 207–212 ◦C. 1H-NMR
(CDCl3, 400 MHz): δ (ppm): 7.27–7.25 (2H phenylene, 1H vinylene, superimposed by
CHCl3); 6.72 (d, 3J = 16.51 Hz, 2H, CH vinylene); 4.52 (“s”, 2H, ferrocene 1); 4.29 (“s”, 2H,
ferrocene 1); 4.16 (“s”, 4H, ferrocene 2 integration for 1H too small); 3.00 (t, 3J = 7.33 Hz, 8H,
N-CH2); 1.57 (m, CH2, superimposed by water); 0.94 (t, 3J = 7.33 Hz, 12H, CH3). 13C-NMR
(CDCl3, 400 MHz): δ (ppm) = 145.18 (Cq, C1, C4 phenylene); 133.48 (Cq, C2, C5 phenylene);
124.62 (CH, vinylene); 124.42 (CH, vinylene); 118.97 (CH, C3, C6 phenylene); 84.67 (Cq,
ferrocene 1); 69.12 (5CH, ferrocene 2); 68.70 (2CH, ferrocene 1); 66.75 (2CH, ferrocene 1);
56.23 (NCH2); 20.52 (CH2); 11.91 (CH3). IR (KBr): ν (cm−1) = 2962 w, 2794 w, 1734 w,
1684 m, 1627 w, 1559 w, 1507 m, 1495 m, 1456 s, 1377 m, 1302 m, 1206 m, 1165 w, 1104 s,
1028 m, 964 s, 892 w, 817 s, 760 w, 662 w. MS (APCI): 695 (13%), 697 (100%), 698 (53%);
HR-MS: found: 697.2900, calcd. for (C42H52Fe2N2+H+) 697.2908. (see Supplementary Materials).

3. Optical Spectroscopy

Compound 3 is soluble in chlorinated solvents such as chloroform, but insoluble in
cyclohexane of ethanol. Optical spectroscopy was performed with 10−6 M solutions in
dichloromethane and dichloromethane with an increasing concentration of trifluoro acetic
acid (Figure 1). The main absorption band appears at λmax = 339 nm and a slightly weaker
maximum at λ2 = 385 nm, typical for distyrylbenzenes with a p-aminoaniline center [29].
The long wavelength maximum (λ3 = 455 nm) cannot only be attributed to transitions in
the ferrocene part, since the extinction coefficient of log ε1 = 4.71 is much larger than of
ferrocene (λmax = 440 nm, ε = 90 L/mol cm [30]), all maximas being listed in Table 1. Upon
addition of TFA to this solution, the high-energy maxima collapses to a single maximum at
ca. 355 nm and the long-wavelength shoulder is intensified and shifted to the red. Only
with a TFA concentration of 0.01 M does this shoulder vanish and the double maximum
structure in the UV is reestablished, but shifted about more than 20 nm to higher energies.
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Table 1. Optical data of 3 in dichloromethane and with TFA.

Entry TFA
/ mol

L

λ1

/nm log ε1 λ2

/nm log ε2 λ3

/nm log ε3

1 DCM 455 4.71 385 5.31 339 5.38

2 10−5 505 4.79 - 355 5.41

3 10−4 497 4.75 - 350 5.46

4 10−3 515 4.79 - 358 5.39

5 10−2 - 362 5.41 312 5.44

4. Electrochemistry

Cyclic voltammetry of 3 was performed in THF with tetrabutylammonium hexafluo-
rophosphate (0.1M) conducting salt and a glassy carbon working electrode using counter
electrode Pt wire and reference electrode silver wire. The cyclovoltammogram was cali-
brated in a subsequent experiment using ferrocene I1/2 = 0.624 V as a standard [31]. Figure 2
shows the cyclovoltammogram of 3 at 100 mV/s and averaged over four scans. Three
fully reversible oxidation waves appear, the first wave at 0.72 V and a second at 1.05 V,
followed by the third at 1.26 V. A comparison with a related distyryl-diaminoaniline allows
to attribute the redox wave at 1.05 V to an oxidation of the aminoaniline unit, whereas the
two ferrocenes are oxidized separately, indicating an effective coupling of these units via
conjugation; thus, 3 can be attributed to a Robin–Day class 3 complex.
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5. DFT Calculation Mechanics

The molecular structure was preoptimized using MM3, and thereafter, calculated
with Scigress Suite, DGauss B88LYP/6-31G (d,p). Lacking minima in the Hesse matrix,
subsequent treatment with Orca 5.0.1, B3LYP/def2svp (def2/J auxiliary basis, defgrid
2, resolution of identity chain of spheres exchange approximation) gave optimization to
a minimum as was proven via frequency analysis, giving the structure shown in Figure 3, as
well as the frontier orbitals from Figures 4 and 5. Pictures in figure CCC were generated with
the open-source software AVOGADRO (orca enhanced, V1.2.0, and QT Ver. 4.8.6) [32–38].

Contrary to the crystal structure, the gas-phase-optimized structure shows a lack of
structural symmetry regarding the angles of the vinylene groups. In spite of the reduced
orbital overlap due to torsion, the conjugation of both ferrocenyl groups over the complete
molecule is effective. This is substantiated by the contribution of the hole molecule to the
frontier orbitals (Figures 4 and 5).

According to the results of the DFT calculations, the central diaminobenzene dom-
inates the highly occupied orbitals HOMO and HOMO-1 (Figure 4). Whereas HOMO
extends nearly exclusively over the divinyl diaminoaniline part, ferrocene has only small
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contributions to this MO. However, coefficients on the ferrocene units increase in the or-
bitals of lower energy (e.g., HOMO-2) and vanish on the central part in HOMO-3 and
HOMO-4. Despite their broken molecular symmetry, the coefficients increase on both ion
cores similarly.
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Like the HOMO, the LUMO coefficients are concentrated on the divinyl diaminoben-
zene part (Figure 5). In the orbitals of higher energy, the ferrocene parts increasingly
become the sites for larger MO coefficients.

A comparison of the energy differences between these orbitals and the UV spec-
trum shows energetic similarities of HOMO-LUMO (3.329 eV, 372 nm) with the band at
λ = 384 nm, HOMO-1–LUMO (3.850 eV, 283 nm) with the band at λ = 293 nm and HOMO–
LUMO+1 (4.373 eV, 283 nm) with the band at λ = 293 nm.
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6. Crystal Structure

Slow evaporation of a chloroform solution of the title compound gives a conglomerate
of red and brownish needles (Figure 6).
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Figure 6. Microphotograph of crystalline 3.

X-ray analysis of the two crystals reveals a monoclinic shape and nearly identical
structures of 3 in these crystals. One crystal structure belongs to the space group P21/c, the
other to P21/n. The main differences are the conformations of the dipropylamino groups
and the staggered (P21/n) and ecliptic (P21/c) conformations of the ferrocene units.

The molecular structures are depicted in Figure 7. As the two conformers are very
similar, only the one forming red needles is discussed in detail. Here, 3 adopts a centrosym-
metric conformation in these crystals and the π-system is only weakly distorted. According
to the neighboring dipropylamino group, the torsion angle between phenylene and viny-
lene shows the largest deviation from coplanarity: 163.8(3)◦ (C2-C3-C11-C12), which is only
1.6◦ more than between vinylene and ferrocene (C14-C13-C12-C11, −165.4(3)◦). The torsion
angle of the vinylene moiety amounts to 171.7(3)◦. This leads to a dihedral angle between
phenylene and the cyclopentadiene ring of 16.86(4)◦. The propyl groups in the dipropy-
lamino moiety adopt gauche conformation with torsion angles N4-C5-C6-C7 = −56.8(3)◦

and N4-C8-C9-C10 = −56.4(3)◦. The ferrocene shows a staggered conformation with nearly
identical distances between iron cyclopentadiene centroids (Fe-C18-C22: 1.6523(17)Å; Fe-
C13-C17: 1.6497(13) Å) and the distance between the iron atoms is 13.3447(10) Å. In the
crystal, the molecules are arranged in layers in the ab-plane with a parallel offset of 1⁄2.
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The brown crystals are built from molecules with ecliptic conformations of the cy-
clopentadienes and a gauche (N4-C5-C6-C7 = −57.6) and an anti-periplanar (N4-C8-C9-
C10 = 177.8(1) configured propylamino chain. The entire molecule is less distorted; though
the torsion angle C2-C3-C11-C12 = 164.3(3) is slightly larger, the vinylene unit C3-C11-C12-
C13 (176.8(3)) and C14-C13-C12-C11 (177.0(3)◦) are nearly planar.

For ferrocene, the staggered or ecliptic conformation had been a highly discussed
problem [39,40], as this compound renders both conformers, double staggered and double
ecliptic, as a conglomerate; a mixed conformer, staggered and ecliptic, is still missing.

7. Discussion

Three functional units were combined to a redox-active, acidochromic dye. Addi-
tionally, for the synthesis of conjugated oligomers incorporating ferrocene, the Horner
olefination was an efficient method. Two very similar conformers crystallized from chlo-
roform, the π-conjugated path was nearly planar in the solid state but for the gas phase
and torsion along the arylenevinylene path was visible. Nevertheless, cyclic voltamme-
try and DFT calculations proved a strong conjugation and the complex belongs to the
Robin–Day class 3.

8. Conclusions

Horner olefination is a suitable route to synthesize arylenevinylene oligomers to
incorporate ferrocene. The ferrocene units are conjugated and the optical properties are
tunable by protonation of the central aminoaniline unit.

9. Materials and Methods

NMR spectra were prepared using an Avance II 400 with a 5 mm BBFO-head with
a z-gradient and ATM. TLC plates used were ALUGRAM SIL G/UV254 from Macherey-
Nagel. Melting points: Tottoli apparatus (Büchi) and Electrothermal IA9100. IR spectra:
JASCO FT/IR-4100 (ATR). MS: Agilent 6545 Q-TOF-MS, ESI modus. UV/Vis spectra:
PerkinElmer Lambda 16. Cyclic voltammetry: Potentiostat Autolab, GPES software. THF
was distilled over sodium.

Supplementary Materials: The following supporting information are available online, containing
crystallographic information and NMR spectra of 3.
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