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Abstract: Quinoline scaffold is one of the most intensively utilized pharmacophores in drug design
because of the variety of activities demonstrated by different quinoline-based therapeutics or drug-
candidates. Herein, we describe an environmentally tolerant two-step procedure as a convenient
synthetic approach to novel chloroquine and hydroxychloroquine analogues. The structures of the
newly synthesized compounds are estimated by 1H NMR, 13C NMR, LC-MS spectrometry and
IR spectroscopy.
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1. Introduction

Outbreaks of coronaviruses over the past 20–30 years, in particular the pandemic of
the beta-coronavirus SARS-CoV-2, have been a major incentive for the scientific community
not to underestimate these pathogens. Therefore, it is necessary to work hard to create new
highly effective antiviral drugs for the treatment and prevention of coronavirus infections.
Ones of the successful antivirals used in the early stages of the COVID-19 pandemic were
the 4,7-dichloroquinoline derivatives–chloroquine and hydroxychloroquine (Figure 1). Both
compounds are available as therapeutics for treatment malaria [1], rheumatoid arthritis [2],
lupus [3], porphyria cutanea tarda [4]. Decreased antimalarial efficacy of chloroquine
over time, its high toxicity during long-term use, the lower antiparasitic activity of hy-
droxychloroquine, the side effects caused by both drugs, as well as the new discovered
applications of them [5,6], are the main reasons to develop novel synthetic routes to modify
their structures in less toxic analogues bearing better pharmacokinetic properties [7–11].
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Since the promising in vitro efficacy of chloroquine and hydroxychloroquine against
SARS-CoV-2 were firstly reported by the group of Prof. Wang [12,13], the investigations
of an anticoronavirus potential of both compounds and other known therapeutics, their
derivatives, are the focus of a number of research studies [14–18]. In this regard, the
aim of the present study is to report an easily applicable and environmentally benign
two-step synthetic approach to novel chloroquine and hydroxychloroquine analogues with
combined modification of the heterocyclic pharmacophore as well as the amino substituent
at 4th quinoline ring position.

2. Results and Discussion
2.1. Synthesis

The synthetic strategy for the preparation of the target compound 3 (Scheme 1) is
based on environmentally benign procedures. On the first step (Scheme 1) the starting
4-chloro-6,7-dimethoxyquinoline (1a) and an excess of iodomethane (1b) were heated in a
sealed tube under argon without any solvent. The presence of an activated chlorine atom at
4th position in the quinolinium salt 2a makes the compound unstable against moisture from
one side and difficult to be purified through recrystallization from another. The chosen
reaction conditions providing an inert atmosphere and avoiding the solvent usage allowed
2a to be prepared in sufficiently high yield (93 %) and isolated in a pure enough form only
by simple filtration. Therefore, the target reactant 2a was applied on the next reaction stage
without subsequent purification.
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Scheme 1. Synthesis of 6,7-dimethoxy-4-(4-(4-methoxyphenyl)piperazin-1-ium-1-yl)-1-
methylquinolin-1-ium iodide (3).

The short ultrasonic treatment of 4-chloro-6,7-dimethoxy-1-methylquinolin-1-ium
iodide (2a) and slight excess (1.3 equiv.) of 1-(4-methoxyphenyl)piperazine (2b) in ethanol
as a solvent affords the final compound 6,7-dimethoxy-4-(4-(4-methoxyphenyl)piperazin-
1-ium-1-yl)-1-methylquinolin-1-ium iodide (3) in excellent yield of 91%. The successful
reaction outcome confirmed that the presence of a quaternized nitrogen atom (electron
acceptor) in compound 2a allows easier substitution of the chlorine atom at the 4th position
in the quinoline core, thus the prolonged heating of the reaction mixture and the need of a
large excess of the nucleophilic reagent (starting amine) are avoided [19,20]. The obtained
product is TLC pure, and no further purification is needed.

2.2. Cytotoxicity and Antiviral Assays

Preliminary analysis of the antiviral activity of the compound 3 against the replication
of human coronavirus strain OC-43 was performed. Chloroquine and hydroxychloroquine
were used as reference substances. To more accurately assess antiviral activity, and to avoid
the toxic effects of substances on cells, the cytotoxic effect of compound 3 on HCT-8 cell
line was determined in advance. The demonstrated cytotoxicity of 3 toward HCT-8 cell
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line (CC50 at 399 µm) was about six times lower compared to chloroquine (CC50 at 65 µm)
and three times lower that that of hydroxychloroquine (CC50 at 130 µm).

Compound 3 was assayed for in vitro antiviral activity against human coronavirus
strain OC-43, and its effect on virus replication has been found. The observed activity of
the tested substance 3 (IC50 at 3.1 µM, SI 128.7) was significantly lower compared to this
of chloroquine (IC50 at 0.1 µM, SI 650), but remarkably higher to that demonstrated by
hydroxychloroquine (IC50 at 100 µM, SI 1.3). The initial results obtained about biological
properties of 3 are a good enough basis for further molecule optimization and synthesis of
its analogues in order to enhance the antiviral activity of similar quinoline derivatives.

3. Materials and Methods
3.1. General

4-Chloro-6,7-dimethoxyquinoline (1a), iodomethane (1b) and 1-(4-methoxyphenyl)
piperazine (2b) are commercial products (Sigma-Aldrich, Merck KGaA, Darmstadt, Ger-
many) and were used as supplied. All the solvents are TLC grade and used without
preliminary purification. Melting point of 2a and 3 are determined on Kruess M5000
melting point meter for automatic measurements. NMR spectra (1H NMR, 13C NMR)
were obtained on a Bruker Avance II+ NMR spectrometer operating at 500 MHz for 1H
NMR and 125 MHz for 13CNMR in DMSO-d6 as a solvent (Supplementary Materials). The
chemical shifts are given in ppm (δ) using tetramethylsilane (TMS) as an internal standard.
IR spectra are obtained on Specord 71 (Carl-Zeiss, Jena, Germany) spectrometer in nujol
as a solvent. Liquid chromatography mass spectrometry analysis (LC-MS) was carried
out on Q Exactive® hybrid quadrupole-Orbitrap® mass spectrometer (ThermoScientific
Co, Waltham, MA, USA) equipped with a HESI® (heated electrospray ionization) module,
TurboFlow® Ultra High Performance Liquid Chromatography (UHPLC) system (Thermo-
Scientific Co, Waltham, MA, USA) and HTC PAL® autosampler (CTC Analytics, Zwingen,
Switzerland). The course of the reactions was monitored by thin layer chromatography
(TLC) ALUGRAM® SIL G/UV 254-60 Macherey-Nagel plates, ready to use with thickness
of the silica layer 0.2 mm.

3.2. Synthesis
3.2.1. Synthesis of 4-Chloro-6,7-dimethoxy-1-methylquinolin-1-ium Iodide (2a)

In this step, 1g (4,7 mmol) 4-chloro-6,7-dimethoxyquinoline (1a) and 0.83 mL (1.90 g,
13.0 mmol) iodomethane (1b) were placed in a 50 mL sealed tube under argon. The reaction
mixture was heated at 110 ◦C for two hours. After cooling to room temperature, the formed
precipitate was suspended in 20 mL diethyl ether, suction filtered and air dried. The
reaction product was used directly on the next reaction step. Yield: 1.58 g (93%) yellow
powder, m.p. = 223–224 ◦C. The obtained compound is TLC pure (DCM:MeOH = 4.5:0.5,
RF = 0.29). 1H NMR δ = 4.10 (s, 3H, OCH3), 4.19 (s, 3H, OCH3), 4.57 (s, 3H, N+CH3), 7.65 (s,
1H, Ar), 7.69 (s, 1H, Ar), 8.24 (d, 1H, Ar, 3J = 6.5 Hz), 9.19 (d, 1H, Ar, 3J = 6.5 Hz). 13C NMR
δ = 157.5 (Cq), 152.8 (Cq), 148.4 (Cq), 146.2 (Cq), 137.5 (Cq), 123.8 (CH), 120.8 (CH), 103.7
(CH), 100.2 (CH), 58.1 (CH3), 57.2 (CH3), 45.9 (CH3). IR ν (cm−1) = 1605, 1550, 1500, 1450,
1370, 1350, 1280, 1250, 1195, 1170, 1110, 1030, 950, 850, 820.

3.2.2. Synthesis of 6,7-Dimethoxy-4-(4-(4-methoxyphenyl)piperazin-1-yl)-1-methylquinolin-
1-ium Iodide (3)

In this step, 0.15 g (0.41 mmol) 2a and 0.1 g (0.53 mmol) 2b were mixed in a 20 mL vial
with cap. Then, 7 mL Ethanol was added and the reaction mixture was sonicated for 20 min.
The resulting orange precipitate was suction filtered, washed with two portions of 10 mL
ethanol and dried in a desiccator. Yield: 0.21 g (91%) rusty orange powder, m.p. = 350 ◦C
with decomposition. The obtained compound is TLC pure (DCM:MeOH = 4.5:0.5, RF = 0.40).
1H NMR δ = 3.32 brs (4H, CH2), 3.70 s (3H, OCH3), 3.85 brs (4H, CH2), 4.00 s (3H, OCH3),
4.09 s (3H, OCH3), 4.27 s (3H, N+CH3), 6.88 d (2H, 3J = 9.0 Hz, CH(Ph)), 6.99 d (2H,
3J = 9.0 Hz, CH(Ph)), 7.27 d (1H, 3J = 7.0 Hz, CH(Quin)), 7.38 s (1H, CH(Quin)), 7.43 s (1H,
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CH(Quin)), 8.70 d (1H, 3J = 7.0 Hz, CH(Quin)). 13C NMR δ = 159.7 (Cq), 155.3 (Cq), 153.8
(Cq), 149.1 (Cq), 145.0(CH), 137.3 (Cq), 118.2 (2CH), 115.5 (Cq), 114.9 (2CH), 106.6 (CH),
105.6 (CH), 99.8 (CH), 57.3 (CH3), 56.6 (CH3), 55.7 (CH3), 51.7 (2CH2), 49.9 (2CH2), 43.4
(CH3). 13C DEPT 135 δ = 145.0 (CH), 118.2 (2CH), 114.9 (2CH), 106.6 (CH), 105.6 (CH),
99.8 (CH), 57.3 (CH3), 56.6 (CH3), 55.7 (CH3), 51.7 (CH2), 49.9 (2CH2), 43.4 (CH3). IR ν

(cm−1) = 1650, 1540, 1500, 1450, 1380, 1220, 1020. LC-MS (m/z): 394.21429, calculated for
C23H28N3O3

+: 394.21.

3.3. Cytotoxicity Assay and Antiviral Assay against Human Coronavirus OC-43 (HCoV-OC43)
(ATCC: VR-1558)

Human colon carcinoma (HCT-8) cells were purchased from the American Type
Culture Collection (ATCC). Permanent HCT-8 [HRT-18] (ATCC-CCL-244, LGC Standards,
Teddington, UK) were maintained at 37 ◦C and 5% CO2 using sterile RPMI 1640 (Roswell
Park Memorial Institute Medium, ATCC-30-2001) supplemented with 0.3 g/L L-glutamine
(Sigma-Aldrich, Darmstadt, Germany), 10% horse serum (ATCC-30-2021), 100 UI penicillin
and 0.1 mg streptomycin/mL (both Sigma-Aldrich).

Human coronavirus OC-43 (HCoV-OC43) (ATCC: VR-1558) strain was propagated in
HCT-8 cells in RPMI 1640 supplemented with 2% horse serum, 100 U/mL penicillin, and
100µg/mL streptomycin. Cells were lysed 5 days after infection by double freeze and thaw
cycles, and virus was titrated according to the Reed and Muench formula. Virus and mock
aliquots were stored at −80 ◦C.

3.3.1. Cytotoxicity Assay

Confluent НCТ-8 monolayer cell culture in 96-well plates (Costar®, Corning Inc.,
Kennebunk, ME, USA) was treated with 0.1 mL/well-containing a maintenance medium
that did not contain/or contained decreasing concentrations of test substances. The cells
were incubated at 37 ◦C and 5% CO2 for 5 days. After microscopic evaluation, the medium
containing the test compound was removed, the cells were washed and incubated with
neutral red, at 37 ◦C for 3 h. After incubation, the neutral red dye was removed and the
cells were washed with PBS and 0.15 mL/well desorbing solution (1% glacial acetic acid
and 49% ethanol in distilled water) was added. The optical density (OD) of each well was
read at 540 nm in a microplate reader (Biotek Organon, West Chester, PA, USA). Then,
50% cytotoxic concentration (CC50) was defined as the concentration of the material that
reduces cell viability by 50% compared to untreated controls. Each sample was tested in
triplicate with four wells for cell culture on a test sample.

The maximum tolerable concentration (MTC) of the extracts is also determined, which
is the concentration at which they do not affect the cell monolayer, and in the sample, it
looks like the cells in the control sample (untreated with compounds).

3.3.2. Anticoronaviral Assay

The cytopathic effect (CPE) inhibition test was applied for assessment of antiviral
activity of the tested compounds on the replication of coronavirus OC43 strain, CPE was
registered by the neutral red uptake assay [21].

Confluent HCT-8 cell monolayer in 96-well plates infected with 100 cell culture in-
fectious dose 50% (CCID50) in 0.1 mL coronavirus OC-43 strain. After 120 min of virus
adsorption, the tested compound was added in various concentrations and cells were
incubated for 5 days at 33 ◦C for coronavirus OC-43 strain. The cytopathic effect was
determined using a neutral red uptake assay and the percentage of CPE inhibition for each
concentration of the test sample was calculated using the following formula:

% CPE = [ODtest sample − ODvirus control]/[ODtoxicity control − ODvirus control] × 100

where ODtest sample is the mean value of the ODs of the wells inoculated with virus and
treated with the test sample in the respective concentration, ODvirus control is the mean
value of the ODs of the virus control wells (with no compound in the medium) and
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ODtoxicity control is the mean value of the ODs of the wells not inoculated with virus but
treated with the corresponding concentration of the test compound. The 50% inhibitory
concentration (IC50) was defined as the concentration of the test substance that inhibited
50% of viral replication when compared to the virus control. The selectivity index (SI) was
calculated from the ratio CC50/IC50.

4. Conclusions

In conclusion, the described two-step synthesis of 6,7-dimethoxy-4-(4-(4-methoxyphenyl)
piperazin-1-yl)-1-methylquinolin-1-ium iodide (3) is based on easily implemented and envi-
ronmentally friendly methodology, leading to high yields of the intermediate and the final
product, as well as their isolation with satisfactory analytical purity, without to requiring
further purification of the compounds. A preliminary evaluation of the anticoronaviral
properties against Human coronavirus OC-43 of compound 3 was performed, and the
results obtained confirmed its low cytotoxicity toward НCТ-8 cells and its efficacy with
respect to coronavirus replication. The reported synthesis is a promising and affordable
approach to future transformations of 4-chloroquinoline derivatives into novel compounds
with valuable antiviral potential.

Supplementary Materials: The following data are available online: 1H-NMR, 13C-NMR, IR spectra
of 2a and 1H NMR, 13C NMR, 13C DEPT 135, IR and mass spectra of 3.
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