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Abstract: This work describes the synthesis and the cytotoxic evaluation of thiophene and thienopy-
rimidine derivatives. The investigated compound was subjected to target prediction that indicated
its high affinity to kinases and to Janus kinase 2 (JAK2) specifically. Molecular docking screening was
performed on three different JAK2 proteins downloaded from the Protein Data Bank (PDB: 5AEP,
4C62 and 3ZMM). In vitro kinase inhibitory activity was evaluated and then compound cytotoxicity
was performed on three different cancerous cell lines (HT-29, HepG-2, and MCF-7). Marked cytotoxic
activity of the thienopyrimidine derivative against the HepG-2 cell line was demonstrated, reflected
by its IC50 value of 8.001 ± 0.0445 µM, which is better than that of the reference standard (IC50

13.91 ± 2.170 µM). Pharmacokinetic studies revealed good well permeability and GI absorption with
no violations against Lipinski’s rule.
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1. Introduction

Cancer is the global second leading cause of disease-related mortality and morbid-
ity [1]. Resistance to the currently accessible medicines is quickly becoming a serious
international issue. The necessity to develop new substances to combat this resistance has
emerged as one of today’s most pressing issues [2,3].

Thienopyrimidines, with a heterocyclic core derivatized from pyrimidine and resem-
bling purines, are of unique importance as scaffolds for the preparation of a variety of
biologically active compounds as enzyme inhibitors, including kinases [4,5], poly (ADP-
ribose) polymerase (PARP) inhibitors [6], and as anticancer agents against some tumor
cell lines [7–11], in addition to their antioxidant activity [12–14]. Meanwhile they are an
interesting target for protein kinases (PKs), which are enzymes known to regulate protein-
biological activity, as they are responsible for protein phosphorylation that is involved
in cell cycle proliferation, in addition to regulating cell progression and division [15–17].
Janus kinase 2 (JAK2) is a member of the JK family, that are non-receptor protein tyrosine
kinases implicated in catalytic signaling by cytokine receptors members [18]. Mutations in
JAK2 have been implicated in many myeloproliferative and myelofibrosis disorders [19].
Various therapeutic applications are related to the inhibition of JAK2; these applications
include the treatment of cancer, inflammatory diseases [20,21], rheumatoid arthritis [22]
and various other autoimmune diseases [23]. This might be due to the binding of cytokine
receptors such as the erythropoietin receptor and the growth hormone receptor, which are
exclusive to JAK2.
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The FDA approved medication for myelofibrosis, known as fedratinib [24], which
was approved for use in 2019, is a reported JAK2 enzyme inhibitor that is semi selective
(Figure 1). Another reported Janus kinase inhibitor for both JAK1 and JAK2, also used
against myelofibrosis, is ruxolitinib, which was approved in 2021 and is applied for the
treatment of atopic dermatitis. It is worth mentioning that it is an orally active applied
medication (Figure 1) [25]. Baricitinib is a drug that is used for rheumatoid arthritis, and it
is a Janus kinase inhibitor for both subtypes 1 and 2 (Figure 1). It is worth mentioning that
baricitinib is in a current clinical trial for use against the COVID-19 viral infection [26].
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Unfortunately, a continuously reported adverse effect due to the use of JAK inhibitors
is the evolution of bacterial, fungal, or viral microbial infections [27].

Learning information is being transformed into concrete advancements in diagnosis,
prevention, and therapy. The foregoing facts on the importance of JAK2 inhibitors piqued
our interest to evaluate the synthesized thienopyrimidine derivative for its cytotoxic activity,
keeping in mind that it probably targets Janus kinase 2 enzyme.

2. Results and Discussion
2.1. Chemistry

The reaction between aminothiophene carboxylate ester 1 and phenyl isothiocyanate
in ethanol resulted in thioureido thiophene 2, which was then condensed with hydrazine
hydrate using ethyl alcohol as a solvent to yield the targeted compound, thienopyrimidine
derivative 3 (Scheme 1).
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2.2. In Silico Target Prediction

Scanning for target prediction using Swiss Target was performed, which showed
promising affinity for kinases, in particular JAK2 enzyme. The percentages are illustrated
in Figure 2, where kinase represents the highest percentage as a target with 66.7% and JAK2
represents the highest probability within the kinases.
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2.3. Molecular Docking

Molecular docking studies were performed on three crystal structures of JAK2 proteins.
The crystal structures of the required proteins bound to their ligands were downloaded
from the Protein Data Bank (PDB: 5AEP, 4C62 and 3ZMM). To investigate the affinity of
the prepared compound 3 to JAK2 kinase enzyme, docking simulation of the synthesized
compound at the active site was carried out in comparison with the co-crystalized ligand of
the target protein downloaded from the Protein Data Bank. The results of docking on PDB:
5AEP showed binding affinity of −6.3902, while that for protein PDB: 4C62 was −5.239,
and that for PDB: 3ZMM recorded −6.0183. Leu 932 was found to be the main amino acid
involved in the interaction between all the three co-crystalized ligands and their chains.

The results regarding binding affinity (E), the amino acids involved in the interactions,
in addition to the root mean square deviation of RMSD (A) for the ligand with the three
downloaded proteins are tabulated below (Table 1). These interactions were either hydro-
gen bonding or hydrophobic interactions. Interestingly, the key amino acid Leu 932 was
involved in the interactions between the prepared compound and the receptor in both 4C62
and 3ZMM (Figures 3 and 4a,b).

Table 1. Binding affinities and RMSD scores in addition to the amino acid interactions of compound
3 at three target JAK2 kinase proteins (PDB: 5AEP, 4C62, and 3ZMM).

Protein PDB Code E RMSD (A) Co-Crystalized Ligand Amino
Acid Interactions

Amino Acids Involved in
Interactions by the Prepared

Compound

5AEP −6.3092 1.1599 Arg 980, Glu 930, Leu 932, Leu 855 Arg 980, Glu 930, Leu 855
4C62 −5.239 1.9175 Leu 932, Leu 855 Leu 932

3ZMM −6.0183 1.7528 Glu 930, Leu 932 Leu 932, Glu 930, Leu 855, Gly 935
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2.4. In Vitro Kinase Screening

Kinase screening was performed to determine the percentage kinase inhibition effect
of the synthesized compound. The screened compound showed inhibition at the testing
dose (20 µM) of 49.02%. Data are expressed as mean ± SD, n = 3. Significant difference
from the control group (p value < 0.0001).

2.5. In Vitro Cytotoxic Evaluation against Three Cancerous Cell Lines

Compound 3 was assessed for its cytotoxicity and its IC50 value against three cell
lines (HT-29, HepG-2, and MCF-7), calculated using doxorubicin as a positive reference.
The results are tabulated as IC50 values in the µM (Table 2). The prepared compound
showed marked promising cytotoxic activity against the HepG-2 cell line, reflected by
its IC50 value of 8.001 ± 0.0445 µM, which is better than that of the reference standard
(IC50 13.91 ± 2.170 µM). However, it showed moderate activity against both HT-29 and
MCF-7, as expressed by IC50 values of 4.526 ± 0.130 µM and 15.055 ± 0.785 µM, re-
spectively, in comparison to doxorubicin that demonstrated IC50 values of 1.358 ± 1.156
and 8.434 ± 0.522 µM, respectively. In addition, in reference to our previously reported
work [11], the compound under investigation shows a comparable antiproliferative effect.

Table 2. Antiproliferative activities in different cancer cell lines (IC50 (µM)).

HT-29 HepG-2 MCF-7

Compound 3 4.526 ± 0.130 8.001 ± 0.0445 15.055 ± 0.785
Doxorubicin 1.358 ± 1.156 13.91 ± 2.170 8.434 ± 0.522

2.6. Pharmacokinetics Study

The tested compound was subjected to pharmacokinetics assessment using Mol-
soft and Swiss pharmacokinetics (Figure 5). The investigated compound had good well-
permeability and GI absorption [16] as tabulated below (Table 3). It had two hydrogen-bond
donors (HBD) and two hydrogen-bond acceptors (HBA), in addition to a strong toleration
by cell membranes, as reflected by its log P (2.63) < 5 and its molecular weight which is less
than 500, as tabulated below. The tested compound showed a positive drug likeness score
of 0.57 (Table 3). The blood brain barrier (BBB) score is between 0 and 6, as reported [28,29]
recording 4.01. Oral bioavailability probability is illustarted in Figure 4, where the red
net represents the optimal zone for oral bioavailability, and as shown, the compound
under investigation presents promising data records. All the represented data indicate no
violations against Lipiniski’s rule.
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Table 3. Pharmacokinetics data and drug likeness value for the tested compound.

Compound Molecular
Weight

Number of
HBA

Number of
HBD Log P MR TPSA BBB Score GI Absorption Drug Likeness

Score
Compounds in Relation to
Drug and Non-Drug Scores

3 312.39 2 2 2.63 91 101.18 4.01 High 0.57
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3. Materials and Methods
3.1. Molecular Modeling Study

Three different crystal structures of JAK2 kinase with their co-crystallized ligands
were downloaded from the Protein Data Bank (PDB: 5AEP, 4C62 and 3ZMM). Protein
optimization was performed by calculating partial charges, protonation, and energy mini-
mization.

The prepared ligand was optimized using MOE.2014, the bond order was fixed, and
energy was minimized after the addition of partial charges and 3D protonation. The
compound under investigation was then added to database in mol2 format.

The selected docking protocol was induced fit. The active site was selected at ligand
atoms where alpha spheres were used to guide the placement with 5 A. Pharmacophore
annotations were excluded. The MDB file was set to be the ligand for docking. It was
browsed as the database of the investigated compound in mdb format. The gradient was
set to 0.05 for energy minimization, and MMFF94X was the selected force field.

3.2. Chemistry
3.2.1. Ethyl-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate: 1

According to the published procedures [11], the starting aminothiophene ester 1 was
prepared using a mixture of cyclohexanone (~5 mL, 50 mmol), ethyl cyanoacetate (6.35 mL,
50 mmol), elemental sulfur (1.6 g, 50 mmol), and morpholine (4.35 mL, 50 mmol), that
was heated at 60 ◦C, while stirring in absolute ethanol (20 mL) for 6 h (Gewald reaction).
The mixture was left at room temperature overnight. The formed solid was collected
by filtration, washed with ethanol (2 × 10 mL), dried and crystallized from absolute
ethanol. The formed precipitate was filtered, left to dry, and was then recrystallized using
absolute alcohol, affording yellow crystals. Yield: 93%, mp 110 ◦C; IR (KBr disc) (cm−1):
3522–3376 forked band (NH2), 1737 (C = O); 1H NMR (DMSO-d6): 1.23 (t, 3H, CH3 of
ester), 1.34–2.97 (m, 8H cyclohexyl), 4.19 (q, 2H, -CH2-CH3), 7.01 (s, 2H, D2O replaceable,
NH2); 13C NMR (DMSO-d6): 14.7, 22.9, 23.3, 24.4, 26.6, 59.0, 103.2, 115.5, 131.6, 163.2, 165.4.
CHN calcd. for: C11H15NO2S (225): C, 58.64; H, 6.71; N, 6.22; S, 14.23; found: C, 58.68; H,
6.70; N, 6.27.

3.2.2. Ethyl-2-(3-phenylthioureido)-5,6,7,8-tetrahydrocyclohexa[b]thiophene-3-carboxylate: 2

Reaction under reflux where thiophene derivative (10 mmol) 1 was dissolved in
10 mL of ethyl alcohol and then 15 mmol of phenyl isothiocyanate was added dropwise.
The reaction proceeded on water bath for 2 h and then was left to cool overnight. The
formed precipitate was collected by filtration under vacuum, yielding yellow crystals upon
crystallization from ethyl alcohol. Yield of 92%, mp 170–172 ◦C; IR (KBr disc) (cm−1):
3323 (NH), 2371 (-SCN-), 1702 (C = O). 1H-NMR (DMSO) δ (ppm) 1.22 (t, 3H, CH3 at C2-
pyrimidine), 1.34–2.29 (m, 8H cyclohexyl) 4.25 (q, 2H, CH2—CH3), 7.10–7.45 (m, aromatic-
5H), 10.80 (s, 1H, NH, D2O replaceable), 11.50 (s, 1H, NH, D2O exchangeable). 13C NMR
(DMSO-d6) δ ppm: 14.5, 22.9, 23.0, 24.1, 26.3, 39.5, 40.8 60.7, 112.4, 124.7, 126.1, 126.3, 129.4,
130.5, 138.7, 150.0, 166.0, 176.4. Analysis for: C18H20N2O2S2 (360): CHN calcd. C, 59.97; H,
5.59; N, 7.77; found: C, 60,11; H, 6.04; N, 7.79.

3.2.3. 3-Amino-2-phenylamino-5,6,7,8-tetrahydrocyclohexa[4,5]thieno[2,3-d]pyrimidin-
4(3H)-one: 3

Refluxing a mixture of the thioureido thiophene structure 2 (10 mmol) and hydrazine
hydrate (20 mmol) for 8 h in 10 mL of ethanol afforded the titled compound 3. The reaction
was left to cool; the formed precipitate was collected by filtration under vacuum, dried
and then recrystallized from ethanol, yielding a yellow powder product. Yield: 71%, mp
198–200 ◦C; IR (KBr) (cm−1): 3521(NH), 3336–3277 (forked NH2), 3105 (CH-aromatic), 1654
(C = O). 1H-NMR (DMSO) δ (ppm): 1.50–3.33 (m, 8H cyclohexyl), 2.76 (s, 2H, NH2, D2O
exchangeable), 7.50–7.99 (m, aromatic-5H), 12.55 (s, 1H, NH, D2O exchangeable). 13C NMR



Molbank 2022, 2022, M1352 8 of 10

(DMSO-d6) ppm: 20.4, 23.5, 23.5, 25.0, 114.7, 114.7, 116.8, 117.8, 122.5, 126.9, 127.5, 139.2,
145.1, 152.4, 159.2, 162.8. Analysis for: C16H16N4OS (312): CHN calcd. C, 61.52; H, 5.16; N,
17.90; found: C, 61.66; H, 5.18; N, 18.01.

3.3. In Vitro Kinase Inhibition Assessment

To assess the effect of compound 3 on kinase activity, universal kinase assay was used
by monitoring ADP formation, which is directly proportional to enzyme phosphotrans-
ferase activity. The kinase assay was performed using a mixture of kinases extracted from
the HT-29 cell line and the enzymatic inhibition was measured by using ADP-Glo assay
(Promega, Madison, WI, USA). The screening assay was undertaken in a single dose concen-
tration (20 µM). Kinases were incubated with the synthesized compound at the tested dose
(20 µM) in 96-well plates. After 45 min of incubation, the kinases’ activity was determined
using luminescent luciferase–luciferin reaction. Luminescence signals were measured by a
Varioskan™ LUX multimode microplate reader (Thermo Scientific, Waltham, MA, USA).
Kinase inhibition was expressed as the percentage of remaining kinase activity relative to
the vehicle kinase reaction.

3.4. Cell Culture

A breast cancer cell line (MCF-7), human hepatoma cell line (HepG-2), and colorectal
cell line (HT-29) were used to evaluate the anticancer activity of compound 3. All the cell
lines were cultured in their optimum media (RPMI-1640 or DMEM) containing 100 µg/mL
of streptomycin, 100 units/mL of penicillin, and 10% heat-inactivated fetal bovine serum
in humidified air with 5% CO2 at 37 ◦C.

Cell Viability Assay:
The MTT assay was used to determine the viability of the cancer cells (HepG-2, MCF-7,

and HT-29) after exposure to the synthesized compound. All tested cell lines were plated in
96-well plates (5000 cells/well) and allowed to attach for 24 h before treatment. Then, the cells
were exposed for 72 h to serial concentration (0.1–100 µL) of the compound 3 and doxorubicin
was used as a positive control. After the exposure, the MTT assay protocol was followed as
described [30]. The absorbance of the viable cells was measured at 540 nm with a Varioskan™
LUX multimode microplate reader (Thermo Scientific, Waltham, MA, USA).

4. Conclusions

This work describes the cytotoxic evaluation of a thienopyrimidine derivative along
with its in silico modeling studies and pharmacokinetics assessment. Target prediction
revealed the high affinity to kinases, specifically Janus kinase 2 (JAK2). Molecular docking
screening was performed on three different JAK2 proteins downloaded from the Protein
Data Bank (PDB: 5AEP, 4C62 and 3ZMM). In vitro kinase inhibitory activity was evaluated
with 49% kinase inhibition, and then compound cytotoxicity was performed on three
different cancerous cell lines (HT-29, HepG-2 and MCF-7). Marked cytotoxic activity of
the thienopyrimidine derivative against the HepG-2 cell line was demonstrated, reflected
by its IC50 value of 8.001 ± 0.0445 µM, which is better than that of the reference standard
(IC50 13.91 ± 2.170 µM), while it showed moderate cytotoxicity against both HT-29 and
MCF-7. Pharmacokinetic studies revealed a good drug likeness score, well permeability,
and GI absorption, with no violations against Lipinski’s rule. The prepared compound is a
promising key intermediate for the synthesis of a new series of thienopyrimidines due to
its amino group that can react with a variety of chemical groups.
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